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Executive Summary

+ Data movement between .memo(?//stora ge units and compute units is a major
contributor to execution time and energy consumption

. Processing-in—l\/\emory (PIM) is a paradigm that can tackle the data movement
bottlenec
- Though explored for +50 years, technology challenges prevented the successful materialization

* UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

* Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

* Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture

- PrIM (Processing-In-Memory) benchmarks:
* 16 workloads that are memory-bound in conventional processor-centric systems
» Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

* Takeaways:
- Workload characteristics for PIM suitability

- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems
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Data Movement in Computing Systems

* Data movement dominates performance and is a major system
energy bottleneck

 Total system energy: data movement accounts for
- 62%in consumer applications™®,
- 40% in scientific applications*,

- 35% in mobile applications*
Data Movement
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*Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” ISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014

___/_\___
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Data Movement in Computing Systems

dominates IS @ major system
energy bottleneck

* Total system energy: data movement accounts for
- 62%in consumer applications™,

Compute systems should be more data-centric

Processing-In-Memory proposes
computing where it makes sense
(where data resides)

tncoder | | Decoder | | Audio A
\ /

*Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” ISWC 2013
*Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” lISWC 2014
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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

C P U UPMEM UPMEM UPMEM UPMEN UPMEM LIPMEN UPMEM UPMEM
PIM PiNA PiM P PIM PIM PIM PI
(x86, ARM, RV...) chip aip chip ehip ehip e chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem 5
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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PIM Alleviates the Shortcomings of
Processor-Centric Systems

KEY TAKEAWAY 4

e UPMEM-based PIM systems outperform state-of-the-art CPUs in
terms of performance (by 23.2x on 2,556 DPUs for 16 PrIM
benchmarks) and energy efficiency on most of PrIM benchmarks.

e UPMEM-based PIM systems outperform state-of-the-art GPUs on
a majority of PrIM benchmarks (by 2.54x on 2,556 DPUs for 10

PrIM benchmarks), and the outlook is even more positive for future
PIM systems.

e UPMEM-based PIM systems are more energy-efficient than state-
of-the-art CPUs and GPUs on workloads that they provide
performance improvements over the CPUs and the GPUs.
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Observations, Recommendations, Takeaways

GENERAL PROGRAMMING RECOMMENDATIONS

Execute on the DRAM Processing Units (DPUs)
portions of parallel code that are as long as possible.
Split the workload into independent data blocks,
which the DPUs operate on independently.

Use as many working DPUs in the system as possible.
Launch at least 11 tasklets (i.e., software threads)
per DPU.

PROGRAMMING RECOMMENDATION 1

For data movement between the DPU’s MRAM bank and the
WRAM, use large DMA transfer sizes when all the accessed

data is going to be used.

KEY OBSERVATION 7

Larger CPU-DPU and DPU-CPU
transfers between the host main
memory and the DRAM Processing

Unit’s l\_/[aln_ memory (MRAM) banks_ KEY TAKEAWAY 1
result in higher sustained bandwidth.
The UPMEM PIM architecture is fundamentally compute

bound. As a result, the most suitable work- loads are
memory-bound.
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Accelerator Model
s UPMEM DIMMs coexist with conventional DIMMs

* Integration of UPMEM DIMMs in a system follows an
accelerator model

* UPMEM DIMMs can be seen as a loosely coupled
accelerator

- Explicit data movement between the main processor (host
CPU) and the accelerator (UPMEM)

- Explicit kernel launch onto the UPMEM processors

* This resembles GPU computing

SAFARI 11



System Organization (1)

* Ina UPMEM-based PIM system UPMEM DIMMs coexist
with regular DDR4 DIMMs

Main Memory

-
y
i
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System Organization (II)

* AUPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each

* Inside each PIM chip there are:

- 8 64MB banks per chip: Main RAM (MRAM) banks

- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per
rank

Main Memory PIM Ch ip
= ye ~\
/ Control/Status Interface <—>[ DDR4 Interface ]
DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM| /
( ) @ | | tip )\ Chip )\ chip )\ chip )| chip )\ chip )\ chip )| chip / A ‘
/
Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip \
/
/;M’ ( — r#\\\
Host )/ DISPATCH
FETCH1 _
CPU £ )/ Fercy )lap 23KB o
f T FETCH3 IRAM v
5[ > D cipns | OAMB
ﬁ Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip ) 4% - (READOP3 IE DRAM
chip )| chip || chip || chip || chip || chip || chip )| chip
4 P ek | |2 LEY
PIM-enabled Memory "~ _ T [aws WRAM 1
S 2 MERGEL _—37
(& ([ MERGE2 )’; %8
\_ J
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2,560-DPU System (1)

* UPMEM-based PIM

Main Memory

system with 20 .U PMEM 1,
DIMMs of 16 chips each
Host
(40 ranks) cPU 0 P 2560 DPUs*
P21 DIMMs PN 67 BN BN B o BB G
Dual x86 socket VA0

° UP M E M DI MMS PIM-enabled Memory
coexist with regular Main Memory
DDR4 DIMMs =

e > memory 4—»[
controllers/socket (3 2
channels each) crU 1 ,,

« 2 conventional DDR4 4. [ﬂﬂﬂﬂﬂﬂﬂﬂ
DIMMSs on one  BEEEEEEE
channel of one ..gwg,ze.../m
controller

160 GB
SA FA R’ * There are 4 faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,556. 1 4



2,560-DPU System (lI)

Main Memory
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640-DPU System

* UPMEM-based PIM
system with 10 UPMEM
DIMMs of 8 chips each

(1 o ran kS) Main Memory
- E19 DIMMs £
- x86 socket f—ﬁ{“)(l)ﬁﬂ()(lﬂ()
* 2 memo ry contro l I ers Chip)(chip; \cnip)(cmp)(éiﬁ,;; \Chi;ﬂﬁ&?ﬂ@;%ﬂ
(3 channels each) aoor P
* 2 conventional DDR4 o
DIMMs on one ~—<->&f:;::}Ez::}{:z::}{:::}{:z:)(::
Cha n nel Of On e Chip || Chip || Chip || Chip || Chip || Chip
controller PIM-enable
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Vector Addition (VA)

* Our first programming example

* We partition the input arrays across:
- DPUs
- Tasklets, i.e., software threads running on a DPU

SAFARI
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CPU-DPU/DPU-CPU Data Transfers

* CPU-DPU and DPU-CPU transfers
- Between host CPU’s main memory and DPUs’ MRAM banks

Main Memory

P

y =
.=
.=

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM
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= pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
@e=p-| ( Chip || Chip || Chip )\ chip )| chip |\ chip || chip || chip
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pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip )| chip || chip || chip /

xN
PIM-enabled Memory

e Serial CPU-DPU/DPU-CPU transfers:
- Asingle DPU (i.e., 1t MRAM bank)

* Parallel CPU-DPU/DPU-CPU transfers:
- Multiple DPUs (i.e., many MRAM banks)

* Broadcast CPU-DPU transfers:
- Multiple DPUs with a single buffer

SAFARI
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Inter-DPU Communication

* There is no direct communication channel between DPUs

Main Memory

P
y =
y =

y =

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM
\)‘ == | | 1P J\ Chip )| Chip |\ Chip J{ Chip )| chip |\ chip )| chip
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@e=p-| ( Chip || Chip || Chip )\ chip )| chip |\ chip || chip || chip
J
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip )| chip || chip || chip

PIM-enabled Memory

* Inter-DPU communication takes places via the host CPU using CPU-DPU
and DPU-CPU transfers

* Example communication patterns:

- Merging of partial results to obtain the final result
* Only DPU-CPU transfers

- Redistribution of intermediate results for further computation
* DPU-CPU transfers and CPU-DPU transfers

SAFARI 20
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How Fast are these Data Transfers?

* With a microbenchmark, we obtain the sustained
bandwidth of all types of CPU-DPU and DPU-CPU
transfers

* Two experiments:

- 1 DPU: variable CPU-DPU and DPU-CPU transfer size (8
bytes to 32 MB)

- 1rank: 32 MB CPU-DPU and DPU-CPU transfers to/from a
set of 1to 64 MRAM banks within the same rank

* Preliminary experiments with more than one rank
- Channel-level parallelism

SAFARI
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CPU-DPU/DPU-CPU Transfers: 1 DPU

* Data transfer size varies between 8 bytes and 32 MB

1.0000

--CPU-DPU
1| -@-DPU-CPU

Sustained CPU-DPU
Bandwidth
(GB/s, log scale)
©o o o
o o =
o = o
5 8 8

00001 T ! ! ! ! ! ! ! ! ! ! !

1

Data transfer size (bytes)

KEY OBSERVATION 7
Larger CPU-DPU and DPU-CPU transfers between the host main

memory and the DRAM Processing Unit's Main memory (MRAM)
banks result in higher sustained bandwidth.

SAFARI
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CPU-DPU/DPU-CPU Transfers: 1 Rank

* CPU-DPU (serial/parallel/broadcast) and DPU-CPU (serial/parallel)
 The number of DPUs varies between 1 and 64

== CPU-DPU (serial) —@— DPU-CPU (serial)
16.00 ==[J= CPU-DPU (parallel) =Q= DPU-CPU (parallel) 16.88
o] ’ =—f— CPU-DPU (broadcast) !
% < 800 - —66.68
[ G - |
5 S5 8 400 - - 4.7
a2 7 200
o5 2 100 - ‘
L c 5 41
= iy > 0.50 =Q— 0.27
2 9 025 - —a —
v 013 4 Q=@ o O—==0 0, @012
0.06 | | | . . |
< (o) <
— (o)

KEY OBSERVATION 8

The sustained bandwidth of parallel CPU-DPU and DPU-CPU
transfers between the host main memory and the DRAM Processing
Unit’s Main memory (MRAM) banks increases with the number of
DRAM Processing Units inside a rank.
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DRAM Processing Unit

PIM Chip

-

\_
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DPU Pipeline

* In-order pipeline

- Up to 350 MHz
* Fine-grain multithreaded

- 24 hardware threads
* 14 pipeline stages

: Thread selection
: Instruction fetch
- READOP: Register file
: Operand formatting

- ALU: Operation and WRAM
- MERGE: Result formatting

SAFARI
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Arithmetic Throughput: Microbenchmark

e Goal

- Measure the maximum arithmetic throughput for different
datatypes and operations

e Microbenchmark

- We stream over an array in WRAM and perform read-modify-write
operations

Experiments on one DPU

We vary the number of tasklets from 1 to 24
Arithmetic operations: add, subtract, multiply, divide
Datatypes: int32, int64, float, double

* We measure cycles with an accurate cycle counter that the
SDK provides

- We include WRAM accesses (including address calculation) and
arithmetic operation

SAFARI 27



Arithmetic Throughput: 11 Tasklets

70

~
o

| (a) INT32 (fDPU)

o)

o

D

o
1

(%
o
1
(%))
o
1

KEY OBSERVATION 1

The arithmetic
throughput of a DRAM
Processing Unit
saturates at 11 or more
tasklets.

I
o
1
N
o
1

30 A

w
o
1

N
o
1

Arithmetic Throughput (MOPS)
Arithmetic Throughput (MOPS)

This observation is
consistent for different
datatypes (INT32, INT64,
UINT32, UINT64, FLOAT,
DOUBLE) and operations
(ADD, SUB, MUL, DIV).

(2}
1
(2}

N
1
I

N
1
N

Arithmetic Throughput (MOPS)
w

Arithmetic Throughput (MOPS)
w

=
=

0

N 1N N O A N NN O A M
= A = a4 N N

#Tasklets
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Arithmetic Throughput: Native Support

Arithmetic Throughput (MQP

Arithmetic Throughput (MQ

SN
1

w
1

(c) FLOAT (1 DPU)

A —A—ADD

/\ SUB
/\ =O-MUL
/'\ =0=DIV

SAFARI

Arithmetic Throughput (MQR

30 A

(b) INT64 (1 DPU)

#Tasklets

(d) DOUBLE (1 DPU)

KEY OBSERVATION 2

* DPUs provide native
hardware support for 32-
and 64-bit integer
addition and subtraction,
leading to high throughput
for these operations.

* DPUs do not natively

support 32- and 64-bit
multiplication and
division, and floating
point operations. These
operations are emulated by
the UPMEM runtime
library, leading to much
lower throughput.




DPU: WRAM Bandwidth

PIM Chip

-

4 DISPATCH )|

FETCH1
FETCH2
FETCH3
READOP1
READOP2
READOP3
FORMAT
ALU1
ALU2
ALU3
ALU4
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c__:;ister File

v
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P

64-KB
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MERGE2

{

g
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DPU: MRAM Latency and Bandwidth

PIM Chip
-
)
c
= 64-MB
Q) | 64 bits
- P DRAM
S (I\E;RII:I)
64-KB =
wraM €% ©
./
\_
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MRAM Bandwidth

e Goal

- Measure MRAM bandwidth for different access patterns

e Microbenchmarks

* mram read();
e mram write();

- Latency of a single DMA transfer for different transfer sizes

]

AVl benchmark
« COPY, COPY-DMA
e ADD, SCALE, TRIAD

- Strided access pattern
* Coarse-grain strided access
* Fine-grain strided access

- Random access pattern (GUPS)

* We do include accesses to MRAM

SAFARI
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MRAM Read and Write Latency (1)

1000

628.23 - 633.22

=
o
o

Bandwidth (MB/s)

[EEN

1000
MRAM Read - 2048 — © MRAM Write -
o s
i © = _
512 5 2 100 .
: Jres]
8) O
128 g 3 107
=~ c
- a2
T T T T T 32 1 T T T | | | | |
o0 (Vo) N < o0 O (@] < o0 0 (o] AN < 0 O (@] < o0
— o (o} (@] LN — o <t — on (\o} (@] LN i o <
— (@] LN (@] (@) — (V] LN o o
— (V] i (@]
Data transfer size (bytes) Data transfer size (bytes)

We can model the MRAM latency with a linear expression

- 128

size X frequencyppy
MRAM Latency

B
MRAM Bandwidth (in E) =

2048

512

Latency (cycles)

32

MRAM Latency (in cycles) = a + BXsize

In our measurements, f equals 0.5 cycles/byte.
Theoretical maximum MRAM bandwidth = 700 MB/s at 350 MHz

SAFARI
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MRAM Read and Write Latency (lI)

___ 1000 628.23 1000 : 633.22
§ MRAM Read - 2048 5 § MRAM Write - 2048 %\
= 100 1, S 2 100 - 1y S
L O B (®]
E> P~ pe
— (@] — (@)
3 0 128 g 2 10 L 128 5
4= c 4
g S g g
1 T T T T T T T T 32 1 T T T | | | | | 32
c0 (o) (] < o0 O o < o0 0 (o] AN < 0 O o < o0
— o (o) (g} LN — o << — on (\o} (@] LN — o <
Data transfer size (bytes) Data transfer size (bytes)

KEY OBSERVATION 4

* The DPU’s Main memory (MRAM) bank access latency increases

linearly with the transfer size.
* The maximum theoretical MRAM bandwidth is 2 bytes per cycle.
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MRAM Bandwidth

* Goal
- Measure MRAM bandwidth for different access patterns

e Microbenchmarks

- Latency of a single DMA transfer for different transfer sizes
* mram read();
* mram write();

- COPY, COPY-DMA

- STREAM benchmark
« ADD, SCALE, TRIAD

- Strided access pattern
* Coarse-grain strided access
* Fine-grain strided access

- Random access pattern (GUPS)

* We do include accesses to MRAM

SAFARI
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STREAM Benchmark: Bandwidth Saturation

700 1 STREAM (MRAM, INT64, 1DPU)

S 600 -

< o

<3S 500 - ~0-COPY-DMA
2 =400 - ~0—-COPY

S 5 ~A-ADD

E = 300 - -C-SCALE

5 2 200 - TRIAD

%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

KEY OBSERVATION 5

 When the access latency to an MRAM banKk for a streaming benchmark (COPY-
DMA, COPY, ADD) is larger than the pipeline latency (i.e., execution latency of
arithmetic operations and WRAM accesses), the performance of the DPU saturates at a

number of tasklets smaller than 11. This is a memory-bound workload.

* When the pipeline latency for a streaming benchmark (SCALE, TRIAD) is larger
than the MRAM access latency, the performance of a DPU saturates at 11 tasklets.
This is a compute-bound workload.
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MRAM Bandwidth

* Goal
- Measure MRAM bandwidth for different access patterns

* Microbenchmarks
- Latency of a single DMA transfer for different transfer sizes
* mram read();
e mram write();
- STREAM benchmark
 COPY, COPY-DMA
* ADD, SCALE, TRIAD

(- Strided access pattern )
* Coarse-grain strided access
* Fine-grain strided access
.- Random access pattern (GUPS) D
* We do include accesses to MRAM
SAFARI 37



DPU: Arithmetic Throughput vs. Operational Intensity
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Arithmetic Throughput vs. Operational Intensity (1)

e Goal

- Characterize memory-bound regions and compute-bound regions for
different datatypes and operations

 Microbenchmark

- We load one chunk of an MRAM array into WRAM
- Perform a variable number of operations on the data
- Write back to MRAM

* The experiment is inspired by the Roofline model*

* We define operational intensity (Ol) as the number of
arithmetic ogerations performed per byte accessed from
MRAM (OP/B)

* The pipeline latency changes with the operational intensity,
but the MRAM access latency is fixed

SA FA Rl *S. Williams et al., “Roofline: An Insightful Visual Performance Model for Multi-core Architectures,” CACM, 2009



Arithmetic Throughput vs. Operational Intensity (II)

__64.00

cale

Arithmetic Throughput (MOPS, log s

0.03

(

32.00 -
16.00 -
8.00 ~
4.00 ~
2.00 ~
1.00 4
0.50 ~
0.25 ~
0.13 ~
0.06 ~

In the memory-bound R
region, the arithmetic
throughput increases with
. the operational intensity )

(a) INT32, ADD (1 DPU)

Compute-bound
region region [

In the compute-bound R
region, the arithmetic
throughput is flat at its
Operational Intensity (OP/B) K maXimum )

Y o> o D © *x P
VN <y Vo v ) ) v N Vv
Q" O ¢ N > N

\the memory-bound region and the compute-bound region happens

The throughput saturation point is the operational intensity
where the transition between

v

The throughput saturation point is as low as ¥ OP/B,

i.e., 1integer addition per every 32-bit element fetched
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Arithmetic Throughput vs.

Operational Intensity (lI)

© 32.00 (a) INT32, ADD (1 DPU)

Arithmetic Throughput (MOPS, lo
o
wv
o

2 > © AD (M ©

AN IR © v AR R

Q" O & > Y
Operational Intensity (OP/B)

Ny X D

32.00 J (€)FLOAT, ADD (1 DPU)

ic Throughput (MOPS, log scale)

0.13 4

[s1i]

Arithmetic Throughput (MOPS, lo

ic Throughput (MOPS, log scale)

16.00 A

1 (b) INT32, MUL (1 DPU)

D A% © &
WP R AD>)we@ »n ~r %%
0,\10%\/\,]/\,\\"&\'\'\\\”\\'\'\'\

Operational Intensity (OP/B)

The arithmetic throughput of a DRAM Processing Unit (DPU) saturates at
low or very low operational intensity (e.g., 1 integer addition per 32-bit

element). Thus, the DPU is fundamentally a compute-bound processor.
We expect most real-world workloads be compute-bound in the UPMEM PIM
architecture.
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Outline

(« Introduction N
- Accelerator Model

. - UPMEM-based PIM System Overview )

(¢ UPMEM PIM Programming )
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth )

(» DRAM Processing Unit h
- Arithmetic Throughput

g - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity )

(« Evaluation R
- Strong and Weak Scaling

- Comparison to CPU and GPU Y

* Key Takeaways
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PriM Benchmarks

e Goal

- A common set of workloads that can be used to
e evaluate the UPMEM PIM architecture,
* compare software improvements and compilers,
* compare future PIM architectures and hardware

* Two key selection criteria:
- Selected workloads from different application domains
- Memory-bound workloads on processor-centric architectures

* 14 different workloads, 16 different benchmarks*

SA FARI *There are two versions for two of the workloads (HST, SCAN). 43



PrIM Benchmarks: Application Domains

Domain Benchmark Short name
Vector Addition VA
Dense linear algebra
Matrix-Vector Multiply GEMV
Sparse linear algebra Sparse Matrix-Vector Multiply SpMV
Select SEL
Databases
Unique UNI
Binary Search BS
Data analytics
Time Series Analysis TS
Graph processing Breadth-First Search BFS
Neural networks Multilayer Perceptron MLP
Bioinformatics Needleman-Wunsch NW
Image histogram (short) HST-S
Image processing
Image histogram (large) HST-L
Reduction RED
Prefix sum (scan-scan-add) SCAN-SSA
Parallel primitives
Prefix sum (reduce-scan-scan) SCAN-RSS
Matrix transposition TRNS

SAFARI
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Roofline Model

* Intel Advisor on an Intel Xeon E3-1225 v6 CPU

16 - - 7 Peak compute performance

5 g / G- MLP /
S, 7 Gemvy  ew
@ 13
= = BS~@Q/(§HST
e 2 o~ UNI G NW
g 1 V—g G TRNS
S © % _GRED
€ 05 A e BFS
& X SCAN

0.25 —&

0.125 . |

0.01 0.1 1 10

Arithmetic Intensity (OP/B)

[ All workloads fall in the memory-bound area of the Roofline ]
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PrIM Benchmarks: Diversity

* PrIM benchmarks are diverse:
- Memory access patterns
- Operations and datatypes
- Communication/synchronization

: Memory access pattern Computation pattern

Domiain Benclimntle ShurtuEme Sequential T Stridedpl Random Oper;:tions II) Datatype Intra-DPU | Inter-DPU

Dense linearalgeben Vector Addition VA Yes add int32_t
Matrix-Vector Multiply GEMV Yes add, mul uint32_t

Sparse linear algebra | Sparse Matrix-Vector Multiply SpMV Yes Yes add, mul float

Databases Select SEL Yes add, compare int64_t handshake, barrier Yes
Unique UNI Yes add, compare int64_t handshake, barrier Yes

. Binary Search BS Yes Yes compare int64_t

Data analytics Time }S’,eries Analysis TS Yes add, sub,pmul, div int32_t

Graph processing Breadth-First Search BFS Yes Yes bitwise logic uint64_t barrier, mutex Yes

Neural networks Multilayer Perceptron MLP Yes add, mul, compare | int32_t

Bioinformatics Needleman-Wunsch NW Yes Yes add, sub, compare int32_t barrier Yes

JiagE ProCEHaiE Image histogram (short) HST-S Yes Yes add uint32_t barrier Yes
Image histogram (long) HST-L Yes Yes add uint32_t barrier, mutex Yes
Reduction RED Yes Yes add int64_t barrier Yes

Parallel primitives Prefix sum (scan-scan-add) SCAN-SSA Yes add int64_t §| handshake, barrier Yes
Prefix sum (reduce-scan-scan) | SCAN-RSS Yes add int64_t | handshake, barrier Yes
Matrix transposition TRNS Yes Yes add, sub, mul int64_t mutex

SAFARI
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Outline

(« Introduction b
- Accelerator Model

. - UPMEM-based PIM System Overview )

(¢ UPMEM PIM Programming )
- Vector Addition
- CPU-DPU Data Transfers
- Inter-DPU Communication

| - CPU-DPU/DPU-CPU Transfer Bandwidth )

(» DRAM Processing Unit h
- Arithmetic Throughput

. - WRAM and MRAM Bandwidth y

(¢ PrIM Benchmarks R
- Roofline Model

. - Benchmark Diversity )

(» Evaluation B
- Strong and Weak Scaling

. - Comparison to CPU and GPU )

* Key Takeaways
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Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

N\

[ Strong scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size

S
~

Weak scaling refers to how the execution time of a program solving a particular problem varies
with the number of processors for a fixed problem size per processor

\ S
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Evaluation Methodology

* We evaluate the 16 PrIM benchmarks on two UPMEM-
based systems:
- 2,556-DPU system
- 640-DPU system

* Strong and weak scaling experiments on the 2,556-DPU
system
- 1 DPU with different numbers of tasklets
- 1rank (strong and weak)
- Up to 32 ranks

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU
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Strong Scaling: 1 DPU (1)

* Strong scaling
experiments on 1 DPU

- We set the number
of tasklets to 1, 2, 4,
8,and 16

- We show the
breakdown of
execution time:

* DPU: Execution
time on the DPU

* |nter-DPU: Time for
inter-DPU

communication via
the host CPU

 CPU-DPU:Time for
CPU to DPU
transfer of input
data

e DPU-CPU: Time for
DPU to CPU
transfer of final
results

- Speedup over 1
tasklet

800

600

400

Execution Time (ms

200

0
VA

EZADPU-CPU

= CPU-DPU
(I | nter-DPU

[ DPU - 12

N

a=Q=Speedup

o

=)

# @
' Y
N o
v

L7z
S

— N < o0 O
i

#tasklets per DPU
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Strong Scaling: 1 DPU (lI)

3DPU-CPU ZZ3DPU-CPU

ESNCPU-DPU [ - [ 10000 - [ [E=3CPU-DPU

1200

8
1000 D I nter-DPU | _ - " :ggg - _ I nter-DPU 7 (VA, GEMV, SpMV’ SEL, UNI, TS’ \
S wo < 5 e :o| | MLP, NW, HST-S, RED, SCAN-SSA
= = I~ = °
5 5 5 o 5 oo . (Scan kernel), SCAN-RSS (both
g o I A | : g 0 g o . kernels), and TRNS (Step 2 kernel),
- S =IE i o . the best performing number of
0 0 0 0
#tasklets per DPU IG i UaSklets IS 16 )

#tasklets per DPU #tasklets per DPU #tasklets per DPU

8 140000
= D Inter-DPU L7 120000
77 ==y Z oooo : Speedups 1.5-2.0x as we double the
o 3 LE a0ooo 3 number of tasklets from 1to 8.
5 4 & 60000 4
S w0 2o S o 49 Speedups 1.2-1.5x from 8 to 16,
o 200 L % 20000 2 since the pipeline throughput
UNI o e e g A e saturates at 11 tasklets
#tasklets per DPU #tasklets per DPU k J
12 s 1600 ggﬂj;gg
1400 I | nter-DPU
B | 2 12 KEY OBSERVATION 10
'E 800 6 'g '§ 'E 1222
R E A number of tasklets
] 400 g o 400
“ 200 2 “ “ 200

greater than 11 is a good
choice for most real-

- N < 0 ©
—

MLP - N < © ©

=
=3

#tasklets per DPU #tasklets per DPU
ety Ry . . 2 T —
ooy | e = world workloads we
| — Speedup (Add) 7 —) p2 - 12
E 2000
= s s |
£ 150 £ i | ° tested (16 kernels out of 19
lii € 1500 4 _ch £ 1500 I _g,
= = |
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¢ 0 E e B .
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0 0 0 0 + 0
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Strong Scaling: 1 DPU (llI)

S do not use intra-DPU
([ synchronization primitives

" VA, GEMV, SpMV, BS, TS, MLP, HST- |

J

kernel), SCAN-RSS (both kernels),
\_synchronization is lightweight

[ In SEL, UNI, NW, RED, SCAN-SSA (Scan |

( BFS, HST-L, TRNS (Step 3) use

when accessing shared data
\_Structures

mutexes, which cause contention

J
~
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Strong Scaling: 1 DPU (IV)

HST-L = ~ ¥ =@ @
#tasklets per DPU

Z=1DPU-CPU
1800 - E=9 CPU-DPU 6
1600 -l MM | nter-DPU
- I DPU - 5
c 1400 =0=S5peedup
o 1200 4
&
= 1000
S 600
O
L 400
L
200
0

" VA, GEMV, SpMV, BS, TS, MLP, HST- |
S do not use synchronization
([ primitives y

[ In SEL, UNI, NW, RED, SCAN-SSA (Scan R
kernel), SCAN-RSS (both kernels),
\_synchronization is lightweight

J
( BFS, HST-L, TRNS (Step 3) use B
mutexes, which cause contention
when accessing shared data

\_Structures y

KEY OBSERVATION 11

Intensive use of intra-DPU
synchronization across
tasklets (e.g., mutexes,
barriers, handshakes)

may limit scalability,
sometimes causing the best
performing number of
tasklets to be lower than
11.
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Strong Scaling: 1 Rank

* Strong scaling
experiments on 1 rank

- We set the number of
tasklets to the best
performing one

- The number of DPUs
is1, 4,16, 64

- We show the
breakdown of
execution time:

* DPU: Execution time
on the DPU

* Inter-DPU: Time for
inter-DPU
communication via
the host CPU

* (CPU-DPU: Time for
CPU to DPU transfer
of input data

* DPU-CPU: Time for
DPU to CPU transfer
of final results

- Speedup over 1 DPU
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Strong Scaling: 32 Ranks

* Strong scaling
experiments on 32

rank

- We set the number
of tasklets to the
best performing one

- The number of DPUs
is 256, 512, 1024,
2048

- We show the

breakdown of
execution time:

DPU: Execution
time on the DPU
Inter-DPU: Time for
inter-DPU

communication via
the host CPU

We do not show
CPU-DPU/DPU-CPU
transfer times
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Weak Scaling: 1 Rank
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CPU/GPU: Evaluation Methodology

* Comparison of both UPMEM-based PIM systems to
state-of-the-art CPU and GPU

- Intel Xeon E3-1240 CPU
- NVIDIA TitanV GPU

* We use state-of-the-art CPU and GPU counterparts of
PriM benchmarks

- https://github.com/CMU-SAFARI/prim-benchmarks

* We use the largest dataset that we can fit in the GPU
memory

* We show overall execution time, including DPU kernel
time and inter DPU communication
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CPU/GPU: Performance Comparison (1)
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More PIM-suitable workloads (1) Less PIM-suitable workloads (2)

The 2,556-DPU and the 640-DPU systems outperform the CPU for

all benchmarks except SpMV, BFS, and NW

The 2,556-DPU and the 640-DPU are, respectively, 93.0x and 27.9x

faster than the CPU for 13 of the PrIM benchmarks
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CPU/GPU: Performance Comparison (Il)

More PIM-suitable workloads (1)

Less PIM-suitable workloads (2)

The 2,556-DPU outperforms the GPU
for 10 PriIM benchmarks with an average of 2.54x

The performance of the 640-DPU is within 65%

OCPU 1 GPU 640 DPUs 2556 DPUs
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the performance of the GPU for the same 10 PriIM benchmarks
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CPU/GPU: Performance Comparison (lI)

o CPU 1 GPU 640 DPUs 2556 DPUs
1024.000 A
256.000 - i
64.000 4 [
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0.001

A A )

Wl I A

il i A A A

Il A i
A A

i i A
G i

I A |

A i

Il L 4

Il A

Speedup over CPU (log scale)

KEY OBSERVATION 19

The UPMEM-based PIM system can outperform a state-of-the-art GPU
on workloads with three key characteristics:
1. Streaming memory accesses

GMEAN

2. No or little inter-DPU synchronization

3. No or little use of integer multiplication, integer division, or floating
point operations

These three key characteristics make a workload potentially suitable to

the UPMEM PIM architecture.
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CPU/GPU: Energy Comparison
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The 640-DPU system consumes on average 1.64x less energy than
the CPU for all 16 PrIM benchmarks

For 12 benchmarks, the 640-DPU system provides energy savings

GMEAN

of 5.23x over the CPU
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Outline
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Key Takeaway 1
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KEY TAKEAWAY 1

NV X D

The throughput
saturation point is as low
as ¥a OP/B,

i.e., 1integer addition per
every 32-bit element
fetched

The UPMEM PIM architecture is fundamentally compute bound.

As aresult, the most suitable workloads are memory-bound.
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Key Takeaway 2
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KEY TAKEAWAY 2
The most well-suited workloads for the UPMEM PIM architecture

use no arithmetic operations or use only simple operations (e.g.,
bitwise operations and integer addition/subtraction).
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Key Takeaway 3
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Key Takeaway 4

KEY TAKEAWAY 4

e UPMEM-based PIM systems outperform state-of-the-art CPUs in
terms of performance (by 23.2x on 2,556 DPUs for 16 PrIM
benchmarks) and energy efficiency on most of PrIM benchmarks.

e UPMEM-based PIM systems outperform state-of-the-art GPUs on

a majority of PrIM benchmarks (by 2.54x on 2,556 DPUs for 10
PrIM benchmarks), and the outlook is even more positive for future
PIM systems.

e UPMEM-based PIM systems are more energy-efficient than state-
of-the-art CPUs and GPUs on workloads that they provide
performance improvements over the CPUs and the GPUs.
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Executive Summary

+ Data movement between .memo(?//stora ge units and compute units is a major
contributor to execution time and energy consumption

. Processing-in—l\/\emory (PIM) is a paradigm that can tackle the data movement
bottlenec
- Though explored for +50 years, technology challenges prevented the successful materialization

* UPMEM has designed and fabricated the first publicly-available real-world PIM
architecture
- DDR4 chips embedding in-order multithreaded DRAM Processing Units (DPUs)

* Our work:
- Introduction to UPMEM programming model and PIM architecture
- Microbenchmark-based characterization of the DPU
- Benchmarking and workload suitability study

* Main contributions:
- Comprehensive characterization and analysis of the first commercially-available PIM architecture

- PrIM (Processing-In-Memory) benchmarks:
* 16 workloads that are memory-bound in conventional processor-centric systems
» Strong and weak scaling characteristics

- Comparison to state-of-the-art CPU and GPU

* Takeaways:
- Workload characteristics for PIM suitability

- Programming recommendations
- Suggestions and hints for hardware and architecture designers of future PIM systems
- PrIM: (a) programming samples, (b) evaluation and comparison of current and future PIM systems
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Long arXiv Version

Benchmarking a New Paradigm: An Experimental Analysis

of a Real Processing-in-Memory Architecture

Juan Gémez-Luna! Izzat Fl Hajj? Ivan Fernandez!* Christina Giannoula®*
]]

Geraldo F. Oliveira! Onur Mutlu!
IETH Ziirich  2American University of Beirut  *University of Malaga  *National Technical University of Athens

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

PrIM Repository

* All microbenchmarks, benchmarks, and scripts
* https://github.com/CMU-SAFARI/prim-benchmarks

H CMU-SAFARI/ prim-benchmarks @ Unwatch ~ 2 {7 star 2 % Fork 1

<> Code () Issues 1 Pull requests (*) Actions ["1] Projects [ wiki () Security [~ Insights 51 Settings

¥ main +  prim-benchmarks / README.md Go to file

Juan Gomez Luna PrIM -- first commit Latest commit 3desb49 9 days ago O History

A 1 contributor

‘= 168 lines (132 sloc) 5.79 KB Raw Blame G 2 O

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate,
analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM
architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called
DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming,
architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads
have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and
communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for
comparison purposes.

Prim also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and
memory bandwidth.
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https://github.com/CMU-SAFARI/prim-benchmarks

Understanding a Modern PIM Architecture

Understanding a Modern ,
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

Juan Gomez Luna, lzzat El Hajj,
Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture

2,579 views - Streamed live on Jul 12, 2021 e 93 GP 0 ) SHARE =+ SAVE
@ Onur MutIu_Lectures SUBSCRIBED Q
&> 18.7K subscribers =

S A FA R l https://www.youtube.com/watch?v=D8Hjy2iU914&list=PL50Q2s0XY2Zi tOTAYm--dYByNPL7JhwR9



https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

Processing-in-Memory Course (Fall 2021)

Z
* Short weekly lectures =

SAFARI Project & Seminars Courses (Fall 2021)

Recent Changes Media Manager Sitemap

Trace: * heterogeneous_systems * processing_in_memory

°
* Hands-on projects
Projects

= SoftMC

= Ramulator
Accelerating Genomics
= Mobile Genomics
= Processing-in-Memory
= Heterogeneous Systems
= SSD Simulator

- Processing in Memory
Course: Meeting 1:...

A Modern Primer on Processing in Memory 1

Onur Mulls*®, Saugata Ghose™, Juan Gomez-Luns®, Rachats Ausavarungnirun®

Onur Mutlu Lectures

SAFARS Research Group

“Univer
“King Monghow's Un

2
p PLAY ALL

Livestream - P&S Exploring
the Processing-in-Memory
Paradigm for Future
Computing Systems (Fall
2021)

2 videos ¢ 56 views * Updated 5 days ago

= x’) ~ o0

Processing in Memory
Course: Meeting 2: Real-...

Onur Mutlu Lectures

@ OnurMutls g jpscriBep N

&> Lectures

https://youtube.com/playlist?list=PL5Q2s0XY2Zi-841fUYYUK9ESXKhQKRPyX

processing_in_memory

Table of Contents

Exploring the Processing-in-Memory Paradigm for Future O o

2 Xploring the Processing-in-

Computing Systems Edit Memory Paradigm for Future
Computing Systems

Course Description ak
Course Description

Data movement between the memory units and the compute units of current Mentors
computing systems is a major performance and energy bottleneck. From Lecture Video Playlist on
large-scale servers to mobile devices, data movement costs dominate YouTube
computation costs in terms of both performance and energy consumption. For Fall 2021

Meetings/Schedule
Learning Materials
Assignments

example, data movement between the main memory and the processing cores
accounts for 62% of the total system energy in consumer applications. As a
result, the data movement bottleneck is a huge burden that greatly limits the
energy efficiency and performance of modern computing systems. This
phenomenon is an undesired effect of the dichotomy between memory and the processor, which leads to the data
movement bottleneck.

Many modern and important workloads such as machine learning, computational biology, graph processing,
databases, video analytics, and real-time data analytics suffer greatly from the data movement bottleneck. These
workloads are exemplified by irregular memory accesses, relatively low data reuse, low cache line utilization, low
arithmetic intensity (i.e., ratio of operations per accessed byte), and large datasets that greatly exceed the main
memory size. The computation in these workloads cannot usually compensate for the data movement costs. In
order to alleviate this data movement bottleneck, we need a paradigm shift from the traditional processor-centric
design, where all computation takes place in the compute units, to a more data-centric design where processing
elements are placed closer to or inside where the data resides. This paradigm of computing is known as
Processing-in-Memory (PIM).

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent “the next
big thing” in Computer Architecture. You will work hands-on with the first real-world PIM architecture, will explore
different PIM architecture designs for important workloads, and will develop tools to enable research of future PIM
systems. Projects in this course span software and hardware as well as the software/hardware interface. You can
potentially work on developing and optimizing new workloads for the first real-world PIM hardware or explore new
PIM designs in simulators, or do something else that can forward our understanding of the PIM paradigm.

Prerequisites of the course:

Digital Design and Computer Architecture (or equivalent course).
Familiarity with C/C++ programming.

Interest in future computer architectures and computing paradigms.
Interest in discovering why things do or do not work and solving problems
= Interest in making systems efficient and usable

The course is conducted in English.

The course has two main parts:
1. Short lectures on different aspects of processing-in-memory.
2. Hands-on project: Each student develops his/her own project.

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id

=processing_in_memory
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Comp Arch (Fall 2021)

= https://safari.ethz.ch/architecture/fall20
21/doku.php?id=schedule

= Youtube Livestream:

o https://www.youtube.com/watch?v=4yfk
M _5EFgo&list=PL50Q2so0XY?2Zi-
Mnk1PxiEIG32HAGILKTOF

= Master’s level course

o Taken by Bachelor's/Masters/PhD
students

o Cutting-edge research topics +
fundamentals in Computer Architecture

o 5 Simulator-based Lab Assignments
o Potential research exploration
o Many research readings

Recent Changes Media Manager Sitemap

748 Computer Architecture - Fall 2021 Search

Trace: - readings - start - schedule

Home
Announcements
Materials

- Lectures/Schedule
+ Lecture Buzzwords
- Readings

- HWs

- Labs

- Exams

- Related Courses
- Tutorials

Resources

- & Computer Architecture FS20:
Course Webpage

« & Computer Architecture FS20:
Lecture Videos

- & Digitaltechnik SS21: Course
Webpage

- @ Digitaltechnik SS21: Lecture
Videos

« & Moodle

- @ HotCRP

+ & Verilog Practice Website
(HDLBits)

schedule

Lecture Video Playlist on YouTube

@ Livestream Lecture Playlist

Watch on @8 Youube - \
https://arxiv.org/pdf/2105.03814.pdf

‘% Recorded Lecture Playlist

» ML accelerator: 260 mm?2, 6 billion transistors,
600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs.

= Two redundant chips for better safety.

Fall 2021 Lectures & Schedule

Week Date Livestream Lecture Readings Lab HW
W1 30.09 Yo Live = LA: Introduction and Basics Required | Lab 1 HW 0
Thu. am(PDF) i (PPT) Mentioned = Out Out
01.10 | Youfff Live = L2: Trends, Tradeoffs and Design Required
Fri. Fundamentals Mentioned
am(PDF) i (PPT)
W2 | 07.10 Yo{[[D) Live = L3a: Memory Systems: Challenges and Described HW 1
Thu. Opportunities Suggested Out

azi(PDF) zm (PPT)

L3b: Course Info & Logistics
am(PDF) i (PPT)

L3c: Memory Performance Attacks Described
i (PDF) i (PPT) Suggested
08.10 | Youff[ Live = L4a: Memory Performance Attacks Described | Lab 2
Fri. oml(PDF) zmi (PPT) Suggested | Out
L4b: Data Retention and Memory Refresh = Described
i (PDF) i (PPT) Suggested
L4c: RowHammer Described

am(PDF) i (PPT) Suggested


https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF
https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF

Workshop on Computing with Unconventional Technologies (CUT 2021)

Benchmarking Memory-Centric
Computing Systems:
Analysis of Real Processing-in-Memory Hardware

Juan Gomez Luna, Izzat El Hajj,
lvan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2110.01709.pdf
https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks
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