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ABSTRACT Many modern workloads, such as neural networks, databases, and graph processing, are
fundamentally memory-bound. For such workloads, the data movement between main memory and CPU
cores imposes a significant overhead in terms of both latency and energy. A major reason is that this
communication happens through a narrow bus with high latency and limited bandwidth, and the low
data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access.
Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system
assumes an active role in computing by integrating processing capabilities. This paradigm is known as
processing-in-memory (PIM ). Recent research explores different forms of PIM architectures, motivated by
the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where
processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best,
with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the
first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional
DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPUs),
integrated in the same chip. This paper provides the first comprehensive analysis of the first publicly-
available real-world PIM architecture. We make two key contributions. First, we conduct an experimental
characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture
limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present
PrIM (Processing-In-Memory benchmarks), a benchmark suite of 16 workloads from different application
domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, neural networks,
bioinformatics, image processing), which we identify as memory-bound. We evaluate the performance
and scaling characteristics of PrIM benchmarks on the UPMEM PIM architecture, and compare their
performance and energy consumption to their modern CPU and GPU counterparts. Our extensive evaluation
conducted on two real UPMEM-based PIM systems with 640 and 2,556 DPUs provides new insights about
suitability of different workloads to the PIM system, programming recommendations for software designers,
and suggestions and hints for hardware and architecture designers of future PIM systems.

INDEX TERMS Processing-in-memory, near-data processing, memory systems, data movement bottleneck,
DRAM, benchmarking, real-system characterization, workload characterization.

I. INTRODUCTION
In modern computing systems, a large fraction of the execu-
tion time and energy consumption of modern data-intensive
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workloads is spent moving data between memory and pro-
cessor cores. This data movement bottleneck [1]–[7] stems
from the fact that, for decades, the performance of processor
cores has been increasing at a faster rate than the mem-
ory performance. The gap between an arithmetic operation
and a memory access in terms of latency and energy keeps
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widening and the memory access is becoming increasingly
more expensive. As a result, recent experimental studies
report that data movement accounts for 62% [8] (reported in
2018), 40% [9] (reported in 2014), and 35% [10] (reported
in 2013) of the total system energy in various consumer,
scientific, and mobile applications, respectively.

One promising way to alleviate the data movement bot-
tleneck is processing-in-memory (PIM ), which equips mem-
ory chips with processing capabilities [2]. This paradigm
has been explored for more than 50 years [1]–[4], [8],
[11]–[131], but limitations in memory technology prevented
commercial hardware from successfully materializing. More
recently, difficulties in DRAM scaling (i.e., challenges in
increasing density and performance while maintaining reli-
ability, latency and energy consumption) [132]–[166] have
motivated innovations such as 3D-stacked memory [63],
[167]–[172] and nonvolatile memory [146], [173]–[183]
which present new opportunities to redesign the memory sub-
system while integrating processing capabilities. 3D-stacked
memory integrates DRAM layers with a logic layer, which
can embed processing elements. Several works explore this
approach, called processing-near-memory (PNM ), to imple-
ment different types of processing components in the logic
layer, such as general-purpose cores [8], [56], [63]–[67],
[128], [184], application-specific accelerators [57]–[61],
[69], [79], [81], [82], [88], [89], [101], [104], [105], [107],
[108], [124]–[127], [129]–[131], [185], [186], simple func-
tional units [62], [84], [120], [122], [123], [187], GPU
cores [78], [80], [85], [87], or reconfigurable logic [68],
[73], [75], [121]. However, 3D-stacked memory suffers from
high cost and limited capacity, and the logic layer has hard-
ware area and thermal dissipation constraints, which limit
the capabilities of the embedded processing components.
On the other hand, processing-using-memory (PUM ) takes
advantage of the analog operational properties of memory
cells in SRAM [21]–[24], DRAM [25]–[40], [99], [100],
[119], [188]–[191], or nonvolatile memory [41]–[55], [70],
[103], [114], [118], [192]–[196] to perform specific types
of operations efficiently. However, processing-using-memory
is either limited to simple bitwise operations (e.g., major-
ity, AND, OR) [21], [25], [26], [188], [191], requires
high area overheads to perform more complex operations
[35], [36], [99], or requires significant changes to data
organization, manipulation, and handling mechanisms to
enable bit-serial computation, while still having limitations
on certain operations [29], [37], [40].1 Moreover, processing-
using-memory approaches are usually efficient mainly for
regular computations, since they naturally operate on a large
number of memory cells (e.g., entire rows across many sub-
arrays [25]–[28], [37], [188]–[191], [197]) simultaneously.

1PUM approaches performing bit-serial computation [29], [37], [40] need
to layout data elements vertically (i.e., all bits of an element in the same
bitline), which (1) does not allow certain data manipulation operations
(e.g., shuffling of data elements in an array) and (2) requires paying the
overhead of bit transposition, when the format of data needs to change [37],
i.e., prior to performing bit-serial computation.

For these reasons, complete PIM systems based on
3D-stacked memory or processing-using-memory have not
yet been commercialized in real hardware.

The UPMEMPIM architecture [198], [199] is the first PIM
system to be commercialized in real hardware. To avoid the
aforementioned limitations, it uses conventional 2D DRAM
arrays and combines them with general-purpose processing
cores, called DRAM Processing Units (DPUs), on the same
chip. Combining memory and processing components on the
same chip imposes serious design challenges. For example,
DRAM designs use only three metal layers [200], [201],
while conventional processor designs typically use more than
ten [199], [202]–[204]. While these challenges prevent the
fabrication of fast logic transistors, UPMEMovercomes these
challenges via DPU cores that are relatively deeply pipelined
and fine-grained multithreaded [205]–[209] to run at several
hundred megahertz. The UPMEM PIM architecture provides
several key advantages with respect to other PIM proposals.
First, it relies on mature 2D DRAM design and fabrication
process, avoiding the drawbacks of emerging 3D-stacked
memory technology. Second, the general-purpose DPUs sup-
port a wide variety of computations and data types, simi-
lar to simple modern general-purpose processors. Third, the
architecture is suitable for irregular computations because the
threads in a DPU can execute independently of each other
(i.e., they are not bound by lockstep execution as in SIMD2).
Fourth, UPMEM provides a complete software stack that
enables DPU programs to be written in the commonly-used
C language [213].

Rigorously understanding the UPMEM PIM architecture,
the first publicly-available PIM architecture, and its suitabil-
ity to various workloads can provide valuable insights to pro-
grammers, users and architects of this architecture as well as
of future PIM systems. To this end, our work provides the first
comprehensive experimental characterization and analysis of
the first publicly-available real-world PIM architecture. To
enable our experimental studies and analyses, we develop
new microbenchmarks and a new benchmark suite, which we
openly and freely make available [214].

We develop a set of microbenchmarks to evaluate, charac-
terize, and understand the limits of the UPMEM-based PIM
system, yielding new insights. First, we obtain the compute
throughput of a DPU for different arithmetic operations and
data types. Second, we measure the bandwidth of two dif-
ferent memory spaces that a DPU can directly access using
load/store instructions: (1) a DRAM bank called Main RAM
(MRAM ), and (2) an SRAM-based scratchpadmemory called
Working RAM (WRAM ). We employ streaming (i.e., unit-
stride), strided, and random memory access patterns to mea-
sure the sustained bandwidth of both types of memories.
Third, we measure the sustained bandwidth between the stan-
dard main memory and the MRAM banks for different types

2Single Instruction Multiple Data (SIMD) [210]–[212] refers to an execu-
tion paradigm where multiple processing elements execute the same opera-
tion on multiple data elements simultaneously.
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and sizes of transfers, which is important for the communica-
tion of the DPU with the host CPU and other DPUs.

We present PrIM (Processing-In-Memory benchmarks),
the first benchmark suite for a real PIM architecture. PrIM
includes 16 workloads from different application domains
(e.g., dense/sparse linear algebra, databases, data analytics,
graph processing, neural networks, bioinformatics, image
processing), which we identify as memory-bound using the
roofline model for a conventional CPU [215]. We perform
strong scaling3 and weak scaling4 experiments with the
16 benchmarks on a system with 2,556 DPUs, and compare
their performance and energy consumption to their mod-
ern CPU and GPU counterparts. Our extensive evaluation
provides new insights about suitability of different work-
loads to the PIM system, programming recommendations for
software designers, and suggestions and hints for hardware
and architecture designers of future PIM systems. All our
microbenchmarks and PrIM benchmarks are publicly and
freely available [214] to serve as programming samples for
real PIM architectures, evaluate and compare current and
future PIM systems, and help further advance PIM architec-
ture, programming, and software research.5

The main contributions of this work are as follows:
• Weperform the first comprehensive characterization and
analysis of the first publicly-available real-world PIM
architecture. We analyze the new architecture’s poten-
tial, limitations and bottlenecks. We analyze (1) mem-
ory bandwidth at different levels of the DPU memory
hierarchy for different memory access patterns, (2) DPU
compute throughput of different arithmetic operations
for different data types, and (3) strong and weak scal-
ing characteristics for different computation patterns.
We find that (1) the UPMEM PIM architecture is fun-
damentally compute bound, since workloads with more
complex operations than integer addition fully utilize the
instruction pipeline before they can potentially saturate
the memory bandwidth, and (2) workloads that require
inter-DPU communication do not scale well, since there
is no direct communication channel among DPUs, and
therefore, all inter-DPU communication takes place via
the host CPU, i.e., through the narrow memory bus.

• We present and open-source PrIM, the first bench-
mark suite for a real PIM architecture, composed of
16 real-world workloads that are memory-bound on
conventional processor-centric systems. The workloads
have different characteristics, exhibiting heterogeneity
in their memory access patterns, operations and data
types, and communication patterns. The PrIM bench-
mark suite provides a common set of workloads to

3Strong scaling refers to how the execution time of a program solving a
particular problem varies with the number of processors for a fixed problem
size [216], [217].

4Weak scaling refers to how the execution time of a program solving a
particular problem varies with the number of processors for a fixed problem
size per processor [216], [218].

5We refer the reader to a recent overview paper [2] on the state-of-the-art
challenges in PIM research.

evaluate the UPMEM PIM architecture with and can
be useful for programming, architecture and systems
researchers all alike to improve multiple aspects of
future PIM hardware and software.5

• We compare the performance and energy consump-
tion of PrIM benchmarks on two UPMEM-based PIM
systems with 2,556 DPUs and 640 DPUs to modern
conventional processor-centric systems, i.e., CPUs and
GPUs. Our analysis reveals several new and interest-
ing findings. We highlight three major findings. First,
both UPMEM-based PIM systems outperform a modern
CPU (by 93.0× and 27.9×, on average, respectively)
for 13 of the PrIM benchmarks, which do not require
intensive inter-DPU synchronization or floating point
operations.6 Section V-B provides a detailed analysis of
our comparison of PIM systems to modern CPU and
GPU. Second, the 2,556-DPU PIM system is faster than
a modern GPU (by 2.54×, on average) for 10 PrIM
benchmarks with (1) streaming memory accesses, (2)
little or no inter-DPU synchronization, and (3) little or no
use of complex arithmetic operations (i.e., integer mul-
tiplication/division, floating point operations).7 Third,
energy consumption comparison of the PIM, CPU, and
GPU systems follows the same trends as the perfor-
mance comparison: the PIM system yields large energy
savings over the CPU and the CPU, for workloads where
it largely outperforms the CPU and the GPU. We are
comparing the first ever commercial PIM system to CPU
and GPU systems that have been heavily optimized for
decades in terms of architecture, software, and manu-
facturing. Even then, we see significant advantages of
PIM over CPU and GPU in most PrIM benchmarks
(Section V-B). We believe the architecture, software,
and manufacturing of PIM systems will continue to
improve (e.g., we suggest optimizations and areas for
future improvement in Section VI). As such, more
fair comparisons to CPU and GPU systems would be
possible and can reveal higher benefits for PIM systems
in the future.

II. UPMEM PIM ARCHITECTURE
We describe the organization of a UPMEM PIM-enabled
system (Section II-A), the architecture of a DPU core
(Section II-B), and important aspects of programming DPUs
(Section II-C).

6Two of the other three PrIM benchmarks, Breadth-first Search (BFS) and
Needleman-Wunsch (NW), pay the huge overhead of inter-DPU synchro-
nization via the host CPU. The third one, Sparse Matrix-Vector Multiply
(SpMV), makes intensive use of floating point multiplication and addition.

7We also evaluate the 640-DPU PIM system and find that it is slower
than the GPU for most PrIM benchmarks, but the performance gap between
the two systems (640-DPU PIM and GPU) is significantly smaller for
the 10 PrIM benchmarks that do not need (1) heavy inter-DPU communi-
cation or (2) intensive use of multiplication operations. The 640-DPU PIM
system is faster than the GPU for two benchmarks, which are not well-suited
for the GPU. Section V-B provides a detailed analysis of our comparison.
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A. SYSTEM ORGANIZATION
Figure 1 (left) depicts a UPMEM-based PIM system with
(1) a host CPU (e.g., an x86 [219], ARM64 [220],
or 64-bit RISC-V [221] multi-core system), (2) standard
main memory (DRAM memory modules [222]–[225]), and
(3) PIM-enabled memory (UPMEM modules) [198], [199].
PIM-enabled memory can reside on one or more memory
channels. A UPMEM module is a standard DDR4-2400
DIMM (module) [226] with several PIM chips. Figure 2
shows two UPMEM modules. All DPUs in the UPMEM
modules operate together as a parallel coprocessor to the host
CPU.

Inside each UPMEM PIM chip (Figure 1 (right)), there
are 8 DPUs. Each DPU has exclusive access to (1) a 64-MB
DRAM bank, called Main RAM (MRAM ) Ê, (2) a 24-KB
instruction memory, called Instruction RAM (IRAM ) Ë,
and (3) a 64-KB scratchpad memory, called Working RAM
(WRAM ) Ì. MRAM is accessible by the host CPU (Figure 1
(left)) for copying input data (from main memory to MRAM)
Í and retrieving results (from MRAM to main memory) Î.
These CPU-DPU and DPU-CPU data transfers can be per-
formed in parallel (i.e., concurrently across multiple MRAM
banks), if the buffers transferred from/to all MRAM banks
are of the same size. Otherwise, the data transfers happen
serially (i.e., a transfer from/to another MRAM bank starts
after the transfer from/to an MRAM bank completes). There
is no support for direct communication between DPUs. All
inter-DPU communication takes place through the host CPU
by retrieving results from the DPU to the CPU and copying
data from the CPU to the DPU. In current UPMEM-based
PIM systems, concurrent host CPU and DPU accesses to the
same MRAM bank are not possible.
The programming interface for serial transfers [213] pro-

vides functions for copying a buffer to (dpu_copy_to)
and from (dpu_copy_from) a specific MRAM bank.
The programming interface for parallel transfers [213] pro-
vides functions for assigning buffers to specific MRAM
banks (dpu_prepare_xfer) and then initiating the actual
CPU-DPU or DPU-CPU transfers to execute in parallel
(dpu_push_xfer). Parallel transfers require that the trans-
fer sizes to/from allMRAMbanks be the same. If the buffer to
copy to allMRAMbanks is the same, we can execute a broad-
cast CPU-DPU memory transfer (dpu_broadcast_to).

Main memory and PIM-enabled memory require different
data layouts. While main memory uses the conventional hori-
zontal DRAMmapping [199], [228], whichmaps consecutive
8-bit words onto consecutive DRAM chips, PIM-enabled
memory needs entire 64-bit words mapped onto the same
MRAMbank (in one PIM chip) [199]. The reason for this spe-
cial data layout in PIM-enabled memory is that each DPU has
access to only a singleMRAMbank, but it can operate on data
types of up to 64 bits. The UPMEM SDK includes a transpo-
sition library [199] to perform the necessary data shuffling
when transferring data between main memory and MRAM
banks. These data layout transformations are transparent

to programmers. The UPMEM SDK-provided functions for
serial/parallel/broadcast CPU-DPU and serial/parallel DPU-
CPU transfers call the transposition library internally, and the
library ultimately performs data layout conversion, as needed.

The host CPU can allocate the desired number of DPUs,
i.e., a DPU set, to execute a DPU function or kernel. Then,
the host CPU launches the DPU kernel synchronously or
asynchronously [213]. Synchronous execution suspends the
host CPU thread until the DPU set completes the kernel
execution. Asynchronous execution returns immediately the
control to the host CPU thread, which can later check the
completion status [213].8

In current UPMEM-based PIM system configura-
tions [227], the maximum number of UPMEMDIMMs is 20.
A UPMEM-based PIM system with 20 UPMEM modules
can contain up to 2,560 DPUs which amounts to 160 GB of
PIM-capable memory.

Table 1 presents the two real UPMEM-based PIM systems
that we use in this work.

We use a real UPMEM-based PIM system that contains
2,556 DPUs, and a total of 159.75 GB MRAM. The DPUs
are organized into 20 double-rank DIMMs, with 128 DPUs
per DIMM.9 Each DPU runs at 350 MHz. The 20 UPMEM
DIMMs are in a dual x86 socket with 2 memory controllers
per socket. Each memory controller has 3 memory chan-
nels [229]. In each socket, two DIMMs of conventional
DRAM (employed as main memory of the host CPU) are on
one channel of one of the memory controllers. Figure 3 shows
a UPMEM-based PIM system with 20 UPMEM DIMMs.

We also use an older real system with 640 DPUs.
The DPUs are organized into 10 single-rank DIMMs,
with 64 DPUs per DIMM. The total amount of MRAM is
thus 40 GB. Each DPU in this system runs at 267 MHz. The
10 UPMEM DIMMs are in an x86 socket with 2 memory
controllers. Each memory controller has 3 memory chan-
nels [230]. Two DIMMs of conventional DRAM are on one
channel of one of the memory controllers.

B. DRAM PROCESSING UNIT (DPU) ARCHITECTURE
A DPU (Figure 1 (right)) is a multithreaded in-order 32-bit
RISC core with a specific Instruction Set Architecture
(ISA) [213]. The DPU has 24 hardware threads, each with
24 32-bit general-purpose registers (Ï in Figure 1 (right)).
These hardware threads share an instructionmemory (IRAM)
Ë and a scratchpad memory (WRAM) Ì to store operands.
The DPU has a pipeline depth of 14 stages Ð, however, only
the last three stages of the pipeline (i.e., ALU4, MERGE1,
and MERGE2 in Figure 1 (right)) can execute in parallel

8In this work, we only use synchronous execution, since our benchmarks
(Section IV)) do not require the host CPU to compute while a DPU kernel
is running. We believe exploring the use of asynchronous execution is a
promising topic for future work.

9There are four faulty DPUs in the system where we run our experiments.
They cannot be used and do not affect system functionality or the correctness
of our results, but take away from the system’s full computational power of
2,560 DPUs.
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FIGURE 1. UPMEM-based PIM system with a host CPU, standard main memory, and PIM-enabled memory (left), and internal components of a UPMEM
PIM chip (right) [198], [199].

TABLE 1. UPMEM-based PIM systems.

FIGURE 2. UPMEM-based PIM modules (downloaded from [227]).

with the DISPATCH and FETCH stages of the next instruc-
tion in the same thread. Therefore, instructions from the
same thread must be dispatched 11 cycles apart, requiring at
least 11 threads to fully utilize the pipeline [231].

The 24 KB IRAM can hold up to 4,096 48-bit encoded
instructions. The WRAM has a capacity of 64 KB. The
DPU can access the WRAM through 8-, 16-, 32-, and
64-bit load/store instructions. The ISA provides DMA
instructions [213] to move instructions from theMRAMbank

FIGURE 3. UPMEM-based PIM system with 2,560 DPUs. See Table 1 for
the specifications.

to the IRAM, and data between the MRAM bank and the
WRAM.

The frequency of a DPU can potentially reach more
than 400 MHz [227]. At 400 MHz, the maximum

VOLUME 10, 2022 52569



J. Gómez-Luna et al.: Benchmarking New Paradigm: Experimental Analysis and Characterization of Real PIM System

possible MRAM-WRAM bandwidth per DPU can achieve
around 800 MB/s. Thus, the maximum aggregated MRAM
bandwidth for a configuration with 2,560 DPUs can
potentially be 2 TB/s. However, the DPUs run at 350 MHz
in our 2,556-DPU setup and at 267 MHz in the 640-DPU
system. For this reason, the maximum possible MRAM-
WRAM bandwidth per DPU in our setup is 700 MB/s
(534 MB/s in the 640-DPU setup), and the maximum
aggregated bandwidth for the 2,556 DPUs is 1.7 TB/s
(333.75 GB/s in the 640-DPU system).

C. DPU PROGRAMMING
UPMEM-based PIM systems use the Single Program Multi-
ple Data (SPMD) [232] programming model, where software
threads, called tasklets, (1) execute the same code but operate
on different pieces of data, and (2) can execute different
control-flow paths at runtime.

Up to 24 tasklets can run on a DPU, since the number of
hardware threads is 24. Programmers determine the number
of tasklets per DPU at compile time, and tasklets are statically
assigned to each DPU.

Tasklets inside the same DPU can share data among each
other in MRAM and in WRAM, and can synchronize via
mutexes, barriers, handshakes, and semaphores [233].

Tasklets in different DPUs do not share memory or
any direct communication channel. As a result, they can-
not directly communicate or synchronize. As mentioned in
Section II-A, the host CPU handles communication of inter-
mediate data between DPUs, and merges partial results into
final ones.

1) PROGRAMMING LANGUAGE AND RUNTIME LIBRARY
DPU programs are written in the C language with some
library calls [198], [213].10 The UPMEM SDK [234] sup-
ports common data types supported in the C language and the
LLVM compilation framework [235]. For the complete list
of supported instructions, we refer the reader to the UPMEM
user manual [213].

The UPMEM runtime library [213] provides library calls
to move (1) instructions from the MRAM bank to the IRAM,
and (2) data between the MRAM bank and the WRAM
(namely, mram_read() for MRAM-WRAM transfers, and
mram_write() for WRAM-MRAM transfers).
The UPMEM runtime library also provides functions

to (1) lock and unlock mutexes (mutex_lock(),
mutex_unlock()), which create critical sections,
(2) access barriers (barrier_wait()), which suspend
tasklet execution until all tasklets in the DPU reach the same
point in the program, (3) wait for and notify a handshake
(handshake_wait_for(), handshake_notify()),
which enables one-to-one tasklet synchronization,
and (4) increment and decrement semaphore counters
(sem_give(), sem_take()).

10In this work, we use UPMEM SDK 2021.1.1 [234].

Even though using the C language to program the
DPUs ensures a low learning curve, programmers need
to deal with several challenges. First, programming thou-
sands of DPUs running up to 24 tasklets requires care-
ful workload partitioning and orchestration. Each tasklet
has a tasklet ID that programmers can use for that pur-
pose. Second, programmers have to explicitly move data
between the standard main memory and the MRAM banks,
and ensuring data coherence between the CPU and DPUs
(i.e., ensuring that CPU and DPUs use up-to-date and correct
copies of data) is their responsibility. Third, DPUs do not
employ cache memories. The data movement between the
MRAM banks and the WRAM is explicitly managed by the
programmer.

2) GENERAL PROGRAMMING RECOMMENDATIONS
General programming recommendations of the
UPMEM-based PIM system that we find in the UPMEM
programming guide [213], presentations [199], and white
papers [198] are as follows.

The first recommendation is to execute on the DPUs por-
tions of parallel code that are as long as possible, avoiding
frequent interactions with the host CPU. This recommenda-
tion minimizes CPU-DPU and DPU-CPU transfers, which
happen through the narrow memory bus (Section II-A), and
thus cause a data movement bottleneck [2]–[4], [7], which the
PIM paradigm promises to alleviate.

The second recommendation is to split the workload
into independent data blocks, which the DPUs operate
on independently (and concurrently). This recommendation
maximizes parallelism and minimizes the need for inter-DPU
communication and synchronization, which incurs high over-
head, as it happens via the host CPU using CPU-DPU and
DPU-CPU transfers.

The third recommendation is to use as many working
DPUs in the system as possible, as long as the work-
load is sufficiently large to keep the DPUs busy performing
actual work. This recommendation maximizes parallelism
and increases utilization of the compute resources.

The fourth recommendation is to launch at
least 11 tasklets in each DPU, in order to fully utilize
the fine-grained multithreaded pipeline, as mentioned in
Section II-B.
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In this work, we perform the first comprehensive char-
acterization and analysis of the UPMEM PIM architecture,
which allows us to (1) validate these programming recom-
mendations and identify for which workload characteristics
they hold, as well as (2) propose additional programming
recommendations and suggestions for future PIM software
designs, and (3) propose suggestions and hints for future
PIM hardware designs, which can enable easier program-
ming as well as broad applicability of the hardware to more
workloads.

III. PERFORMANCE CHARACTERIZATION OF A
UPMEM DPU
This section presents the first performance characterization
of a UPMEM DPU using microbenchmarks to assess vari-
ous architectural limits and bottlenecks. Section III-A eval-
uates the throughput of arithmetic operations and WRAM
bandwidth of a DPU using a streaming microbenchmark.
Section III-B evaluates the sustained bandwidth between
MRAM and WRAM. Section III-C evaluates the impact of
the operational intensity of a workload on the arithmetic
throughput of the DPU. Finally, Section III-D evaluates the
bandwidth between the main memory of the host and the
MRAM banks. Unless otherwise stated, we report experi-
mental results on the larger, 2,556-DPU system presented
in Section II-A. All observations and trends identified in
this section also apply to the older 640-DPU system (we
verified this experimentally). All microbenchmarks used in
this section are publicly and freely available [214].

A. ARITHMETIC THROUGHPUT AND WRAM BANDWIDTH
The DPU pipeline is capable of performing one integer
addition/subtraction operation every cycle and up to one
8-byte WRAM load/store every cycle when the pipeline
is full [199]. Therefore, at 350 MHz, the theoretical peak
arithmetic throughput is 350 Millions of OPerations per
Second (MOPS), assuming only integer addition opera-
tions are issued into the pipeline, and the theoretical peak
WRAM bandwidth is 2,800 MB/s. In this section, we eval-
uate the arithmetic throughput and sustained WRAM band-
width that can be achieved by a streaming microbenchmark
(i.e., a benchmark with unit-stride access to memory loca-
tions) and how the arithmetic throughput and WRAM band-
width vary with the number of tasklets deployed.

1) MICROBENCHMARK DESCRIPTION
To evaluate arithmetic throughput and WRAM bandwidth in
streaming workloads, we implement a set of microbench-
marks [214] where every tasklet loops over elements of an
array in WRAM and performs read-modify-write operations.
We measure the time it takes to performWRAM loads, arith-
metic operations, WRAM stores, and loop control. We do not
measure the time it takes to perform MRAM-WRAM DMA
transfers (we will study them separately in Section III-B).

a: ARITHMETIC THROUGHPUT
For arithmetic throughput, we examine the addition, sub-
traction, multiplication, and division operations for 32-bit
integers, 64-bit integers, floats, and doubles. Note that the
throughput for unsigned integers is the same as that for signed
integers. As we indicate at the beginning of Section III-A,
the DPU pipeline is capable of performing one integer addi-
tion/subtraction operation every cycle, assuming that the
pipeline is full [199]. However, real-world workloads do not
execute only integer addition/subtraction operations. Thus,
the theoretical peak arithmetic throughput of 350 MOPS
is not realistic for full execution of real workloads. Since
the DPUs store operands in WRAM (Section II-B), a real-
istic evaluation of arithmetic throughput should consider the
accesses to WRAM to read source operands and write desti-
nation operands. One access to WRAM involves oneWRAM
address calculation and one load/store operation.

Listing 1 shows an example microbenchmark for the
throughput evaluation of 32-bit integer addition. Listing 1a
shows our microbenchmark written in C. The operands are
stored in bufferA, which we allocate in WRAM using
mem_alloc [213] (line 2). The for loop in line 3 goes
through each element of bufferA and adds a scalar value
scalar to each element. In each iteration of the loop,
we load one element of bufferA into a temporal variable
temp (line 4), add scalar to it (line 5), and store the
result back into the same position of bufferA (line 6).
Listing 1b shows the compiled code, which we can inspect
using UPMEM’s Compiler Explorer [236]. The loop con-
tains 6 instructions: WRAM address calculation (lsl_add,
line 3), WRAM load (lw, line 4), addition (add, line 5),
WRAM store (sw, line 6), loop index update (add, line 7),
and conditional branch (jneq, line 8). For a 32-bit integer
subtraction (sub), the number of instructions in the stream-
ing loop is also 6, but for other operations and data types the
number of instructions can be different (as we show below).

Listing 1. Microbenchmark for throughput evaluation of 32-bit integer
addition [214].
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Given the instructions in the loop of the streaming
microbenchmark (Listing 1b), we can obtain the expected
throughput of arithmetic operations. Only one out of the
six instructions is an arithmetic operation (add in line 5 in
Listing 1b). Assuming that the pipeline is full, the DPU issues
(and retires) one instruction every cycle [199]. As a result,
we need as many cycles as instructions in the streaming loop
to perform one arithmetic operation. If the number of instruc-
tions in the loop is n and the DPU frequency is f , we calculate
the arithmetic throughput in operations per second (OPS) as
expressed in Equation 1.

Arithmetic Throughput (in OPS) =
f
n

(1)

For a 32-bit integer addition (Listing 1), the expected
arithmetic throughput on a DPU running at 350 MHz is
58.33 millions of operations per second (MOPS). We verify
this on real hardware in Section III-A2.

b: WRAM BANDWIDTH
To evaluate sustained WRAM bandwidth, we examine the
four versions of the STREAM benchmark [237], which
are COPY, ADD, SCALE, and TRIAD, for 64-bit integers.
These microbenchmarks access two (COPY, SCALE) or
three (ADD, TRIAD) arrays in a streamingmanner (i.e., with
unit-stride or sequentially). The operations performed by
ADD, SCALE, and TRIAD are addition, multiplication, and
addition+multiplication, respectively.

In our experiments, we measure the sustained bandwidth
of WRAM, which is the average bandwidth that we measure
over a relatively long period of time (i.e., while streaming
through an entire array in WRAM).

We can obtain the maximum theoretical WRAM band-
width of our STREAMmicrobenchmarks, which depends on
the number of instructions needed to execute the operations in
each version of STREAM. Assuming that the DPU pipeline
is full, we calculate the maximum theoretical WRAM band-
width in bytes per second (B/s) with Equation 2, where b is
the total number of bytes read and written, n is the number
of instructions in a version of STREAM to read, modify, and
write the b bytes, and f is the DPU frequency.

WRAM Bandwidth (in B/s) =
b× f
n

(2)

For example, COPY executes one WRAM load (ld) and
oneWRAM store (sd) per 64-bit element. These two instruc-
tions require 22 cycles to execute for a single tasklet. When
the pipeline is full (i.e., with 11 tasklets or more), 11× 16 =
176 bytes are read and written in 22 cycles. As a result,
b = 176 and n = 22, and thus, the maximum theoretical
WRAM bandwidth for COPY, at f =350MHz, is 2,800MB/s.
We verify this on real hardware in Section III-A3.

2) ARITHMETIC THROUGHPUT
Figure 4 shows how the measured arithmetic throughput on
one DPU (in MOPS) varies with the number of tasklets.

We use 1 to 24 tasklets, which is the maximum number of
hardware threads.

FIGURE 4. Throughput of arithmetic operations (ADD, SUB, MUL, DIV) on
one DPU for four different data types: (a) INT32, (b) INT64, (c) FLOAT,
(d) DOUBLE.

We make four key observations from Figure 4.
First, the throughput of all arithmetic operations and data

types saturates after 11 tasklets. This observation is consistent
with the description of the pipeline in Section II-B. Recall that
the DPU uses fine-grained multithreading across tasklets to
fully utilize its pipeline. Since instructions in the same tasklet
are dispatched 11 cycles apart, 11 tasklets is the minimum
number of tasklets needed to fully utilize the pipeline.

Second, the throughput of addition/subtraction is
58.56 MOPS for 32-bit integer values (Figure 4a), and
50.16 MOPS for 64-bit integer values (Figure 4b). The
number of instructions inside the streaming loop for 32-bit
integer additions/subtractions is 6 (Listing 1). Hence,
the expected throughput at 350 MHz is 58.33 MOPS
(obtained with Equation 1), which is close to what
we measure (58.56 MOPS). A loop with 64-bit
integer additions/subtractions contains 7 instructions:
the same 6 instructions as the 32-bit version plus an
addition/subtraction with carry-in bit (addc/subc) for the
upper 32 bits of the 64-bit operands. Hence, the expected
throughput at 350 MHz is 50 MOPS which is also close to
what we measure (50.16 MOPS).
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Third, the throughput of integer multiplication and divi-
sion is significantly lower than that of integer addition and
subtraction (note the large difference in y-axis scale between
Figure 4a,b and Figure 4c,d). A major reason is that the
DPU pipeline does not include a complete 32× 32-bit multi-
plier due to hardware cost concerns and limited number of
available metal layers [199]. Multiplications and divisions
of 32-bit operands are implemented using two instructions
(mul_step, div_step) [213], which are based on bit
shifting and addition. With these instructions, multiplica-
tion and division can take up to 32 cycles (32 mul_step
or div_step instructions) to perform, depending on the
values of the operands. In case multiplication and divi-
sion take 32 cycles, the expected throughput (Equation 1)
is 10.94 MOPS, which is similar to what we measure
(10.27 MOPS for 32-bit multiplication and 11.27 MOPS
for 32-bit division, as shown in Figure 4a). For multipli-
cation and division of 64-bit integer operands, programs
call two UPMEM runtime library functions (__muldi3,
__divdi3) [213], [238] with 123 and 191 instructions,
respectively. The expected throughput for these 64-bit oper-
ations is significantly lower than for 32-bit operands, as our
measurements confirm (2.56 MOPS for 64-bit multiplication
and 1.40 MOPS for 64-bit division, as shown in Figure 4b).

Fourth, the throughput of floating point operations (as
shown in Figures 4c and 4d) is more than an order of
magnitude lower than that of integer operations. A major
reason is that the DPU pipeline does not feature native
floating point ALUs. The UPMEM runtime library emulates
these operations in software [213], [238]. As a result, for
each 32-bit or 64-bit floating point operation, the number of
instructions executed in the pipeline is between several tens
(32-bit floating point addition) and more than 2000 (64-bit
floating point division). This explains the low throughput.
We measure 4.91/4.59/1.91/0.34 MOPS for FLOAT add/sub/
multiply/divide (Figure 4c) and 3.32/3.11/0.53/0.16 MOPS
for DOUBLE add/sub/multiply/divide (Figure 4d).

3) SUSTAINED WRAM BANDWIDTH
Figure 5 shows how the sustained WRAM bandwidth varies
with the number of tasklets (from 1 to 16 tasklets). In these
experiments, we unroll the loop of the STREAMmicrobench-
marks, in order to exclude loop control instructions, and

achieve the highest possible sustained WRAM bandwidth.
We make three major observations.

FIGURE 5. Sustained WRAM bandwidth for streaming access patterns.

First, similar to arithmetic throughput, we observe that
WRAM bandwidth saturates after 11 tasklets which is the
number of tasklets needed to fully utilize the DPU pipeline.

Second, the maximum measured sustained WRAM band-
width depends on the number of instructions needed to exe-
cute the operation. For COPY, we measure 2,818.98 MB/s,
which is similar to the maximum theoretical WRAM band-
width of 2,800 MB/s, which we obtain with Equation 2
(see Section III-A1). ADD executes 5 instructions per 64-bit
element: two WRAM loads (ld), one addition (add), one
addition with carry-in bit (addc), and one WRAM store
(sd). In this case, 11 × 24 = 264 bytes are accessed in
55 cycles when the pipeline is full. Therefore, the maximum
theoreticalWRAMbandwidth for ADD is 1,680MB/s, which
is similar to what we measure (1,682.46 MB/s). The maxi-
mum sustained WRAM bandwidth for SCALE and TRIAD
is significantly smaller (42.03 and 61.66 MB/s, respectively),
since these microbenchmarks use the costly multiplication
operation, which is a library function with 123 instructions
(Section III-A2).
Third, and importantly (but not shown in Figure 5),

WRAM bandwidth is independent of the access pattern
(streaming, strided, random),11 since all 8-byteWRAM loads
and stores take one cycle when the DPU pipeline is full, same
as any other native instruction executed in the pipeline [199].

11We have verified this observation using a microbenchmark (which we
also provide as part of our open source release [214]), but do not show
the detailed results here for brevity. This microbenchmark uses three arrays
in WRAM, a, b, and c. Array a is a list of addresses to copy from b
to c (i.e., c[a[i]] = b[a[i]]). This list of addresses can be (1) unit-stride
(i.e., a[i] = a[i − 1] + 1), (2) strided (i.e., a[i] = a[i − 1] + stride),
or (3) random (i.e., a[i] = rand()). For a given number of tasklets and size
of the arrays, we measure the same execution time for any access pattern
(i.e., unit-stride, strided, or random), which verifies that WRAM bandwidth
is independent of the access pattern.
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B. MRAM BANDWIDTH AND LATENCY
Recall that a DPU, so as to be able to access data from
WRAM via load/store instructions, should first transfer
the data from its associated MRAM bank to its WRAM
via a DMA engine. This section evaluates the band-
width that can be sustained from MRAM, including read
and write bandwidth (Section III-B1), streaming access
bandwidth (Section III-B2), and strided/random access band-
width (Section III-B3).

1) READ AND WRITE LATENCY AND BANDWIDTH
In this experiment, we measure the latency of a single
DMA transfer of different sizes for a single tasklet, and
compute the corresponding MRAM bandwidth. These
DMA transfers are performed via the mram_read
(mram_source, wram_destination, SIZE)
and mram_write(wram_source, mram_destin-
ation, SIZE) functions, where SIZE is the transfer size
in bytes and must be a multiple of 8 between 8 and 2,048
according to UPMEM SDK 2021.1.1 [213].

a: ANALYTICAL MODELING
We can analytically model the MRAM access latency (in
cycles) using the linear expression in Equation 3, where α
is the fixed cost of a DMA transfer, β represents the vari-
able cost (i.e., cost per byte), and size is the transfer size
in bytes.

MRAM Latency (in cycles) = α + β × size (3)

After modeling the MRAM access latency using Equa-
tion 3, we can analytically model the MRAM bandwidth
(in B/s) using Equation III-B1.a, where f is the DPU
frequency.

MRAM Bandwidth (in B/s)

=
size× f

MRAM Latency
=

size× f
α + β × size

(4)

b: MEASUREMENTS
Figure 6 shows how the measured MRAM read and write
latency and bandwidth vary with transfer size and how well
themeasured latency follows the analytical model we develop
above.

In our measurements, we find that α is ∼ 77 cycles for
mram_read and ∼ 61 cycles for mram_write. For both
types of transfers, the value β is 0.5 cycles/B. The inverse of β
is the maximum theoretical MRAMbandwidth (assuming the
fixed cost α = 0), which results in 2 B/cycle. The latency val-
ues estimated with our analytical model in Equation III-B1.a
(as shown by the black dashed lines in Figure 6) accu-
rately match the latency measurements (light blue lines in
Figure 6).

FIGURE 6. MRAM read and write latency (log scale) and bandwidth (log
scale) for data transfer sizes between 8 and 2048 bytes. The black dashed
line represents latency estimates with a linear model (Equation 3).

We make four observations from Figure 6.
First, we observe that read and write accesses to MRAM

are symmetric. The latency and bandwidth of read and write
transfers are very similar for a given data transfer size.

Second, we observe that the sustained MRAM band-
width (both read and write) increases with data transfer size.
The maximum sustained MRAM bandwidth we measure is
628.23 MB/s for read and 633.22 MB/s for write transfers
(both for 2,048-byte transfers). Based on this observation,
a general recommendation to maximize MRAM bandwidth
utilization is to use large DMA transfer sizes when all
the accessed data is going to be used. According to Equa-
tion III-B1.a, the theoretical maximum MRAM bandwidth
is 700 MB/s at a DPU frequency of 350 MHz (assuming no
fixed transfer cost, i.e., α = 0). Our measurements are within
12% of this theoretical maximum.

Third, we observe that MRAM latency changes slowly
between 8-byte and 128-byte transfers. According to Equa-
tion 3, the read latency for 128 bytes is 141 cycles and the
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read latency for 8 bytes is 81 cycles. In other words, latency
increases by only 74% while transfer size increases by 16×.
The reason is that, for small data transfer sizes, the fixed
cost (α) of the transfer latency dominates the variable cost
(β × size). For large data transfer sizes, the fixed cost (α)
does not dominate the variable cost (β × size), and in fact
the opposite starts becoming true. We observe that, for read
transfers, α (77 cycles) represents 95% of the latency for
8-byte reads and 55% of the latency for 128-byte reads. Based
on this observation, one recommendation for programmers is
to fetch more bytes than necessary within a 128-byte limit
when using small data transfer sizes. Doing so increases
the probability of finding data in WRAM for later accesses,
eliminating future MRAM accesses. The program can simply
check if the desired data has been fetched in a previous
MRAM-WRAM transfer, before issuing a new small data
transfer.

Fourth, MRAM bandwidth scales almost linearly between
8 and 128 bytes due to the slow MRAM latency increase.
After 128 bytes, MRAM bandwidth begins to saturate. The
reason the MRAM bandwidth saturatesat large data transfer
sizes is related to the inverse relationship of bandwidth and
latency (Equation III-B1.a). The fixed cost (α) of the transfer
latency becomes negligible with respect to the variable cost
(β × size) as the data transfer size increases. For example,
α for read transfers (77 cycles) represents only 23%, 13%, and
7% of the MRAM latency for 512-, 1,024-, and 2,048-byte
read transfers, respectively. As a result, the MRAM read
bandwidth increases by only 13% and 17% for 1,024- and
2,048-byte transfers over 512-byte transfers. Based on this
observation, the recommended data transfer size, when
all the accessed data is going to be used, depends on a
program’s WRAM usage, since WRAM has a limited size
(only 64 KB). For example, if each tasklet of a DPU pro-
gram needs to allocate 3 temporary WRAM buffers for data
from 3 different arrays stored in MRAM, using 2,048-byte
data transfers requires that the size of each WRAM buffer
is 2,048 bytes. This limits the number of tasklets to 10,
which is less than the recommended minimum of 11 tasklets
(Sections II-C2 and III-A2), since 64KB

3×2,048 < 11. In such a
case, using 1,024-byte data transfers is preferred, since the
bandwidth of 2,048-byte transfers is only 4% higher than
that of 1,024-byte transfers, according to our measurements
(shown in Figure 6).

2) SUSTAINED STREAMING ACCESS BANDWIDTH
In this experiment, we use the same four versions of the
STREAM benchmark [237] described in Section III-A1,
but include the MRAM-WRAM DMA transfer time in
our measurements. We also add another version of the
copy benchmark, COPY-DMA, which copies data from
MRAM toWRAM and back without performing anyWRAM
loads/stores in the DPU core. We use 1024-byte DMA trans-
fers.We scale the number of tasklets from 1 to 16. The tasklets
collectively stream 2M 8-byte elements (total of 16 MB),
which are divided evenly across the tasklets.

Figure 7 shows how the MRAM streaming access band-
width varies with the number of tasklets.

FIGURE 7. Sustained MRAM bandwidth for streaming access patterns.

We make four key observations.
First, the sustained MRAM bandwidth of COPY-DMA is

624.02 MB/s, which is close to the theoretical maximum
bandwidth (700MB/s derived in Section II-B). The measured
aggregate sustained bandwidth for 2,556 DPUs is 1.6 TB/s.
In the 640-DPU system, we measure the sustained MRAM
bandwidth to be 470.50 MB/s per DPU (theoretical maxi-
mum = 534 MB/s), resulting in aggregate sustained MRAM
bandwidth of 301 GB/s for 640 DPUs.

Second, the MRAM bandwidth of COPY-DMA saturates
with two tasklets. Even though the DMA engine can perform
only one data transfer at a time [231], using two or more
tasklets in COPY-DMA guarantees that there is always a
DMA request enqueued to keep the DMA engine busy when
a previous DMA request completes, thereby achieving the
highest MRAM bandwidth.

Third, the MRAM bandwidth for COPY and ADD sat-
urates at 4 and 6 tasklets, respectively, i.e., earlier than
the 11 tasklets needed to fully utilize the pipeline. This
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observation indicates that these microbenchmarks are limited
by access to MRAM (and not the instruction pipeline). When
the COPY benchmark uses fewer than 4 tasklets, the latency
of pipeline instructions (i.e., WRAM loads/stores) is longer
than the latency of MRAM accesses (i.e., MRAM-WRAM
and WRAM-MRAM DMA transfers). After 4 tasklets, this
trend flips, and the latency of MRAM accesses becomes
longer. The reason is that the MRAM accesses are serialized,
such that the MRAM access latency increases linearly with
the number of tasklets. Thus, after 4 tasklets, the overall
latency is dominated by the MRAM access latency, which
hides the pipeline latency. As a result, the sustained MRAM
bandwidth of COPY saturates with 4 tasklets at the highest
MRAM bandwidth, same as COPY-DMA. Similar observa-
tions apply to the ADD benchmark with 6 tasklets.

Fourth, the sustained MRAM bandwidth of SCALE and
TRIAD is approximately one order of magnitude smaller than
that of COPY-DMA, COPY, and ADD. In addition, SCALE
and TRIAD’s MRAM bandwidth saturates at 11 tasklets,
i.e., the number of tasklets needed to fully utilize the pipeline.
This observation indicates that SCALE and TRIAD perfor-
mance is limited by pipeline throughput, not MRAM access.
Recall that SCALE and TRIAD use costly multiplications,
which are based on the mul_step instruction, as explained
in Section III-A2. As a result, instruction execution in the
pipeline has much higher latency thanMRAM access. Hence,
it makes sense that SCALE and TRIAD are bound by pipeline
throughput, and thus the maximum sustained WRAM band-
width of SCALE and TRIAD (Figure 5) is the same as the
maximum sustained MRAM bandwidth (Figure 7).

3) SUSTAINED STRIDED AND RANDOM ACCESS
BANDWIDTH
We evaluate the sustained MRAM bandwidth of strided and
random access patterns.

To evaluate strided access bandwidth inMRAM, we devise
an experiment in which we write a new microbenchmark that
accesses MRAM in a strided manner. The microbenchmark

accesses an array at a constant stride (i.e., constant dis-
tance between consecutive memory accesses), copying ele-
ments from the array into another array using the same
stride. We implement two versions of the microbenchmark,
coarse-grained DMA and fine-grained DMA, to test both
coarse-grained and fine-grained MRAM access. In coarse-
grained DMA, the microbenchmark accesses via DMA a
large contiguous segment (1024 B) of the array in MRAM,
and the strided access happens in WRAM. The coarse-
grained DMA approach resembles what modern CPU hard-
ware does (i.e., reads large cache lines from main memory
and strides through them in the cache). In fine-grained DMA,
the microbenchmark transfers via DMA only the data that
will be used by the microbenchmark from MRAM. The fine-
grained DMA approach results in more DMA requests, but
less total amount of data transferred between MRAM and
WRAM.

To evaluate random access bandwidth in MRAM,
we implement the GUPS benchmark [239], which performs
read-modify-write operations on random positions of an
array. We use only fine-grained DMA for random access,
since random memory accesses in GUPS do not benefit from
fetching large chunks of data, because they are not spatially
correlated.

In our experiments, we scale the number of tasklets
from 1 to 16. The tasklets collectively access arrays in
MRAM with (1) coarse-grained strided access, (2) fine-
grained strided access, or (3) fine-grained random access.
Each array contains 2M 8-byte elements (total of 16MB),
which are divided evenly across the tasklets.

Figure 8 shows how the sustained MRAM bandwidth
varies with access pattern (strided and random access) as well
as with the number of tasklets.

We make four key observations.
First, we measure maximum sustained MRAM bandwidth

to be 622.36 MB/s for coarse-grained DMA (with 16 tasklets
and a stride of 1, Figure 8a), and 72.58 MB/s for fine-grained
DMA (with 16 tasklets, Figure 8b). This difference in the
sustained MRAM bandwidth values of coarse-grained DMA
and fine-grained DMA is related to the difference in MRAM
bandwidth for different transfer sizes (as we analyze in
Section III-B1). While coarse-grained DMA uses 1,024-byte
transfers, fine-grained DMA uses 8-byte transfers.

Second, we observe that the sustained MRAM band-
width of coarse-grained DMA (Figure 8a) decreases as the
stride becomes larger. This is due to the effective utilization
of the transferred data, which decreases for larger strides
(e.g., a stride of 4 means that only one fourth of the trans-
ferred data is effectively used).

Third, the coarse-grained DMA approach has higher sus-
tained MRAM bandwidth for smaller strides while the
fine-grained DMA approach has higher sustained MRAM
bandwidth for larger strides. The larger the stride in coarse-
grained DMA, the larger the amount of fetched data that
remains unused, causing fine-grained DMA to become
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FIGURE 8. Sustained MRAM bandwidth for (a) coarse-grained strided and (b) fine-grained strided and random access patterns.

more efficient with larger strides. In these experiments, the
coarse-grained DMA approach achieves higher sustained
MRAM bandwidth than the fine-grained DMA approach
for strides between 1 and 8. For a stride of 16 or larger,
the fine-grained DMA approach achieves higher sustained
MRAM bandwidth. This is because with larger strides,
the fraction of transferred data that is actually used by
the microbenchmark becomes smaller (i.e., effectively-used
MRAM bandwidth becomes smaller). With a stride of 16
and coarse-grained DMA, the microbenchmark uses only one
sixteenth of the fetched data. As a result, we measure the
sustained MRAM bandwidth to be 38.95 MB/s for coarse-
grained DMA, which is only one sixteenth of the maximum
sustained MRAM bandwidth of 622.36 MB/s, and is lower
than the sustained MRAM bandwidth of fine-grained DMA
(72.58 MB/s).

Fourth, the maximum sustained MRAM bandwidth for
random access is 72.58 MB/s (with 16 tasklets, as shown in
Figure 8b). This bandwidth value is very similar to the maxi-
mum MRAM bandwidth of the fine-grained DMA approach
for strided access (e.g., 72.58MB/s with 16 tasklets and stride
4,096, as shown in Figure 8b), since our microbenchmark
uses fine-grained DMA for random access.

Based on these observations, we recommend that pro-
grammers use the coarse-grained DMA approach for
workloads with small strides and the fine-grained DMA
approach for workload with large strides or random
access patterns.

C. ARITHMETIC THROUGHPUT VERSUS OPERATIONAL
INTENSITY
Due to its fine-grained multithreaded architecture
[205]–[209], a DPU overlaps instruction execution latency
in the pipeline and MRAM access latency [199], [213].
As a result, the overall DPU performance is determined by
the dominant latency (either instruction execution latency
or MRAM access latency). We observe this behavior
in our experimental results in Section III-B2, where the
dominant latency (pipeline latency or MRAM access
latency) determines the sustained MRAM bandwidth for
different versions of the STREAM benchmark [237].

To further understand the DPU architecture, we design a
new microbenchmark where we vary the number of pipeline
instructions with respect to the number of MRAM accesses,
and measure performance in terms of arithmetic throughput
(in MOPS, as defined in Section III-A1). By varying the
number of pipeline instructions per MRAM access, we move
from microbenchmark configurations where the MRAM
access latency dominates (i.e., memory-bound regions) to
microbenchmark configurations where the pipeline latency
dominates (i.e., compute-bound regions).
Our microbenchmark includes MRAM-WRAM DMA

transfers, WRAM load/store accesses, and a variable number
of arithmetic operations. The number of MRAM-WRAM
DMA transfers in the microbenchmark is constant, and thus
the total MRAM latency is also constant. However, the
latency of instructions executed in the pipeline varies with
the variable number of arithmetic operations.

Our experiments aim to show how arithmetic through-
put varies with operational intensity. We define operational
intensity as the number of arithmetic operations performed
per byte accessed from MRAM (OP/B). As explained in
Section III-A2, an arithmetic operation in the UPMEM PIM
architecture takes multiple instructions to execute. The exper-
iment is inspired by the roofline model [215], a perfor-
mance analysis methodology that shows the performance of
a program (arithmetic instructions executed per second) as

VOLUME 10, 2022 52577



J. Gómez-Luna et al.: Benchmarking New Paradigm: Experimental Analysis and Characterization of Real PIM System

a function of the arithmetic intensity (arithmetic instructions
executed per byte accessed from memory) of the program,
as compared to the peak performance of the machine (deter-
mined by the compute throughput and the L3 and DRAM
memory bandwidth).

Figure 9 shows results of arithmetic throughput versus
operational intensity for representative data types and oper-
ations: (a) 32-bit integer addition, (b) 32-bit integer multipli-
cation, (c) 32-bit floating point addition, and (d) 32-bit float-
ing point multiplication. Results for other data types (64-bit
integer and 64-bit floating point) and arithmetic operations
(subtraction and division) follow similar trends. We change
the operational intensity from very low values ( 1

2048 opera-
tions/byte, i.e., one operation per every 512 32-bit elements
fetched) to high values (8 operations/byte, i.e., 32 operations
per every 32-bit element fetched), and measure the resulting
throughput for different numbers of tasklets (from 1 to 16).

We make four key observations from Figure 9.
First, the four plots in Figure 9 show (1) the memory-

bound region (where arithmetic throughput increases with
operational intensity) and (2) the compute-bound region
(where arithmetic throughput is flat at its maximum value)
for each number of tasklets. For a given number of tasklets,
the transition between the memory-bound region and the
compute-bound region occurs when the latency of instruc-
tion execution in the pipeline surpasses the MRAM latency.
We refer to the operational intensity value where the tran-
sition between the memory-bound region and the compute-
bound region happens as the throughput saturation point.
Second, arithmetic throughput saturates at low

(e.g., 1
4 OP/B for integer addition, i.e., 1 integer addition per

every 32-bit element fetched) or very low (e.g., 1
128 OP/B

for floating point multiplication, i.e., 1 multiplication per
every 32 32-bit elements fetched) operational intensity.
This result demonstrates that the DPU is fundamentally
a compute-bound processor designed for workloads with
low data reuse.

Third, the throughput saturation point is lower for data
types and operations that require more instructions per oper-
ation. For example, the throughput for 32-bit multiplication
(Figure 9b), which requires up to 32 mul_step instructions
(Section III-A2), saturates at 1

32 OP/B, while the throughput
for 32-bit addition (Figure 9a), which is natively supported
(it requires a single add instruction), saturates at 1

4 OP/B.
Floating point operations saturate earlier than integer oper-
ations, since they require from several tens to hundreds of

instructions: 32-bit floating point addition (Figure 9c) and
multiplication (Figure 9d) saturate at 1

64 and 1
128 OP/B,

respectively.
Fourth, we observe that in the compute-bound regions

(i.e., after the saturation points), arithmetic throughput sat-
urates with 11 tasklets, which is the number of tasklets
needed to fully utilize the pipeline. On the other hand,
in the memory-bound region, throughput saturates with fewer
tasklets because the memory bandwidth limit is reached
before the pipeline is fully utilized. For example, at very
low operational intensity values (≤ 1

64 OP/B), throughput
of 32-bit integer addition saturates with just two tasklets
which is consistent with the observation in Section III-B2
where COPY-DMA bandwidth saturates with two tasklets.
However, an operational intensity of 1

64 OP/B is extremely
low, as it entails only one addition for every 64 B accessed
(16 32-bit integers). We expect higher operational inten-
sity (e.g., greater than 1

4 OP/B) in most real-world work-
loads [184], [215] and, thus, arithmetic throughput to saturate
with 11 tasklets in real-world workloads.

In the Appendix (Section IX-A), we present a different
view of these results, where we show how arithmetic through-
put varies with the number of tasklets at different operational
intensities.

D. CPU-DPU COMMUNICATION
The host CPU and the DPUs in PIM-enabled memory com-
municate via the memory bus. The host CPU can access
MRAM banks to (1) transfer input data from main memory
to MRAM (i.e., CPU-DPU), and (2) transfer results back
from MRAM to main memory (i.e., DPU-CPU), as Figure 1
shows. We call these data transfers CPU-DPU and DPU-
CPU transfers, respectively. As explained in Section II-A,
these data transfers can be serial (i.e., performed sequen-
tially across multiple MRAM banks) or parallel (i.e., per-
formed concurrently across multiple MRAM banks). The
UPMEM SDK [213] provides functions for serial and par-
allel transfers. For serial transfers, dpu_copy_to copies
a buffer from the host main memory to a specific MRAM
bank (i.e., CPU-DPU), and dpu_copy_from copies a
buffer from one MRAM bank to the host main memory
(i.e., DPU-CPU). For parallel transfers, a program needs to
use two functions. First, dpu_prepare_xfer prepares
the parallel transfer by assigning different buffers to spe-
cific MRAM banks. Second, dpu_push_xfer launches
the actual transfers to execute in parallel. One argument of
dpu_push_xfer defines whether the parallel data transfer
happens from the host main memory to the MRAM banks
(i.e., CPU-DPU) or from the MRAM banks to the host main
memory (i.e., DPU-CPU). Parallel transfers have the limita-
tion (in UPMEM SDK 2021.1.1 [213]) that the transfer sizes
to all MRAM banks involved in the same parallel transfer
need to be the same. A special case of parallel CPU-DPU
transfer (dpu_broadcast_to) broadcasts the same buffer
from main memory to all MRAM banks.
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FIGURE 9. Arithmetic throughput versus operational intensity for (a) 32-bit integer addition, (b) 32-bit integer multiplication, (c) 32-bit floating point
addition, and (d) 32-bit floating point multiplication. The number inside each dot indicates the number of tasklets. Both x- and y-axes are log scale.

In this section, we measure the sustained bandwidth of all
types of CPU-DPU and DPU-CPU transfers between the host
main memory and MRAM banks. We perform two different
experiments. The first experiment transfers a buffer of vary-
ing size to/from a single MRAM bank. Thus, we obtain the
sustained bandwidth of CPU-DPU and DPU-CPU transfers
of different sizes for one MRAM bank. In this experiment,
we use dpu_copy_to and dpu_copy_from and vary
the transfer size from 8 bytes to 32 MB. The second exper-
iment transfers buffers of size 32 MB per MRAM bank
from/to a set of 1 to 64 MRAM banks within the same
rank. We experiment with both serial and parallel transfers
(dpu_push_xfer), including broadcast CPU-DPU trans-
fers (dpu_broadcast_to). Thus, we obtain the sustained
bandwidth of serial/parallel/broadcast CPU-DPU transfers
and serial/parallel DPU-CPU transfers for a number of
MRAM banks in the same rank between 1 and 64.

Figure 10 presents the sustained bandwidth results of both
experiments.

We make seven key observations.12

12Note that our measurements of and observations about CPU-DPU and
DPU-CPU transfers are both platform-dependent (i.e., measurements and
observations may change for a different host CPU) and UPMEM SDK-
dependent (i.e., the implementation of CPU-DPU/DPU-CPU transfers may
change in future releases of the UPMEM SDK). For example, our bandwidth
measurements on the 640-DPU system (not shown) differ from those on the
2,556-DPU system (but we find the trends we observe to be similar on both
systems).

First, sustained bandwidths of CPU-DPU and DPU-CPU
transfers for a single DPU (Figure 10a) are similar for transfer
sizes between 8 and 512 bytes. For transfer sizes greater
than 512 bytes, sustained bandwidth of CPU-DPU transfers
is higher than that of DPU-CPU transfers. For the largest
transfer size we evaluate (32 MB), CPU-DPU and DPU-CPU
bandwidths are 0.33 GB/s and 0.12 GB/s, respectively.

Second, the sustained bandwidths of CPU-DPU and
DPU-CPU transfers for a single DPU (Figure 10a) increase
linearly between 8 bytes and 2 KB, and tend to saturate for
larger transfer sizes.

Third, for one rank (Figure 10b) the sustained bandwidths
of serial CPU-DPU and DPU-CPU transfers remain flat for
different numbers of DPUs. Since these transfers are executed
serially, latency increases proportionally with the number of
DPUs (hence, the total amount of data transferred). As a
result, the sustained bandwidth does not increase.

Fourth, the sustained bandwidth of the parallel transfers
increases with the number of DPUs, reaching the high-
est sustained bandwidth values at 64 DPUs. The maxi-
mum sustained CPU-DPU bandwidth that we measure is
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FIGURE 10. Sustained bandwidth (log scale x- and y-axes) of (a) CPU-DPU (host main memory to one MRAM bank) and DPU-CPU (one MRAM bank to
host main memory) transfers of different sizes for one DPU, and (b) serial/parallel/broadcast CPU-DPU (host main memory to several MRAM banks) and
serial/parallel DPU-CPU (several MRAM banks to host main memory) transfers of 32 MB for a set of 1-64 DPUs within one rank.

6.68 GB/s, while the maximum sustained DPU-CPU band-
width is 4.74 GB/s. However, we observe that the increase in
sustained bandwidth with DPU count is sublinear. The sus-
tained CPU-DPU bandwidth for 64 DPUs is 20.13× higher
than that for one DPU. For DPU-CPU transfers, the sustained
bandwidth increase of 64 DPUs to one DPU is 38.76×.

Fifth, we observe large differences between sustained
bandwidths of CPU-DPU and DPU-CPU transfers for both
serial and parallel transfers. These differences are due to
different implementations of CPU-DPU andDPU-CPU trans-
fers in UPMEM SDK 2021.1.1 [231]. While CPU-DPU
transfers use x86 AVX write instructions [240], which are
asynchronous, DPU-CPU transfers use AVX read instruc-
tions [240], which are synchronous. As a result, DPU-CPU
transfers cannot sustain as many memory accesses as
CPU-DPU transfers, which results in lower sustained band-
widths of both serial and parallel DPU-CPU transfers than the
CPU-DPU transfer counterparts.

Sixth, sustained bandwidth of broadcast CPU-DPU trans-
fers reaches up to 16.88 GB/s. One reason why this maximum
sustained bandwidth is significantly higher than that of par-
allel CPU-DPU transfers is better locality in the cache hierar-
chy of the host CPU [231]. While a broadcast transfer copies
the same buffer to all MRAM banks, which increases tempo-
ral locality in the CPU cache hierarchy, a parallel CPU-DPU
transfer copies different buffers to different MRAM banks.
These buffers are more likely to miss in the CPU cache
hierarchy and need to be fetched from main memory into
CPU caches before being copied to MRAM banks.

Seventh, in all our experiments across an entire rank,
the sustained bandwidth is lower than the theoretical maxi-
mum bandwidth of DDR4-2400 DIMMs (19.2 GB/s) [226].
We attribute this bandwidth loss to the transposition

library [199] that the UPMEM SDK uses to map entire 64-bit
words onto the same MRAM bank (Section II-A).

IV. PRIM BENCHMARKS
Wepresent the benchmarks included in our open-sourcePrIM
(Processing-In-Memory) benchmark suite, the first bench-
mark suite for a real PIM architecture. PrIM benchmarks are
publicly and freely available [214].

For each benchmark, we include in this section a descrip-
tion of its implementation on a UPMEM-based PIM system
with multiple DPUs. Table 2 shows a summary of the bench-
marks. We group benchmarks by the application domain they
belong to. Within each application domain, we sort bench-
marks by (1) incremental complexity of the PIM implementa-
tion (e.g., we explain VA before GEMV) and (2) alphabetical
order. We use the order of the benchmarks in Table 2 consis-
tently throughout the rest of the paper. For each benchmark,
the table includes (1) the benchmark’s short name, which
we use in the remainder of the paper, (2) memory access
patterns of the benchmark (sequential, strided, random),
(3) computation pattern (operations and data types), and
(4) communication/synchronization type of the PIM imple-
mentation (intra-DPU, inter-DPU). For intra-DPU commu-
nication, the table specifies the synchronization primitives,
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such as barriers, handshakes, and mutexes, that the bench-
mark uses (Section II-C1).

All implementations of PrIM benchmarks follow the
general programming recommendations presented in
Section II-C2. Note that our goal is not to provide extremely
optimized implementations, but implementations that follow
the general programming recommendations and make
good use of the resources in PIM-enabled memory with
reasonable programmer effort. For several benchmarks,
where we can design more than one implementation that is
suitable to the UPMEM-based PIM system, we develop all
alternative implementations and compare them. As a result,
we provide two versions of two of the benchmarks, Image
histogram (HST) and Prefix sum (SCAN). In the Appendix
(Section IX-B), we compare these versions and find the cases
(i.e., dataset characteristics) where each version of each of
these benchmarks results in higher performance. We also
design and develop three versions of Reduction (RED).
However, we do not provide them as separate benchmarks,
since one of the three versions always provides higher
performance than (or at least equal to) the other two (see
Appendix, Section IX-B).13

Our benchmark selection is based on several crite-
ria: (1) suitability for PIM, (2) domain diversity, and
(3) diversity of memory access, computation, and com-
munication/synchronization patterns, as shown in Table 2.
We identify the suitability of these workloads for PIM by
studying their memory boundedness. We employ the roofline
model [215], as described in Section III-C, to quantify the
memory boundedness of the CPU versions of the workloads.
Figure 11 shows the roofline model on an Intel Xeon E3-1225
v6 CPU [241] with Intel Advisor [242]. In these experi-
ments, we use the first dataset for each workload in Table 3
(see Section V).

FIGURE 11. Roofline model for the CPU versions of the 14 PrIM
workloads on an Intel Xeon E3-1225 v6 CPU.

We observe from Figure 11 that all of the CPU versions of
the PrIM workloads are in the memory-bounded area of the
roofline model (i.e., the shaded region on the left side of the
intersection between the DRAM bandwidth line and the peak
compute performance line). Hence, these workloads are all
limited by memory. We conclude that all 14 CPU versions of
PrIM workloads are potentially suitable for PIM [184]. We

13We provide the three versions of RED as part of the same benchmark.
Users can select the version they want to test via compiler flags.

briefly describe each PrIM benchmark and its PIM imple-
mentation next.

A. VECTOR ADDITION
Vector Addition (VA) [243] takes two vectors a and b as
inputs and performs their element-wise addition.

Our PIM implementation divides the input vectors a and
b into as many equally-sized chunks as the number of DPUs
in the system, and makes a linear assignment (i.e., chunk i
assigned to DPU i). The host CPU loads one chunk of both
vectors a and b to the MRAM bank of each DPU. Inside
each DPU, we assign blocks of elements from a and b to
tasklets in a cyclic manner (i.e., block j assigned to tasklet
j%T for a total number T of tasklets per DPU). Each tasklet
(1) moves the blocks of elements from a and b to theWRAM,
(2) performs the element-wise addition, and (3) moves the
results to the MRAM bank. Tasklets iterate as many times as
needed until the whole chunk assigned to a DPU is processed.
At the end of the execution on the DPUs, the CPU retrieves
the output vector chunks from the MRAM banks to the host
main memory and constructs the complete output vector.

B. MATRIX-VECTOR MULTIPLY
Matrix-Vector multiply (GEMV) [243] is a dense linear alge-
bra routine that takes a matrix of size m × n and a vector of
size n× 1 as inputs and performs the multiplication between
them, producing a new m× 1 vector as a result.

Our PIM implementation of GEMV partitions the matrix
across the DPUs available in the system, assigning a fixed
number of consecutive rows to each DPU, while the input
vector is replicated across all DPUs. The host CPU assigns
each set of consecutive rows to aDPUusing linear assignment
(i.e., set of rows i assigned to DPU i). Inside each DPU,
tasklets are in charge of computing on the set of the rows
assigned to that DPU. We assign a subset of consecutive
rows from the set of rows assigned to a DPU to each tasklet
(i.e., subset of rows j assigned to tasklet j). First, each tasklet
reads a block of elements, both from one row of the input
matrix and from the vector, and places these elements in the
WRAM. Second, each tasklet performs multiply and accu-
mulation of those elements, and it jumps to the first step
until it reaches the end of the row. Third, each tasklet stores
the sums of multiplications in MRAM. Fourth, each tasklet
repeats these three steps as many times as there are rows in
its subset. Fifth, each DPU produces a contiguous chunk of
elements of the output vector. The CPU retrieves the output
vector chunks and builds the complete output vector.

C. SPARSE MATRIX-VECTOR MULTIPLY
Sparse Matrix-Vector multiply (SpMV) [244] is a sparse
linear algebra routine where a sparse matrix is multiplied by
a dense vector.

Our PIM implementation of SpMV uses the Compressed
Sparse Row (CSR) storage format [245]–[247] to represent
the matrix. First, the host CPU distributes the rows of the
matrix evenly across DPUs, using linear assignment (i.e., set
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TABLE 2. PrIM benchmarks.

of rows i assigned to DPU i) as in GEMV (Section IV-B).
Within each DPU, the rows of the matrix are distributed
evenly across tasklets (i.e., subset of rows j assigned to
tasklet j, same as in GEMV). The input vector is replicated
across DPUs. Each tasklet multiplies its subset of rows with
the input vector and produces a contiguous chunk of the
output vector. At the end of the execution on the DPUs, the
CPU copies back the output vector chunks from the MRAM
banks to the hostmainmemory, in order to construct the entire
output vector.

D. SELECT
Select (SEL) [248] is a database operator that, given an input
array, filters the array elements according to a given input
predicate. Our version of SEL removes the elements that
satisfy the predicate, and keeps the elements that do not.

Our PIM implementation of SEL partitions the array across
the DPUs available in the system. The tasklets inside a
DPU coordinate using handshakes (Section II-C1). First, each
tasklet moves a block of elements to WRAM. Second, each
tasklet filters the elements and counts the number of filtered
elements. Third, each tasklet passes its number of filtered
elements to the next tasklet using handshake-based com-
munication, which inherently performs a prefix-sum opera-
tion [249]–[251] to determine where in MRAM to store the
filtered elements. The tasklet then moves its filtered elements
to MRAM. Fourth, the host CPU performs the final merge of
the filtered arrays returned by each DPU via serial DPU-CPU
transfers, since parallel DPU-CPU transfers are not feasible
because each DPU may return a different number of filtered
elements.

E. UNIQUE
Unique (UNI) [248] is a database operator that, for each group
of consecutive array elements with the same value, removes
all but the first of these elements.

Our PIM implementation of UNI follows a similar
approach to SEL. The main difference lies in the more
complex handshake-based communication that UNI needs.

Besides the number of unique elements, each tasklet has to
pass the value of its last unique element to the next tasklet.
This way, the next tasklet can check whether its first element
is unique or not in the context of the entire array.

F. BINARY SEARCH
Binary Search (BS) [252] takes a sorted array as input and
finds the position of some query values within the sorted
array.

Our PIM implementation of binary search distributes the
sorted array across the DPUs. Inside each DPU, tasklets are
in charge of a subpartition of the assigned query values. First,
each tasklet checks the assigned set of query values to find,
moving them from the MRAM bank to WRAM and iterating
over them using a for loop. Second, each tasklet performs
the binary search algorithm, moving from left to right or
vice-versa, depending on the current value to find. Third, the
tasklet stops the algorithm when it finds one query value.
Fourth, at the end of the execution on the DPUs, the host CPU
retrieves the positions of the found query values.

G. TIME SERIES ANALYSIS
Time Series analysis (TS) [253] aims to find anomalies and
similarities between subsequences of a given time series.
Our version of time series analysis is based on Matrix Pro-
file [254], an algorithm that works in a streaming-like man-
ner, where subsequences (or query sequences) coming from a
source of data are compared to a well-known time series that
has the expected behavior.

Our PIM implementation of time series analysis divides
the time series across the DPUs, adding the necessary over-
lapping between them, and replicating the query sequence
across the tasklets to compare to the time series. Different
slices of the time series are assigned to different tasklets. First,
each tasklet performs the dot product of its slice of the time
series and the query sequence. Second, each tasklet calculates
the similarity between the slice of the time series and the
query sequence by computing the z-normalized Euclidean
distance [254]. Third, each tasklet compares the calculated
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similarity to the minimum similarity (or maximum, depend-
ing on the application) found so far, and updates it if the cal-
culated similarity is a new minimum (or maximum). Fourth,
at the end of the execution on the DPUs, the host CPU
retrieves the minimum (or maximum) similarity values and
their positions from all DPUs, and finds the overall minimum
(or maximum) and its position.

H. BREADTH-FIRST SEARCH
Breadth-First Search (BFS) [255] is a graph algorithm that
labels each node in the graph with its distance from a given
source node. In our version, all edges have the same weight,
therefore the distance represents the number of edges.

Our PIM implementation of BFS uses a Compressed
Sparse Row (CSR) [245]–[247] representation of the adja-
cency matrix, which represents the graph. Each element (i, j)
of the adjacency matrix indicates whether vertices i and j are
connected by an edge. Vertices are distributed evenly across
DPUs, with each DPU receiving the neighbor lists for the
vertices that it owns. The neighbor list of vertex i contains
the vertex IDs of the vertices that are connected to vertex i
by an edge. Each DPU maintains its own local copy of the
list of visited vertices in the graph, which is represented as a
bit-vector. At the end of each iteration of the BFS algorithm,
the host CPU merges all local per-DPU copies of the list of
visited vertices. The whole list of visited vertices is called the
frontier.

At the beginning of each iteration, the host CPU broadcasts
the complete current frontier to all the DPUs. Each DPU uses
the current frontier to update its local copy of the visited list.
The DPU keeps the vertices of the current frontier that corre-
spond to the vertices that it owns and discards the rest. The
tasklets in theDPU (1) go through these vertices concurrently,
(2) visit their neighbors, and (3) add the neighbors to the
next frontier if they have not previously been visited. This
approach to BFS is called top-down approach [256], [257].
Tasklets use critical sections (implemented via mutexes) to
update the next frontier concurrently without data conflicts.
At the end of each iteration, the CPU retrieves the next
frontier produced by each DPU, and computes their union to
construct the complete next frontier. The iterations continue
until the next frontier is empty at the end of an iteration.

I. MULTILAYER PERCEPTRON
Multilayer perceptron (MLP) [258] is a class of feedforward
artificial neural network with at least three layers: input,
hidden and output.

Our PIM implementation of MLP performs MLP infer-
ence. In each layer, the weights are arranged as a matrix
and the input is a vector. The computation in each layer is
a matrix-vector multiplication. The implementation of each
layer is based on our implementation of GEMV (Section IV-
B). Thus, in each layer of MLP, the distribution of the work-
load amongDPUs and tasklets is the same as inGEMV.ReLU
is the activation function at the end of each layer. When a
layer terminates, the host CPU (1) retrieves the output vector

chunks from the MRAM banks, (2) constructs the complete
vector, (3) feeds this vector to the DPUs as the input of the
next layer, and (4) transfers the weights matrix of the next
layer to the DPUs. At the end of the output layer, the host
CPU retrieves the output vector chunks, and constructs the
final output vector.

J. NEEDLEMAN-WUNSCH
Needleman-Wunsch (NW) [259] is a bioinformatics algo-
rithm that performs global sequence alignment, i.e., it com-
pares two biological sequences over their entire length to
find out the optimal alignment of these sequences. NW is a
dynamic programming algorithm that consists of three steps:
(i) initialize a 2D score matrix m × n, where m, n are the
lengths of the sequences (i.e., the number of base pairs, bps,
in each sequence); (ii) fill the score matrix by calculating the
score for each cell in the matrix, which is the maximum of
the scores of the neighboring cells (left, top, or top-left cells)
plus a penalty in case of a mismatch; and (iii) trace back
the optimal alignment by marking a path from the cell on
the bottom right back to the cell on the top left of the score
matrix. Note that theremay bemore than one possible optimal
alignments between two sequences.

Our PIM implementation first fills the upper triangle (top-
left part) of the 2D score matrix, and then the lower triangle
(bottom-right part) of it. The matrix is partitioned into large
2D blocks, and the algorithm iterates over the diagonals at
a large block granularity (from the top-left diagonal to the
bottom-right diagonal). In each iteration, all large blocks that
belong to the same diagonal of the 2D score matrix are cal-
culated in parallel by evenly distributing them across DPUs.
Inside the DPU, each large 2D block is further partitioned
into small 2D sub-blocks. The tasklets of each DPU work on
the diagonals at a small sub-block granularity, i.e., in each
iteration the tasklets of aDPU concurrently calculate different
small sub-blocks that belong to the same large block of one
diagonal.

For each diagonal of the 2D score matrix, the host CPU
retrieves the large blocks produced by all DPUs. Then, it uses
the filled cells of the last row and the last column of each large
block as input to the next iteration (i.e., the next diagonal),
since only these cells are neighboring cells with the next
diagonal blocks. The iterations continue until all diagonal
large blocks of the whole 2D score matrix are calculated. The
host CPU finally uses the resulting 2D score matrix to trace
back the optimal alignment.

In the Appendix (Section IX-B1), we show additional
experimental results for NW to demonstrate that the compu-
tation of the complete problem and the computation of the
longest diagonal scale differently across one rank of DPUs.

K. IMAGE HISTOGRAM
Image histogram (HST) [260] calculates the histogram of an
image, i.e., it counts the number of occurrences of each pos-
sible pixel value in an input image and stores the aggregated
counts of occurrences into a set of bins.
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We develop two PIM implementations of image histogram:
short (HST-S) and long (HST-L).

HST-S distributes chunks of the input image across tasklets
running on a DPU. Each tasklet creates a local histogram in
WRAM. When the local histograms are created, the tasklets
synchronize with a barrier, and the local histograms are
merged in a parallel manner. Since each tasklet features a
local histogram in WRAM, the maximum histogram size
is relatively small (e.g., 256 32-bit bins, when running
16 tasklets).14

HST-L can generate larger histograms, the size of which
is limited only by the total amount of WRAM, since only
one local histogram per DPU is stored in WRAM. Same as
HST-S, HST-L distributes chunks of the input image across
tasklets, which update the histogram in WRAM by using a
mutex, in order to ensure that only a single tasklet updates
the histogram at a time.

BothHST-S andHST-Lmerge all per-DPU histograms into
a single final histogram in the host CPU.

We compare HST-S and HST-L for different histogram
sizes in the Appendix (Section IX-B2), in order to find out
which HST version is preferred on the UPMEM-based PIM
system for each histogram size.

L. REDUCTION
Reduction (RED) [261] computes the sum of the elements in
an input array.

Our PIM implementation of reduction has two steps. In the
first step, each tasklet inside a DPU is assigned a chunk of
the array. The tasklet accumulates all values of the chunk and
produces a local reduction result. In the second step, after
a barrier, a single tasklet reduces the partial results of all
tasklets from the first step. At the end of the second step, the
host CPU retrieves the reduction result.

Alternatively, we can implement the second step as a par-
allel tree reduction [262], [263]. We implement two versions
of this parallel tree reduction, which use different intra-DPU
synchronization primitives. One of the versions uses hand-
shakes for communication between tasklets from one level
of the tree to the next one. The other version uses barriers
between levels of the tree. In the Appendix (Section IX-B3),
we compare the single-tasklet implementation to the two
versions of parallel tree reduction.

M. PREFIX SUM (SCAN)
Prefix sum or scan (SCAN) [249] is a parallel primitive that
computes the prefix sum of the values in an array. We imple-
ment an exclusive scan: the i-th element of the output contains
the sum of all elements of the input array from the first
element to the (i-1)-th element.

We implement two PIM versions of scan: Scan-
Scan-Add (SCAN-SSA) [251], [264], [265] and

14256 32-bit bins is themaximum histogram size for 16 tasklets (1) assum-
ing power-of-two size of the histogram and (2) taking into account that each
tasklet allocates a WRAM buffer for its chunk of the input image.

Reduce-Scan-Scan (SCAN-RSS) [251], [264], [266].
Both versions assign a large chunk of the input array to each
DPU.

SCAN-SSA has three steps. First, it computes the scan
operation locally inside each DPU. Second, it copies the last
element of the local scan to the host CPU, and places it in a
vector in the position corresponding to the DPU order. The
host CPU scans this vector and moves each result value to
the corresponding DPU. Third, it adds the value computed in
the host CPU to all elements of the local scan output in each
DPU. Fourth, the host CPU retrieves the complete scanned
array from the MRAM banks.

SCAN-RSS also has three steps. First, it computes the
reduction operation in each DPU. Second, it copies the reduc-
tion results to the host CPU, where the host CPU scans them.
Third, it moves the result values of the scan operation in the
host CPU to the corresponding DPUs, where the tasklets per-
form a local scan (including the value coming from the host
CPU). Fourth, the host CPU retrieves the complete scanned
array from the MRAM banks.

The advantage of SCAN-RSS over SCAN-SSA is that
SCAN-RSS requires fewer accesses to MRAM. For an array
of size N , SCAN-RSS needs 3 × N + 1 accesses: N reads
and 1 write for Reduce, and N reads and N writes for
Scan. SCAN-SSA needs 4 × N accesses: N reads and N
writes for Scan, and N reads and N writes for Add. The
advantage of SCAN-SSA over SCAN-RSS is that it requires
less synchronization. The reduction operation in SCAN-RSS
requires a barrier, but the addition operation in SCAN-SSA
does not require any synchronization. We expect SCAN-RSS
to perform better for large arrays where access to MRAM
dominates the execution time, and SCAN-SSA to perform
better for smaller arrays where the reduction that requires
synchronization constitutes a larger fraction of the entire
computation. We compare both implementations of SCAN
for arrays of different sizes in Appendix Section IX-B4.

N. MATRIX TRANSPOSITION
Matrix transposition (TRNS) [267] converts anM × N array
into an N × M array. We focus on in-place transposition,
where the transposed array occupies the same physical stor-
age locations as the original array. In-place transposition is a
permutation, which can be factored into disjoint cycles [268].
A straightforward parallel implementation can assign entire
cycles to threads. However, in such a straightforward imple-
mentation, (1) the length of cycles is not uniform in rectan-
gular matrices, causing load imbalance, and (2) the memory
accesses are random as operations are done on single matrix
elements (without exploiting spatial locality). Thus, efficient
parallelization is challenging.

Our PIM implementation follows an efficient 3-step tiled
approach [269], [270] that (1) exploits spatial locality by
operating on tiles of matrix elements, as opposed to single
elements, and (2) balances the workload by partitioning the
cycles across tasklets. To perform the three steps, we first
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factorize the dimensions of theM ×N array as anM ′ ×m×
N ′ × n array, whereM = M ′ × m and N = N ′ × n.

The first step operates on tiles of size n. This step performs
the transposition of an M × N ′ array, where each element is
a tile of size n. The resulting array has dimensions N ′×M ×
n = N ′ × M ′ × m × n. In the UPMEM-based PIM system,
we perform this step using n-sized CPU-DPU transfers that
copy the input array from the main memory of the host CPU
to the corresponding MRAM banks.

The second step performs N ′×M ′ transpositions of m× n
tiles. In each DPU, one tasklet transposes an m × n tile in
WRAM. The resulting array has dimensionsN ′×M ′×n×m.
The third step operates on tiles of size m. This step per-

forms transpositions of N ′ arrays of dimensions M ′ × n,
where each element is a tile of size m. The resulting array
has dimensions N ′ × n × M ′ × m. In each DPU, the avail-
able tasklets collaborate on the transposition of an M ′ × n
array (with m-sized elements) using the algorithm presented
in [271]. Differently from the algorithm in [271], which
uses atomic instructions for synchronization [272], our PIM
implementation uses mutexes for synchronization of tasklets
via an array of flags that keeps track of the moved tiles (we
choose this implementation because the UPMEM ISA [213]
does not include atomic instructions).
After the three steps, the host CPU retrieves the transposed

matrix from the MRAM banks.

V. EVALUATION OF PRIM BENCHMARKS
In this section, we evaluate the 16 PrIM benchmarks on
the 2,556-DPU system (Section II-A), unless otherwise
stated. Our evaluation uses the datasets presented in Table 3,
which are publicly and freely available [214]. Since these
datasets are large and do not fit in WRAM, we need to use
MRAM-WRAM DMA transfers repeatedly. The results we
present are for the best performing transfer sizes, which we
include in Table 3 to facilitate the reproducibility of our
results.We provide the command lines we use to execute each
benchmark along with all parameters in [214].
First, we present performance and scaling results.

We evaluate strong scaling3 for the 16 PrIM benchmarks
(Section V-A1) on the 2,556-DPU system by running the
experiments on (1) 1 DPU, (2) 1 rank (from 1 to 64 DPUs),
and (3) 32 ranks (from 256 to 2,048 DPUs). The goal of
these experiments is to evaluate how the performance of
the UPMEM-based PIM system scales with the number of
DPUs for a fixed problem size. The ideal strong scaling is
linear scaling, i.e., the ideal speedup for strong scaling with
N DPUs over the execution on a single DPU should be N .
We also evaluate weak scaling4 for the 16 PrIM bench-

marks (Section V-A2) on 1 rank (from 1 to 64 DPUs).
In this experiment, we evaluate how the performance of the
UPMEM-based PIM system scales with the number of DPUs
for a fixed problem size per DPU. In an ideal weak scaling
scenario, the execution time remains constant for any number
of DPUs.

Second, we compare the performance and energy con-
sumption of two full-blown UPMEM-based PIM sys-
tems (Table 1) with 2,556 DPUs (newer system) and
with 640 DPUs (older system) to those of a modern Intel
Xeon E3-1240 CPU [241] and a modern NVIDIA Titan V
GPU [277] (Section V-B).
In Section VI, we provide new insights about suitability

of different workloads to the PIM system, programming rec-
ommendations for software designers, and suggestions and
hints for hardware and architecture designers of future PIM
systems.

A. PERFORMANCE AND SCALING RESULTS
We evaluate the performance of all the benchmarks with
strong and weak scaling experiments using the datasets in
Table 3. Section V-A1 presents strong scaling results for a
single DPU, a single rank (from 1 to 64 DPUs), and for sets
of 4 to 32 ranks (from 256 to 2,048 DPUs). We also evalu-
ate the cost of inter-DPU synchronization. In Section V-A2,
we analyze weak scaling on an entire rank for 1 to 64 DPUs.
We include in the analysis the cost of inter-DPU synchroniza-
tion via the host CPU, as well as CPU-DPU and DPU-CPU
latencies.

1) STRONG SCALING RESULTS
We evaluate strong scaling with three different configura-
tions: (1) 1-16 tasklets inside one DPU, (2) 1-64 DPUs inside
one rank, and (3) 4-32 ranks. For the experiments inside one
rank and multiple ranks, we use the best-performing number
of tasklets from the experiment on one DPU.

a: ONE DPU
Figure 12 presents execution time and speedup scaling (ver-
sus tasklet count) results for 16 benchmarks on a single
DPU. The speedup results (right y-axis of each plot) corre-
spond to only the execution time portion spent on the DPU
(i.e., ‘‘DPU’’ portion of each bar in Figure 12). In these
experiments, we set the number of tasklets to 1, 2, 4, 8,
and 16. The benchmarks distribute computation among the
available tasklets in a data-parallel manner. The datasets and
their sizes are in Table 3. The times shown in Figure 12 are
broken down into the execution time on the DPU (‘‘DPU’’),
the time for inter-DPU communication via the host CPU
(‘‘Inter-DPU’’), the time for CPU to DPU transfer of input
data (‘‘CPU-DPU’’), and the time for DPU to CPU transfer
of final results (‘‘DPU-CPU’’).
We make the following five observations from Figure 12.
First, in VA, GEMV, SpMV, SEL, UNI, TS, MLP, NW,

HST-S, RED, SCAN-SSA (Scan kernel), SCAN-RSS (both
kernels), and TRNS (Step 2 kernel), the best performing
number of tasklets is 16. This is in line with our observa-
tions in Section III-A2: a number of tasklets greater than
11 is usually a good choice to achieve the best perfor-
mance from the pipeline. These benchmarks show good
scaling from 1 to 8 tasklets with speedups between 1.5×
and 2.0× as we double the number of tasklets until 8.
From 8 to 16 tasklets, the speedups are between 1.2× and
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TABLE 3. Evaluated datasets.

1.5× due to the pipeline throughput saturating at 11 tasklets.
For BS and BFS, 16 tasklets provide the highest performance
too. However, scaling in BS and BFS is more limited than in
the kernels listed in the beginning of this paragraph, as we
discuss later in this section.

Second, some of these benchmarks (VA, GEMV, SpMV,
BS, TS, MLP, HST-S, TRNS (Step 2)) do not use synchro-
nization primitives, while in others (SEL, UNI, NW, RED,
SCAN-SSA (Scan kernel), SCAN-RSS (both kernels)), syn-
chronization across tasklets (via handshakes and/or barriers)
is lightweight.

Third, BFS, HST-L, and TRNS (Step 3) show limited
scaling when increasing the number of tasklets because they
use mutexes, which cause contention when accessing shared
data structures (i.e., output frontier in BFS, local per-DPU
histogram in HST-L, array of flags in TRNS (Step 3)). While
in BFS using 16 tasklets provides the highest performance
since it can compensate for the large synchronization cost,
in HST-L and TRNS (Step 3) the best performing number
of tasklets is 8 due to the high synchronization overheads
beyond 8 tasklets.

Fourth, SCAN-SSA (Add kernel) experiences speedups
between 1.5× and 2.0× when we double the number of
tasklets until 8. However, there is no speedup from 8 to
16 tasklets, even though this step of the SCAN-SSA
benchmark does not use any synchronization primitives.

We observe the same behavior for the STREAM ADD
microbenchmark in Figure 7, i.e., performance saturation
happens before the 11 tasklets required to fully utilize the
pipeline. As explained in Section III-B2, the reason is that
both STREAM ADD and SCAN-SSA (Add kernel) are not
compute-intensive kernels, since they perform only one inte-
ger addition per input element accessed from MRAM. As a
result, the overall latency is dominated by the MRAM access
latency, which hides the pipeline latency (and thus perfor-
mance saturates at fewer than 11 tasklets required to fully
utilize the pipeline). The same reason explains that BS obtains
almost no speedup (only 3%) from 8 to 16 tasklets, since BS
performs only one comparison per input element.

Fifth, while the amount of time spent on CPU-DPU trans-
fers and DPU-CPU transfers is relatively low compared to
the time spent on DPU execution for most benchmarks,
we observe that CPU-DPU transfer time is very high in
TRNS. The CPU-DPU transfer of TRNS performs step 1 of
the matrix transposition algorithm [269], [270] by issu-
ing M ′ × m data transfers of n elements, as explained in
Section IV-N. Since we use a small n value in the experiment
(n = 8, as indicated in Table 3), the sustained CPU-DPU
bandwidth is far from the maximum CPU-DPU bandwidth
(see sustained CPU-DPU bandwidth for different transfer
sizes in Figure 10a).
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FIGURE 12. Execution time (ms) of 16 benchmarks on 1, 2, 4, 8, and 16 tasklets in one DPU (left y-axis), and speedup (considering only the portion of
execution time spent on the DPU) provided by more tasklets normalized to the performance of 1 tasklet (right y-axis).

b: ONE RANK (1-64 DPUS)
We evaluate strong scaling with 1 to 64 DPUs. The size
of the input is the dataset size we can fit in a single DPU
(see Table 3). We especially examine CPU-DPU transfer and
DPU-CPU transfer times, in order to assess how they change
as we increase the number of DPUs. Figure 13 shows exe-
cution time and speedup scaling (versus DPU count) results
for 1, 4, 16, and 64 DPUs. The speedup results (right y-axis
of each plot) correspond to only the execution time portion
spent on the DPU (i.e., the ‘‘DPU’’ portion of each bar in

Figure 13). The breakdown of execution time is the same as
that done in Figure 12 for the single-DPU results.
We make the following seven observations from Figure 13.
First, we observe that DPU performance scaling is lin-

ear with DPU count (i.e., the execution times on the DPU
reduce linearly as we increase the number of DPUs) for VA,
GEMV, SpMV, SEL, UNI, BS, TS, MLP, HST-S, HST-L,
RED, SCAN-SSA (both kernels), SCAN-RSS (both kernels),
and TRNS (both kernels) (speedups between 3.1× and 4.0×
when increasing the number of DPUs by 4). As a result,
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FIGURE 13. Execution time (ms) of 16 benchmarks on one rank (1, 4, 16, and 64 DPUs, using strong scaling3) (left y-axis), and speedup (considering only
the portion of execution time spent on the DPU) provided by more DPUs normalized to the performance of 1 DPU (right y-axis). Inside a DPU, we use
the best-performing number of tasklets from Figure 12.

increasing the DPU count from 1 to 64 for these benchmarks
produces speedups between 37× (SpMV) and 64× (TS,
TRNS).

Second, scaling of DPU performance is sublinear for two
benchmarks (BFS, NW). Increasing the DPU count from 1 to
64 for these two benchmarks produces speedups between
8.3× (BFS) and 17.2× (NW). For BFS, the speedups are
sublinear (1.7 − 2.7× when increasing the number of DPUs
by 4) due to load imbalance across DPUs produced by the

irregular topology of the loc-gowalla graph [274]. In NW, the
speedups are between 2.2× and 3.3× when multiplying the
DPU count by 4. In this benchmark, the parallelization factor
in each iteration (i.e., number of active DPUs) depends on the
size of the diagonal of the 2D score matrix that is processed,
and the number of large 2D blocks in the diagonal. When we
increase the number of DPUs by 4, the parallelization factor
in smaller diagonals is low (i.e., equal to only the number of
blocks in these diagonals), and only increases up to 4× in
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the larger diagonals (i.e., when there are enough blocks to
use all available DPUs). As a result, the scalability of NW is
sublinear.

Third, the overhead (if any) of inter-DPU synchroniza-
tion (as depicted by the ‘‘Inter-DPU’’ portion of each bar
in Figure 13) is low in 14 of the benchmarks (VA, GEMV,
SpMV, SEL, UNI, BS, TS, HST-S, HST-L, RED, SCAN-
SSA, SCAN-RSS, TRNS). As a result, these benchmarks
achieve higher performance when we increase the number of
DPUs (even including the inter-DPU synchronization time).
There is no inter-DPU synchronization in VA, GEMV, SpMV,
BS, TS, and TRNS. There is inter-DPU synchronization
in HST-S and HST-L (for final histogram reduction), but
its overhead is negligible. The inter-DPU synchronization
time is noticeable in SEL, UNI, and RED (for final result
merging) and in SCAN-SSA and SCAN-RSS (for interme-
diate scan step in the host). For 64 DPUs, the inter-DPU
synchronization times of SEL, UNI, RED, SCAN-SSA, and
SCAN-RSS account for 53%, 91%, 48%, 42%, and 17%
the execution times on the DPUs (not visible in Figure 13),
respectively. Despite that, we still obtain the best performance
(including portions of the execution time spent on the DPUs,
i.e., ‘‘DPU,’’ and inter-DPU synchronization, i.e., ‘‘Inter-
DPU’’) with 64 DPUs for SEL, UNI, RED, SCAN-SSA, and
SCAN-RSS.

Fourth, we observe significantly higher overhead of
inter-DPU synchronization for BFS, MLP, and NW. In MLP,
the inter-DPU synchronization overhead (due to the distribu-
tion of weights matrix and input vector to each layer) reduces
as the number of DPUs increases. The reason is that the dis-
tribution of the weights matrix (i.e., copying assigned matrix
rows to the corresponding DPUs) takes advantage of parallel
CPU-DPU transfers, while the overhead of transferring the
input vector is negligible. However, the trend is different for
BFS and NW. The overall performance (including portions
of the execution time on the DPUs, i.e., ‘‘DPU,’’ and inter-
DPU synchronization, i.e., ‘‘Inter-DPU’’) of 64 DPUs is only
5% and 17% higher than that of 16 DPUs for BFS and NW,
respectively. The reason in BFS is that, after each iteration,
the CPU has to compute the union of the next frontier from all
DPUs sequentially and redistribute it across the DPUs. Thus,
the inter-DPU synchronization cost increases linearly with
the number of DPUs. In NW, the inter-DPU synchronization
overhead is substantial due to a similar reason. For each
diagonal of the 2D score matrix, the host CPU (1) retrieves
the results of the sub-blocks produced by all DPUs, and
(2) sends the cells of the last row and the last column of each
sub-block as input to the next diagonal (processed in the next
iteration).

Fifth, we observe the CPU-DPU transfer and DPU-CPU
transfer times decrease for VA, GEMV, TS, MLP, HST-S,
HST-L, RED, SCAN-SSA, SCAN-RSS, and TRNS, whenwe
increase the number of DPUs in the strong scaling experiment
for 1 rank. These benchmarks use parallel CPU-DPU and
DPU-CPU transfers between the main memory of the host
CPU and the MRAM banks.

Sixth, the CPU-DPU and DPU-CPU transfer times do not
decrease for BS and NW with increasing number of DPUs,
even though BS and NW use parallel transfers. BS distributes
the values to search in a sorted array across the available
DPUs, but the sorted array is replicated in each DPU. As a
result, the total CPU-DPU time increases with the number of
DPUs. NW processes a diagonal in each iteration. For shorter
diagonals, the algorithm does not need to use all available
DPUs. Thus, more available DPUs does not always mean
more parallelism in CPU-DPU and DPU-CPU transfers.

Seventh, the remaining benchmarks (SpMV, SEL, UNI,
BFS) cannot use parallel transfers to copy input data and/or
retrieve results. In SEL and UNI, DPU-CPU transfer times
increase when we increase the number of DPUs because we
cannot use parallel transfers for retrieving results. In these two
benchmarks, the size of the output in each DPU may differ as
it depends on the element values of the input array. SpMV and
BFS cannot use parallel CPU-DPU and DPU-CPU transfers
because the size of the inputs assigned to each DPU may
be different (e.g., different number of nonzero elements of
different sparse rows in SpMV, different numbers of edges
for different vertices in BFS). As a result, we observe that
CPU-DPU and DPU-CPU transfer times do not reduce in
SpMV and BFS when increasing the number of DPUs.

c: 32 RANKS (256-2,048 DPUS)
We evaluate strong scaling with 4, 8, 16, and 32 ranks. The
size of the input is the maximum dataset size we can fit in four
ranks (i.e., 256DPUs), as shown in Table 3.We do not include
CPU-DPU and DPU-CPU transfer times in our performance
analysis, because these transfers are not simultaneous across
ranks, as wementioned in Section III-D. Figure 14 shows exe-
cution time and speedup scaling (versus DPU count) results
for 256, 512, 1,024, and 2,048 DPUs, corresponding to 4, 8,
16, and 32 ranks. The speedup results (right y-axis of each
plot) correspond to only the execution time portion spent on
the DPU (i.e., the ‘‘DPU’’ portion of each bar in Figure 14).

We make the following observations from Figure 14.
First, as in the experiments on one rank, we observe that the

execution times on the DPU (i.e., the ‘‘DPU’’ portion of each
bar in Figure 14) reduce linearly with the number of DPUs
(i.e., ∼2× when we double the number of DPUs, and ∼8×
from 256 to 2,048 DPUs) for VA, GEMV, SEL, UNI, BS,
TS, MLP, HST-S, HST-L, RED, SCAN-SSA (both kernels),
SCAN-RSS (both kernels), and TRNS (both kernels). For
SCAN-SSA (Scan) and SCAN-RSS (Scan), we observe more
than 8× speedupwhenwe scale from 256 to 2,048DPUs. The
reason is that the amount of synchronization across tasklets
(i.e., handshakes in Scan) reduces when we distribute the
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FIGURE 14. Execution time (ms) of 16 benchmarks on 4, 8, 16, and 32 ranks (256, 512, 1,024, and 2,048 DPUs, using strong scaling3) (left y-axis), and
speedup (considering only the portion of execution time spent on the DPU) provided by more DPUs normalized to the performance of 4 ranks (256
DPUs) (right y-axis). Inside a DPU, we use the best-performing number of tasklets from Figure 12.

input array across more DPUs. However, the downside is that
the inter-DPU communication cost increases, as we explain
below.

Second, DPU performance scaling (i.e., the ‘‘DPU’’ por-
tion of each bar in Figure 14) is sublinear for SpMV, BFS,
and NW. For SpMV and BFS, there is load imbalance across
DPUs due to the irregular nature of graphs and sparse matri-
ces. For NW, we observe small speedups when we double

the number of DPUs (1.60× from 256 to 512 DPUs, and
1.25× from 512 to 1,024 DPUs), and almost no speedup
(only 8%) from 1,024 to 2,048 DPUs. As explained above,
NW does not use all DPUs in all iterations, but only the
number that is needed for the diagonal that is processed in
each iteration. As a result, doubling the number of DPUs does
not reduce the execution time spent on the DPU at the same
rate.
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Third, inter-DPU synchronization (as depicted by the
‘‘Inter-DPU’’ portion of each bar in Figure 14) imposes
a small overhead (if any) for 12 of the benchmarks (VA,
GEMV, SpMV, SEL, UNI, BS, TS, HST-S, HST-L, RED,
and TRNS). VA, GEMV, SpMV, BS, TS, and TRNS do not
require inter-DPU synchronization. For SEL, UNI, HST-S,
HST-L, and RED, the inter-DPU synchronization involves
only DPU-CPU transfers, since it is only used to merge final
results at the end of execution. The inter-DPU synchroniza-
tion overhead increases with the number of DPUs, since the
amount of partial results to merge increases. However, the
inter-DPU synchronization cost is small, and a larger number
of DPUs results in larger overall performance.

Fourth, the inter-DPU synchronization imposes significant
overhead when it requires more complex patterns (involving
both CPU-DPU andDPU-CPU transfers).We observe this for
five benchmarks (BFS, MLP, NW, SCAN-SSA, and SCAN-
RSS). For NW and MLP, we observe that inter-DPU syn-
chronization times are significantly higher than DPU times.
If we compare these results to the results in Figure 13,
we conclude that these benchmarks’ overall performance is
greatly burdened by inter-DPU synchronization when using
more than one rank. SCAN-SSA and SCAN-RSS perform
a more complex intermediate step in the CPU: (1) the
CPU gathers partial results from the first kernel (Scan in
SCAN-SSA, Reduce in SCAN-RSS) from the DPUs (via
DPU-CPU transfers), (2) the CPU performs a scan opera-
tion, and (3) the CPU returns a value to be used by the
second kernel (Add in SCAN-SSA, Scan in SCAN-RSS) to
each DPU (via CPU-DPU transfers). The significant increase
in ‘‘Inter-DPU’’ from 1,024 to 2,048 DPUs is due to the
dual-socket system configuration (Section II-A), since the
CPU in one socket obtains lower memory bandwidth from
remote MRAM banks (i.e., in the other socket). For BFS, the
trend is even worse. We observe that the huge increase in the
inter-DPU synchronization time makes 256 DPUs the best
choice for executing BFS. Our observations for BFS, SCAN-
SSA, and SCAN-RSS are against the general programming
recommendation of using as many working DPUs as possi-
ble (Section II-C2). These three benchmarks show that the
best-performing number of DPUs is limited by the inter-DPU
synchronization overhead.

2) WEAK SCALING RESULTS
Figure 15 shows the weak scaling results inside a single
rank for 1, 4, 16, and 64 DPUs. In each DPU, we run the
number of tasklets that produces the best performance in
Section V-A1.a. The size of the dataset per DPU is the size
shown in Table 3. The time is broken down into execution
time on the DPU (‘‘DPU’’), inter-DPU synchronization time
(‘‘Inter-DPU’’), and CPU-DPU and DPU-CPU transfer times
(‘‘CPU-DPU,’’ ‘‘DPU-CPU’’), similarly to the strong scaling
results presented in Figures 12 to 14 in Section V-A1.

We make the following five observations from Figure 15.
First, we observe perfect (i.e., linear) weak scaling on the

DPU for 14 benchmarks: the execution time on the DPU
(i.e., the ‘‘DPU’’ portion of each bar in Figure 15) remains
constant for VA, GEMV, SpMV, SEL, UNI, BS, TS, MLP,
HST-S, HST-L, RED, SCAN-SSA, SCAN-RSS, and TRNS,
as we increase the number of DPUs (and the dataset size).
Since there is no direct communication between DPUs in
these kernels, the even distribution of workload (i.e., load bal-
ance) among DPUs leads to performance scaling. We observe
a similar trend of perfect weak scaling for BFS even though
there is some load imbalance across DPUs in BFS.

Second, NW does not scale linearly (i.e., the execution
time spent on the DPU is not constant) because the size of the
problem does not increase linearly with the number of DPUs.
We increase the lengths of the input sequences to NW linearly
with the number of DPUs (see Table 3, weak scaling dataset).
Thus, the size of the 2D score matrix increases quadrati-
cally with the number of DPUs. As a result, the execution
times on the DPUs increase when we increase the number of
DPUs. However, the longest diagonal of the 2D score matrix
increases linearly with the number of DPUs. The processing
time of this diagonal shows linear weak scaling as we increase
the number of DPUs. We show these experimental results in
the Appendix (Section IX-B1).
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FIGURE 15. Execution time (ms) of 16 benchmarks on one rank (1, 4, 16, and 64 DPUs, using weak scaling4). Inside a DPU, we use the best-performing
number of tasklets from Figure 12.

Third, among the benchmarks that require inter-DPU
synchronization (SEL, UNI, BFS, MLP, NW, HST-S,
HST-L, RED, SCAN-SSA, and SCAN-RSS, the synchro-
nization overhead (i.e., the ‘‘Inter-DPU’’ portion of each bar
in Figure 15) is negligible for SEL, UNI, HST-S, HST-L,
RED, SCAN-SSA, and SCAN-RSS. For MLP and NW, the
inter-DPU synchronization time takes a significant fraction of
the overall execution time, and it increases with the number
of DPUs because the total problem size (and thus, the size
of weight matrices in MLP and the number of iterations in
NW) increases, as indicated above. In BFS, the inter-DPU

synchronization time increases linearly, as we explain in
Section V-A1 (Figures 13 and 14) for strong scaling exper-
iments. As a result, BFS obtains the best tradeoff between
overall execution time (including portions of the execution
time spent on the DPUs, i.e., ‘‘DPU,’’ and inter-DPU syn-
chronization, i.e., ‘‘Inter-DPU’’) and number of DPUs at 16
DPUs (i.e., the ratio of overall execution time, the ‘‘DPU’’
portions + the ‘‘Inter-DPU’’ portions, over number of DPUs
is lower for 16 DPUs).

Fourth, CPU-DPU and DPU-CPU transfer times increase
slowly with the number of DPUs for the 13 benchmarks that
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use parallel transfers between main memory and MRAM
banks (VA, GEMV, SEL (only CPU-DPU), UNI (only
CPU-DPU), BS, TS, MLP, HST-S, HST-L, RED, SCAN-
SSA, SCAN-RSS, and TRNS). As observed from Figure 10,
the sustained CPU-DPU and DPU-CPU bandwidths increase
sublinearly with the number of DPUs. On average, the
increase in sustained CPU-DPU/DPU-CPU bandwidth for
these 13 benchmarks from 1 DPU to 64 DPUs is
20.95×/23.16×. NW uses parallel CPU-DPU and DPU-CPU
transfers, but the CPU-DPU transfer and DPU-CPU transfer
times increase with the number of DPUs because the amount
of transferred data increases (i.e., the total problem size
increases, as described above in the second observation from
Figure 15).
Fifth, CPU-DPU transfer and DPU-CPU transfer times

increase linearly with the number of DPUs for the bench-
marks that cannot use parallel transfers. SEL and UNI
employ serial DPU-CPU transfers, as we discuss above. This
makes the DPU-CPU transfer times in these two benchmarks
increase dramatically with the number of DPUs, dominating
the entire execution time. In SpMV and BFS, where we
cannot use parallel transfers due to the irregular nature of
datasets, CPU-DPU transfer and DPU-CPU transfer times
also increase significantly. In full-blown real-world applica-
tions, where SEL, UNI, SpMV, or BFS may be just one of
the multiple or many kernels executed by the application,
the CPU-DPU transfer and DPU-CPU transfer times can be
amortized and their overhead alleviated.

B. COMPARISON TO CPU AND GPU
We compare the UPMEM PIM architecture to a modern CPU
and a modern GPU in terms of performance and energy con-
sumption. Our goal is to quantify the potential of the UPMEM
PIM architecture as a general-purpose accelerator. We use
state-of-the-art CPU and GPU versions of PrIM benchmarks
for comparison to our PIM implementations. The sources of
the CPU and GPU versions of the benchmarks are listed in
the Appendix (Table 5).

We compare the UPMEM-based PIM systems with
640 and 2,556 DPUs (Table 1) to an Intel Xeon E3-1225 v6
CPU [241] and an NVIDIA Titan V GPU [277] based on
the Volta architecture [278] for all our benchmarks. Table 4
summarizes key characteristics of the CPU, the GPU, and the
two UPMEM-based PIM systems.

For our UPMEM-based PIM system performance mea-
surements, we include the time spent in the DPU and the time
spent for inter-DPU synchronization on the UPMEM-based
PIM systems. For our CPU and GPU performance measure-
ments, we include only the kernel times (i.e., we do not

include data transfers between the host CPU and the GPU
in the GPU versions). For energy measurements, we use Intel
RAPL [279] on the CPU andNVIDIA SMI [280] on theGPU.
In the UPMEMPIM systems, we obtain the energy consumed
by the DIMMs connected to the memory controllers, which
can be done in x86 sockets [281]. The measurements include
only the energy of the PIM chips.

1) PERFORMANCE COMPARISON
Figure 16 shows the speedup of the UPMEM-based PIM
systems with 640 and 2,556 DPUs and the Titan V GPU over
the Intel Xeon CPU.

FIGURE 16. Performance comparison between the UPMEM-based PIM
systems with 640 and 2,556 DPUs, a Titan V GPU, and an Intel Xeon
E3-1240 CPU. Results are normalized to the CPU performance (y-axis is
log scale). There are two groups of benchmarks: (1) benchmarks that are
more suitable to the UPMEM PIM architecture, and (2) benchmarks that
are less suitable to the UPMEM PIM architecture.

We make four key observations from Figure 16.
First, the 2,556-DPU system and the 640-DPU system are

on average 23.2× and 10.1× faster than the CPU. The highest
speedup is for UNI: the 2,556-DPU system is 629.5× and the
640-DPU system is 234.4× faster than the CPU. Even bench-
marks that make heavy use of integer multiplication (GEMV,
TS, and MLP) are much faster on the UPMEM-based PIM
systems (5.8-86.6× faster on the 2,556-DPU system, and
5.6-25.2× faster on the 640-DPU system). This observation
reflects the large performance improvements that workloads
running on a conventional system with a CPU can experience
if we expand the system with DIMMs of PIM-enabled mem-
ory (see Figure 1).

Second, the UPMEM-based PIM systems outperform the
CPU for all of the benchmarks except SpMV, BFS, and NW.
SpMV has three characteristics that make it less suitable for
UPMEM-based PIM systems: (1) it operates on floating point
data, (2) it uses multiplication heavily, and (3) it suffers from
load imbalance due to the irregular nature of sparse matrices.
Regarding the first two characteristics, we know from our
analyses in Sections III-A2 and III-C that floating point mul-
tiplication is very costly because of the lack of native support.
Regarding the third characteristic, we know from our strong
scaling evaluation in Section V-A1 that load imbalance across
DPUs causes sublinear scaling for SpMV. BFS performs
much worse than CPU on the UPMEM-based PIM systems
because of the large overhead of inter-DPU synchronization
via the host CPU, as we discuss in Section V-A. Since the
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TABLE 4. Evaluated CPU, GPU, and UPMEM-based PIM systems.

inter-DPU synchronization overhead of BFS increases lin-
early with the number of DPUs, the 2,556-DPU system is
significantly slower than the 640-DPU system.15 Note that
the goal of these experiments is not to show the performance
of the best-performing number of DPUs for a given workload,
but the performance of the full-blown systems with all 2,556
DPUs and 640 DPUs active for each workload. NW is one
order of magnitude slower on both UPMEM-based PIM sys-
tems than on the CPU due to the inter-DPU synchronization
overhead. The inter-DPU synchronization overhead of NW
is not as dependent on the number of DPUs. As a result,
the 2,556-DPU system has the same performance as the
640-DPU system for this benchmark.

Third, the 2,556-DPU system is faster than the GPU for
10 benchmarks: VA, SEL, UNI, BS, HST-S, HST-L, RED,
SCAN-SSA, SCAN-RSS, and TRNS. These 10 benchmarks
are more suitable to the UPMEM PIM architecture due to
three key characteristics: (1) streaming memory accesses,
(2) no or little inter-DPU communication, and (3) no or little
use of integer multiplication, integer division, or floating
point operations. The speedups of the 2,556-DPU system
over the GPU for these benchmarks range between 6% (for
SCAN-SSA) and 57.5× (for BS), with an average of 2.54×.
It is especially interesting that the 2,556-DPU system out-
performs the Titan V for some of these benchmarks, which
are traditionally considered GPU-friendly and are subject
of GPU optimization studies, libraries, and reference imple-
mentations, such as VA [282], SEL and UNI [250], [283],
HST-S and HST-L [260], [272], [284], RED [262], [263],
SCAN-SSA [264], [265], [283], SCAN-RSS [251], [264],
[266], [285], and TRNS [269], [270], [286]. In summary, the
UPMEM PIM architecture outperforms the modern GPU for
workloads that exhibit the three key characteristics that make
them potentially suitable for execution on the UPMEM-based
PIM system.

Fourth, the 640-DPU system is generally slower than the
GPU, but for the 10 benchmarks where the 2,556-DPU sys-
tem is faster than the GPU (VA, SEL, UNI, BS, HST-S,
HST-L, RED, SCAN-SSA, SCAN-RSS, and TRNS) the aver-
age performance of the 640-DPU system is within 65% the

15BFS can obtain better performance by running it using much fewer
DPUs. The reason is that BFS performance does not scale with many DPUs,
as shown in Sections V-A1 and V-A2 (Figures 13-15). However, we do
not run BFS using much fewer DPUs as we study the full-blown system
performance utilizing all DPUs in this experiment.

performance of the GPU. Among these benchmarks, the
640-DPU system is faster than the GPU for two benchmarks:
HST-S and BS. The GPU version of histogram [260], [287]
(the same one for HST-S and HST-L) uses atomic operations
that burden the performance heavily [272]. As a result, the
640-DPU system is 1.89× faster than the GPU for HST-S.
For BS, the GPU version suffers from many random memory
accesses, which greatly reduce the achievable memory band-
width. The 640-DPU system is 11.0× faster than the GPU
for BS.

2) ENERGY COMPARISON
Figure 17 shows the energy savings of the UPMEM-based
PIM system with 640 DPUs and the Titan V GPU over the
Intel Xeon CPU. At the time of writing, the 2,556-DPU
system is not enabled to perform energy measurements, but
we will aim to include them in an extended version of our
work.

FIGURE 17. Energy comparison between the UPMEM-based PIM system
with 640 DPUs, a Titan V GPU, and an Intel Xeon E3-1240 CPU. Results are
normalized to the CPU performance (y-axis is log scale). There are two
groups of benchmarks: (1) benchmarks that are more suitable to the
UPMEM PIM architecture, and (2) benchmarks that are less suitable to
the UPMEM PIM architecture.

We make three key observations from Figure 17.

52594 VOLUME 10, 2022



J. Gómez-Luna et al.: Benchmarking New Paradigm: Experimental Analysis and Characterization of Real PIM System

First, the 640-DPU system consumes, on average, 1.64×
less energy than the CPU for all 16 benchmarks. For 12
benchmarks (VA, GEMV, SEL, UNI, BS, TS, HST-S, HST-L,
RED, SCAN-SSA, SCAN-RSS, and TRNS), the 640-DPU
system provides an energy savings of 5.23× over the CPU.
Themaximum energy savings is 39.14× for UNI. Our experi-
ments show that the 640-DPU system, featuring PIM-enabled
memory with a capacity of 40 GB, provides outstanding
energy savings over a modern Intel Xeon CPU (with memory
capacity of 32 GB) for 12 out of 16 benchmarks. This energy
savings comes from the lower execution times of these 12
benchmarks on the 640-DPU system (Figure 16). We expect
that the energy savings of the 2,556-DPU system, with ∼6×
more DPUs, 160 GB of PIM-enabled memory, and higher
frequency (350 vs. 267 MHz), over the CPU will be even
higher due to higher performance (thus, lower static energy)
and less data movement.

Second, the 640-DPU system is only less energy efficient
than the CPU for SpMV, BFS, and NW, which is in line with
our observations about performance (Section V-B1).

Third, compared to the GPU, the 640-DPUs system con-
sumes less energy for BS and HST-S, since these are the
two benchmarks for which the 640-DPU system outperforms
the GPU (see Section V-B1). For the 2,556-DPU system,
we expect energy results to follow the performance results
in Section V-B1. The 10 benchmarks (VA, SEL, UNI, BS,
HST-S, HST-L, RED, SCAN-SSA, SCAN-RSS, and TRNS)
that run faster on the 2,556-DPU system than on the GPUwill
also likely consume less energy. This is because the major
cause of performance improvement and energy reduction is
the same: the reduction in data movement between memory
and processors that the UPMEM-based PIM systems provide.

3) DISCUSSION
These observations are useful for programmers to anticipate
howmuch performance and energy savings they can get from
theUPMEMhardware compared to traditional CPU andGPU
systems for different types of workloads.

One limitation of this comparison is the difficulty of estab-
lishing a common control factor across all three types of
systems (CPU, GPU, and UPMEM-based PIM system) to

ensure a fair comparison. To this end, the 640-DPU PIM
system has comparable memory capacity to the CPU (40 GB
vs. 32 GB). However, the 2,556-DPU system has much
higher memory capacity (∼160 GB). On the other hand, the
640-DPU UPMEM-based PIM system and the GPU have
comparable cost (the 640-DPU system being a little cheaper).
Other hardware characteristics, such as fabrication technol-
ogy, process node, number of cores, or frequency (Table 5),
are very different across the four systems that we evaluate in
Section V-B.
We note that the UPMEM hardware is still maturing and

is expected to run at a higher frequency in the near future
(400-450MHz instead of 350 or 267MHz) and potentially be
manufactured with a smaller technology node [231]. Hence,
the results we report in this comparison may underestimate
the full potential of the UPMEM-based PIM architecture.
CPU and GPU systems have been heavily optimized for
decades in terms of architecture, software, and manufactur-
ing. We believe the architecture, software, and manufacturing
of PIM systems will continue to improve (see our suggestions
for future improvement in Section VI).

VI. KEY TAKEAWAYS
In this section, we reiterate several key empirical observations
in the form of four key takeaways we provide throughout this
paper. We also provide implications on workload suitabil-
ity and good programming practices for the UPMEM PIM
architecture, and suggestions for hardware and architecture
designers of future PIM systems.

A. KEY TAKEAWAY #1
The UPMEM PIM architecture is fundamentally com-
pute bound. Section III-B shows that workloads with more
complex operations than integer addition fully utilize the
instruction pipeline before they can potentially saturate the
memory bandwidth. Section III-C shows that even workloads
with as simple operations as integer addition saturate the
compute throughput with an operational intensity as low as
0.25 operations/byte (1 addition per integer accessed). This
key takeaway shows that the most suitable workloads for
the UPMEM PIM architecture are memory-bound work-
loads. From a programmer’s perspective, the architecture
requires a shift in how we think about computation and data
access, since the relative cost of computation vs. data access
in the PIM system is very different from that in the dominant
processor-centric architectures of today.

B. KEY TAKEAWAY #2
The workloads most well-suited for the UPMEM PIM
architecture are those with simple or no arithmetic
operations. This is because DPUs include native support
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for only integer addition/subtraction and bitwise opera-
tions. More complex integer (e.g., multiplication, division)
and floating point operations are implemented using soft-
ware library routines. Section III-A2 shows that the arith-
metic throughput of more complex integer operations and
floating point operations are an order of magnitude lower
than that of simple addition and subtraction. Section V-B
shows that benchmarks with little amount of computation
and no use of multiplication, division, or floating point
operations (10 out of 16 benchmarks) run faster (2.54×
on average) on a 2,556-DPU system than on a mod-
ern NVIDIA Titan V GPU. These observations show that
the workloads most well-suited for the UPMEM PIM
architecture are those with no arithmetic operations or
simple operations (e.g., bitwise operations and integer
addition/subtraction). Based on this key takeaway, we rec-
ommend devising much more efficient software library rou-
tines or, more importantly, specialized and fast in-memory
hardware for complex operations in future PIM architecture
generations to improve the general-purpose performance of
PIM systems.

C. KEY TAKEAWAY #3
The workloads most well-suited for the UPMEM PIM
architecture are those with little global communica-
tion, because there is no direct communication channel
among DPUs. As a result, there is a huge disparity in
performance scalability of benchmarks that do not require
inter-DPU communication and benchmarks that do (espe-
cially if parallel transfers across MRAM banks cannot be
used), as Section V-A shows. This key takeaway shows that
the workloads most well-suited for the UPMEM PIM
architecture are those with little or no inter-DPU com-
munication. Based on this takeaway, we recommend that
the hardware architecture and the software stack be enhanced
with support for inter-DPU communication (e.g., by leverag-
ing new in-DRAMdata copy techniques [27], [28], [33], [38],
[39], [188], [190] and providing better connectivity inside
DRAM [33], [38]).

D. SUMMARY
We find that the workloads most suitable for the UPMEM
PIM architecture in its current form are (1) memory-bound

workloads with (2) simple or no arithmetic operations and
(3) little or no inter-DPU communication.

E. KEY TAKEAWAY #4
We observe that the existing UPMEM-based PIM systems
greatly improve energy efficiency and performance over
modern CPU and GPU systems across many workloads we
examine. Section V-B shows that the 2,556-DPU and the
640-DPU systems are 23.2× and 10.1× faster, respectively,
than a modern Intel Xeon CPU, averaged across the entire set
of 16 PrIM benchmarks. The 640-DPU system is 1.64×more
energy efficient than the CPU, averaged across the entire set
of 16 PrIM benchmarks, and 5.23×more energy efficient for
12 of the PrIM benchmarks.

The 2,556-DPU system is faster (on average by 2.54×)
than the modern GPU in 10 out of 16 PrIM benchmarks,
which have three key characteristics that define a workload’s
PIM suitability: (1) streaming memory accesses, (2) little
or no inter-DPU communication, and (3) little or no use of
multiplication, division, or floating point operations.16

We expect that the 2,556-DPU system will provide even
higher performance and energy benefits, and that future PIM
systemswill be even better (especially after implementing our
recommendations for future PIM hardware). If the architec-
ture is improved based on our recommendations under Key
Takeaways 1-3, we believe the future PIM system will be
even more attractive, leading to much higher performance
and energy benefits versus modern CPUs and GPUs over
potentially all workloads.

VII. RELATED WORK
To our knowledge, this paper provides the first compre-
hensive characterization and analysis of the first publicly-
available real-world PIM architecture along with the

16Note that these three characteristics are not exactly the same three
characteristics highlighted by key takeaways #1 to #3, but more specific.
The difference is that the 2,556-DPU system outperforms the GPU for
memory-bound workloads with streaming memory accesses. These work-
loads do not need to have only streaming memory accesses, since BS,
HST-S, HST-L, and TRNS, for which the 2,556-DPU system outperforms
the GPU, have also random accesses. Since all PrIM workloads (see Table 2)
contain some streamingmemory accesses, we cannot say that the 2,556-DPU
system outperforms the GPU for workloads with only strided and/or random
accesses.
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first open-source benchmark suite for a real-world PIM
architecture.

We briefly review related work on PIM architectures.
There are two main approaches to PIM [1]–[4]:

(1) processing-using-memory (PUM ) and (2) processing-
near-memory (PNM ). No prior work on PUM or PNM
provides results from real commercial systems or a
benchmark suite to evaluate PIM architectures.

Processing using memory (PUM) exploits the existing
memory architecture and the operational principles of the
memory cells and circuitry to perform operations within each
memory chip at low cost. Prior works propose PUM mecha-
nisms using SRAM [21]–[24], DRAM [25]–[40], [99], [100],
[119], [188]–[191], [288], PCM [41], MRAM [42]–[44], or
RRAM/memristive [45]–[55], [70], [103], [114], [118],
[192], [193], [289] memories. PUM mechanisms enable
different types of operations such as data copy and
initialization [21], [27], [28], [33], [38], [39], [119], [190],
bulk bitwise operations (e.g., a functionally-complete set
of Boolean logic operations) [21], [25], [26], [32], [34],
[35], [41]–[44], [145], [188], [191], and simple arith-
metic operations (e.g., addition, multiplication, implication)
[21]–[24], [29], [35], [36], [45]–[55], [99]. A recent work,
called SIMDRAM [37], designs a framework for imple-
menting and executing arbitrary operations in a bit-serial
SIMD fashion inside DRAM arrays, building on the Ambit
substrate [25], [26].

Processing near memory (PNM) integrates processing
elements (e.g., functional units, accelerators, simple process-
ing cores, reconfigurable logic) near or inside the mem-
ory (e.g., [8], [56]–[69], [71]–[96], [98], [101], [104]–[110],
[113], [120]–[130], [290], [291]). Many of these PNMworks
place PIM logic inside the logic layer of 3D-stacked mem-
ories [8], [56], [58]–[67], [75], [78]–[80], [82], [84]–[87],
[89]–[95], [101], [106], [108]–[111], [113], [128]–[130],
[290], [291], at the memory controller [76], [77], on the
DDRX DIMMs [68], [121], [292], [293], or in the same
package as the CPU connected via silicon interposers [57],
[126], [127], [186].

Another body of recent works study and propose solu-
tions to system integration challenges in PIM-enabled sys-
tems, such as memory coherence [64]–[66], virtual memory
[185], [294], synchronization [56], or PIM suitability of
workloads [128], [184].

Several works explore the acceleration opportunities
offered by the UPMEM PIM architecture for bioinfor-
matics [295], [296], skyline computation [297], compres-
sion [298], or sparse linear algebra [299]. Readers can refer to
these works for in-depth analysis of specific applications on
the UPMEM PIM architecture. Our work is the first one that
performs a comprehensive architecture characterization of
the UPMEMPIM architecture and studies the PIM suitability
of a large number of workloads.We are also the first to openly
and freely provide the first benchmark suite for real PIM
systems.

A recent work [122], [123] presents a real-world PIM
system with programmable near-bank computation units,
called FIMDRAM, based on HBM technology [168], [169].
The FIMDRAM architecture, designed specifically for
machine learning applications, implements a SIMD pipeline
with simple multiply-and-accumulate units [300], [301].
More recently presented, Accelerator-in-Memory [120] is a
GDDR6-based PIM architecture with specialized units for
multiply-and-accumulate and activation functions for deep
learning applications. AxDIMM [121] is a DIMM-based
solution which places an FPGA fabric in the buffer chip of
the DIMM. It has been tested for recommendation inference.
Compared to the more general-purpose UPMEM PIM archi-
tecture, these architectures focus on a specific domain of
applications (i.e., machine learning), and thus it may lack
flexibility to support a wider range of applications. A compre-
hensive characterization and analysis of these architectures,
along the lines of our work, can greatly help researchers,
programmers, and architects to understand their potential.

VIII. SUMMARY AND CONCLUSION
We present the first comprehensive characterization and anal-
ysis of a real commercial PIM architecture. Through this anal-
ysis, we develop a rigorous, thorough understanding of the
UPMEM PIM architecture, the first publicly-available PIM
architecture, and its suitability to various types of workloads.

First, we conduct a characterization of the UPMEM-based
PIM system using microbenchmarks to assess various archi-
tecture limits such as compute throughput and memory band-
width, yielding new insights. Second, we present PrIM,
a benchmark suite of 16 memory-bound workloads from dif-
ferent application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks,
bioinformatics, image processing).

Our extensive evaluation of PrIM benchmarks conducted
on two real systems with UPMEMmemorymodules provides
new insights about suitability of different workloads to the
PIM system, programming recommendations for software
designers, and suggestions and hints for hardware and archi-
tecture designers of future PIM systems. We compare the
performance and energy consumption of the UPMEM-based
PIM systems for PrIM benchmarks to those of a modern CPU
and a modern GPU, and identify key workload character-
istics that can successfully leverage the key strengths of a
real PIM system over conventional processor-centric archi-
tectures. We note that we compare the first ever commercial
PIM system to CPU and GPU systems that have been heavily
optimized for decades in terms of architecture, software, and
manufacturing. As the architecture, software, and manufac-
turing of PIM systems continue to improve, it will be possible
to do more fair comparisons to CPU and GPU systems, which
reveal even higher benefits for PIM systems in the future.

We believe and hope that our work will provide valu-
able insights to programmers, users and architects of this
PIM architecture as well as of future PIM systems, and
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will represent an enabling milestone in the development of
memory-centric computing systems.

IX. APPENDIX
This appendix presents some additional results for one of
our microbenchmarks (Section IX-A) and four of the PrIM
benchmarks (Section IX-B). Section IX-C shows the sources
of the CPU and GPU versions of PrIM benchmarks.

A. ARITHMETIC THROUGHPUT VERSUS NUMBER OF
TASKLETS
Figure 18 presents arithmetic throughput results for different
numbers of tasklets at different operational intensities. This
figure shows a different view of the experimental results
presented in Figure 9, with the goal of showing the variation
in arithmetic throughput for different operational intensities.

We make two key observations from Figure 18.
First, for any data type and operation, the highest possible

throughput is achieved at 11 tasklets, i.e., the number of
tasklets to fully utilize the pipeline. However, the operational
intensity at which the highest throughput value is reached
depends on the actual data type and operation. For example,
the highest throughput of 32-bit integer addition is achieved
at 1

4 OP/B, i.e., 1 addition per 32-bit element. For floating
point multiplication, the highest throughput is achieved at
1
128 OP/B, i.e., 1 multiplication every 32 32-bit elements.
Second, for lower operational intensities, the number of

tasklets necessary to reach the saturation throughput is less
than 11. This happens in the memory-bound regions, where
theMRAMaccess latency dominates the overall latency. This
observation is in line with our observations for COPY and
ADD benchmarks in Section III-B2.

B. EXTENDED RESULTS FOR NEEDLEMAN-WUNSCH,
IMAGE HISTOGRAM, REDUCTION, AND SCAN
This section presents some additional results for four of the
PrIM benchmarks. First, we present an extended evaluation of
NW (Section IX-B1). Second, we compare HST-S andHST-L
for different histogram sizes (Section IX-B2). Third, we show
an evaluation of RED with three different mechanisms to
perform local intra-DPU reduction (Section IX-B3). Fourth,
we compare SCAN-SSA and SCAN-RSS for different array
sizes (Section IX-B4).

1) NEEDLEMAN-WUNSCH
We present additional results for the weak scaling experiment
of NW. In this experiment, we increase the length of the
sequences to align proportionally to the number of DPUs.
Thus, the size of the 2D score matrix increases quadratically
with the number of DPUs. Figure 19 shows weak scaling
results of (a) the complete execution of NW (including all
iterations) and (b) the execution of only the longest diagonal.

We make two observations from Figure 19. First, the
execution times on the DPUs for the complete execution
(Figure 19a) increase with the number of DPUs, since the size
of the problem (the 2D score matrix) increases quadratically.

We make the same observation in Section V-A2. Second,
the execution times on the DPUs for the longest diagonal
(Figure 19b) remain flat as the number of DPUs increases.
The reason is that the length of the longest diagonal increases
linearly with the length of the sequences and the number of
DPUs. As a result, we observe linear weak scaling for the
longest diagonal.

These results show (1) that a larger number of active DPUs
is more beneficial for NW in the computation of the longest
diagonals of the 2D score matrix, and (2) why we do not
observe linear scaling for the complete NW.

2) IMAGE HISTOGRAM
We present results for different histogram sizes for our two
versions of histogram (HST-S, HST-L). Figure 20 shows the
execution time results for histogram sizes between 64 and
4096. The input is the one specified in Table 3, which is
an image of 12-bit depth (thus, maximum histogram size
is 4096).

The results show that HST-S is 1.6 − 2.5× faster than
HST-L for histograms between 64 and 1024 bins. The per-
formance of HST-S gets worse when increasing the histogram
size because the number of tasklets that it is possible to run on
a DPU reduces. For example, for 512 bins, only 8 tasklets can
be launched because of the limited amount of WRAM (each
tasklet has its own local histogram). For 4046 bins, HST-S
can only launch 2 tasklets. After 2048 bins, HST-L performs
faster, as its execution time is independent of the histogram
size.

3) REDUCTION
We compare three versions of RED that we introduce in
Section IV-L. Recall that RED has two steps. In the first step,
each tasklet accumulates the values of an assigned chunk
of the input array. In the second step, RED performs the
final reduction of the local sums of all tasklets. The differ-
ence between the three versions is in how the second step
is implemented. The first version uses a single tasklet to
perform a sequential reduction in the second step (SINGLE in
Figures 21 to 23). The other two versions implement a parallel
tree-based reduction in the second step (see Section IV-L).
The only difference between the other two versions is the
synchronization primitive used for synchronization at the end
of each tree level: (1) barriers for all tasklets (BARRIER in
Figures 21 to 23), or (2) handshakes between pairs of tasklets
(HANDS in Figures 21 to 23). Figure 21 shows the number
of execution cycles needed to perform sequential (SINGLE)
or the parallel tree-based (BARRIER, HANDS) reduction for
2 to 16 tasklets on one DPU.

We observe that the most efficient of the three versions is
the sequential reduction (SINGLE). However, it is only a few
cycles faster (6% faster with 16 tasklets) that the tree-based
version with handshakes (HANDS).We also observe the high
cost of barriers when the number of tasklets increases. These
results indicate that synchronization primitives impose high
overhead in the current implementation of the UPMEM PIM
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FIGURE 18. Arithmetic throughput versus number of tasklets for different operational intensities of (a) 32-bit integer addition, (b) 32-bit integer
multiplication, (c) 32-bit floating point addition, and (d) 32-bit floating point multiplication. The legend shows the operational intensity values
(in OP/B). The y-axis is log scale.

FIGURE 19. Weak scaling evaluation of NW: (a) complete execution of
NW, (b) execution of the longest diagonal.

FIGURE 20. Execution times (ms) of two versions of histogram (HST-L,
HST-S) on 1 DPU.

architecture. Nevertheless, the relative weight of the final
reduction is negligible when the input array is large. Figure 22
shows the execution cycles of the three versions for an input

FIGURE 21. Effect of sequential reduction (SINGLE) vs. parallel tree-based
reductions (BARRIER, HANDS), in the second step of the RED benchmark.

array of 2K 64-bit elements with 2-16 tasklets on one DPU.
The difference between the three versions is very small, but
we still observe that SINGLE is slightly faster (i.e., 2% over
HANDS, and 47% over BARRIER).

For an array of 2M 64-bit elements (Figure 23), the dif-
ference in performance of the three versions is completely
negligible, since most of the execution cycles are spent in the
first step of RED.

4) PREFIX SUM (SCAN)
We compare the execution time of our two versions of scan,
SCAN-SSA and SCAN-RSS, for different array sizes (2048,
4096, 8192, 16384, 65536 elements) on the DPU. Figure 24
shows the execution time results. For both versions, the
figure shows the breakdown of DPU kernel times (‘‘DPU

VOLUME 10, 2022 52599



J. Gómez-Luna et al.: Benchmarking New Paradigm: Experimental Analysis and Characterization of Real PIM System

FIGURE 22. Execution cycles of three versions of reduction of 2K 64-bit
elements on 1 DPU.

FIGURE 23. Execution cycles of three versions of reduction of 2M 64-bit
elements on 1 DPU.

Scan’’ + ‘‘DPU Add’’ in SCAN-SSA, and ‘‘DPU Reduc-
tion’’ + ‘‘DPU Scan’’ in SCAN-RSS) and the intermediate
scan in the host CPU (‘‘Inter-DPU’’).

FIGURE 24. Two versions of scan (SCAN-SSA, SCAN-RSS) on 1 DPU.

Themain observation from these results is that SCAN-SSA
runs faster for small arrays (2048-8192). Scan kernel time
and Inter-DPU time are very similar in both SCAN-SSA and
SCAN-RSS, but the Add kernel is faster than the Reduction
kernel for small sizes. The reason is that the Reduction ker-
nel is burdened by the overhead of intra-DPU synchroniza-
tion (barrier) and the final reduction, where only a single
tasklet works. This overhead becomes negligible for larger
arrays. As a result, SCAN-RSS is faster for large arrays (more
than 16384 elements).

C. CPU AND GPU VERSIONS OF THE BENCHMARKS
Table 5 shows the sources of the CPU and GPU versions of
PrIM benchmarks, which we use for comparison purposes in

TABLE 5. CPU and GPU versions of PrIM benchmarks.

Section V-B.We provide these CPU andGPU versions as part
of our PrIM benchmark suite [214].
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