
Binary Star: Coordinated Reliability in Heterogeneous Memory
Systems for High Performance and Scalability

Xiao Liu1 David Roberts Rachata Ausavarungnirun2 Onur Mutlu3 Jishen Zhao1
1UC San Diego 2King Mongkut’s University of Technology North Bangkok 3ETH Zürich

ABSTRACT
As memory capacity scales, traditional cache and memory hierar-
chy designs are facing increasingly difficult challenges in ensuring
high reliability with low storage and performance cost. Recent
developments in 3D die-stacked DRAM caches and nonvolatile
memories (NVRAMs) introduce promising opportunities in tack-
ling the reliability, performance, and capacity challenges, due to
the diverse reliability characteristics of the technologies. However,
simply replacing DRAM with NVRAM does not solve the reliabil-
ity issues of the memory system, as conventional memory system
designs maintain separate reliability schemes across caches and
main memory. Our goal in this paper is to enable a reliable and
high-performance memory hierarchy design, as memory capac-
ity scales. To this end, we propose Binary Star, which coordinates
the reliability schemes and consistent cache writeback between
3D-stacked DRAM last-level cache and NVRAM main memory to
maintain the reliability of the cache and the memory hierarchy.
Binary Star significantly reduces the performance and storage over-
head of consistent cache writeback by coordinating it with NVRAM
wear leveling. As a result, Binary Star is much more reliable and
offers better performance than state-of-the-art memory systems
with error correction. On a set of memory-intensive workloads, we
show that Binary Star reduces memory failures in time (FIT) by
92.9% compared to state-of-the-art error correction schemes, while
retaining 99% of the performance of a conventional DRAM design
that provides no error correction.

CCS CONCEPTS
• Computer systems organization → Reliability; Processors
and memory architectures; • Hardware → Emerging tech-
nologies.

KEYWORDS
reliability, nonvolatile memory, hybrid memory, memory systems
ACM Reference Format:
Liu, et al.. 2019. Binary Star: Coordinated Reliability in Heterogeneous
Memory Systems for High Performance and Scalability. In Proceedings of
The 52nd Annual IEEE/ACM International Symposium on Microarchitecture,
Columbus, OH, USA, October 12–16, 2019 (MICRO-52), 14 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358262

1 INTRODUCTION
Modern cloud servers adopt increasingly larger main memory and
last-level caches (LLC) to accommodate the large working set of var-
ious in-memory computing [83, 85], big-data analytics [4, 73], deep
learning [82], and server virtualization [4] applications. The mem-
ory capacity demand requires further process technology scaling of
traditional DRAMs, e.g., to sub-20nm technology nodes [8, 53]. Yet,
such aggressive technology scaling imposes substantial challenges
in maintaining reliable and high-performance memory system oper-
ation due to two main reasons. First, resilience schemes to maintain
memory reliability can impose high-performance overhead in fu-
ture memory systems. Future sub-20nm DRAMs require stronger
resilience techniques, such as in-DRAM error correction codes
(IECC) [8, 34, 58, 62, 64, 67] and rank-level error correction codes
(RECC) [46, 48, 75], compared to current commodity DRAMs. Fig-
ure 1 shows that such error correction code (ECC) schemes impose
significant performance overhead to the memory hierarchy that
employs sub-20nm DRAM as main memory. Second, even with
strong resilience schemes, future memory systems do not appear
to be as reliable as the state-of-the-art. In fact, due to increased
bit error rates (BERs), even when we combine RECC and IECC,
sub-20nm-DRAM-based memory systems with 3D-stacked DRAM
LLC can have lower reliability than a 28nm-DRAM-based memory
system that employs only RECC [8], as seen in Figure 1 (when
comparing the triangle and the circle).

0

1

10

0.9 0.95 1 1.05 1.1

N
o
rm

a
liz

e
d
 R

e
lia

b
ili

ty

Normalized Throughput

Binary Star

28nm RECC DRAM
with 3D DRAM Cache

28nm RECC DRAM

Sub-20nm
RECC+IECC DRAM

with 3D DRAM Cache

Better performance

and reliability

Sub-20nm
RECC+IECC DRAM

Figure 1: Reliability and throughput of various LLC and main
memory hierarchy configurations normalized to 28nmDRAMwith
RECC. We define “reliability” as the reciprocal of device failures in
time (FIT) [8, 79], i.e., 1/FIT. Reliability data is based on a recent
study [8]. Throughput is measured using the benchmarks and sys-
tem configurations described in Section 5. SRAM caches, which are
less critical to scalability are kept constant across systems.

To address the DRAM technology scaling challenges, next-
generation servers will adopt various new memory technologies.
For example, Intel’s next-generation Xeon servers and Lenovo’s
ThinkSystem SD650 servers support Optane DC PM [27, 29], which

1

https://doi.org/10.1145/3352460.3358262

MICRO-52, October 12–16, 2019, Columbus, OH, USA Liu, et al.

demonstrates the practical use of large-capacity nonvolatile mem-
ories (NVRAMs) in servers. Intel’s Knights Landing Xeon Phi
server processors integrate up to 16GB multi-channel DRAM (MC-
DRAM) [26], which is a type of 3D-stacked DRAM,1 used as the
LLC. 3D DRAM and NVRAM promise much larger capacity than
commodity SRAM-based caches and DRAM-based main memory,
respectively.

However, reliability and performance issues remain. For exam-
ple, compared with a 28nm DRAM (represented by the circle in
Figure 1), a sub-20nm DRAM (the cross in the figure) has both
worse performance and reliability. When 3D DRAM LLC is used,
the sub-20nm 3D-DRAM-cached DRAM (represented by the trian-
gle in Figure 1) outperforms the sub-20nm DRAM (the cross in the
figure), but suffers from degraded reliability. We make similar ob-
servations when we compare the 28nm 3D-DRAM-cached DRAM
(the diamond in Figure 1) and the 28nm DRAM (the circle in the
figure).

Most NVRAM technologies are less vulnerable to soft errors than
DRAM [2, 76]. However, many of these technologies have much
lower endurance compared to DRAM [42, 74]. As a result, most
NVRAM-based main memory needs to adopt hard error protec-
tion techniques, imposing both performance and storage overheads
compared to DRAM-based main memory [3, 74, 81]. NVRAM also
enables persistent memory techniques [30, 66], which allows data
structures stored in NVRAM to be recovered after system failures.
However, the performance of persistent memory systems is de-
graded by the high performance and storage overheads of multi-
versioning and write-order control mechanisms (e.g., cache flushes
and memory barriers) [30, 59, 84].

Our goal in this paper is to achieve both high reliability and high
performance, when we scale the capacity of LLC and main mem-
ory using new 3D DRAM and NVRAM technologies. To achieve
our goal, we propose Binary Star,2 a coordinated memory hierar-
chy reliability scheme, which consists of 1) coordinated reliability
mechanisms between 3D DRAM LLC and NVRAM (Section 3.1),
and 2) NVRAM wear leveling with consistent cache writeback (Sec-
tion 3.2). The key insight of our design is that traditional memory
hierarchy designs typically strive to separately optimize the reliabil-
ity of LLCs and main memory with decoupled reliability schemes,
yet coordinating reliability schemes across the LLC and main mem-
ory enhances the reliability of the overall memory hierarchy, while
at the same time reducing unnecessary ECC, multiversioning, and
ordering control overheads that degrade performance. As illustrated
in Figure 1, Binary Star (represented by a double star) achievesmuch
better reliability than state-of-the-art resilience schemes with vari-
ous LLC and main memory configurations. Even with a slower PCM
as the main memory, Binary Star’s performance is comparable to
the combination of 28nm DRAMmain memory and 3D DRAM LLC.
We show that Binary Star provides benefits across various types of
workloads, including in-memory databases, in-memory key-value
stores, online transaction processing, data mining, scientific com-
putation, image processing, and video encoding (Section 6).

1We use 3D DRAM and 3D-stacked DRAM interchangeably in this paper.
2A “binary star” is a star system consisting of two stars orbiting around their common
barycenter. Our coordinated memory hierarchy reliability design appears like a star
system that consists of two “stars” – a 3D DRAM LLC and an NVRAM main memory.

This paper makes the following key contributions:
• We identify the inefficiency of traditional reliability schemes that

are decoupled and uncoordinated across the memory hierarchy
(i.e., between the LLC and main memory).

• We propose “Binary Star”, the first coordinated reliability scheme
across 3D DRAM LLC and NVRAM main memory. Our design
leverages consistent cache writeback in NVRAM to recover er-
rors in 3D DRAM LLC. The LLC requires only error detection to
perform consistent cache writeback. This significantly reduces
the performance and storage overhead of consistent cache write-
back.

• We develop a new technique that coordinates our consistent
cache writeback technique with NVRAM wear leveling to re-
duce the performance, storage, and hardware implementation
overheads of memory reliability schemes.

• We develop a set of new software-hardware cooperative mech-
anisms to enable our design. Binary Star is transparent to the
applications and thus requires no application code modification.

2 BACKGROUND AND MOTIVATION
Existing memory hierarchy designs typically strive to optimize the
reliability of individual components (either caches or main mem-
ory) in the memory hierarchy [8, 53, 62]. These designs lead to
decoupled and uncoordinated reliability across different memory
hierarchy levels. As a result, existing designs suffer from high per-
formance overhead and high hardware implementation cost. In this
section, we motivate our coordinated reliability mechanism by first
discussing the inefficiency of existing reliability schemes for DRAM
in Section 2.1, 3D DRAM LLC in Section 2.2, and NVRAM in Sec-
tion 2.3. Then, we illustrate issues with decoupled, uncoordinated
reliability schemes in Section 2.4.

2.1 DRAMMain Memory
DRAM has been used as the major technology for implementing
main memory. However, DRAM scaling to sub-20nm technology
nodes introduces substantial reliability challenges [8, 37, 53, 54].
DRAM errors. DRAM errors can be roughly classified into tran-
sient errors and hard errors. Transient errors are caused by alpha
particles and cosmic rays [24], as well as retention time fluctu-
ations [34, 44, 65, 67, 86]. These transient errors are less likely
to repeat and can be avoided after rewriting the corresponding
erroneous bits. Hard errors are caused by physical defects or fail-
ures [48, 55, 79]. These hard errors repeatedly occur in the same
memory cells due to permanent faults.
Challenges with process scaling. Process technology scaling
can compromise DRAM reliability. Randomly distributed single-
cell failure (SCF) is the primary source of device failures [79]. The
frequency of SCF increases as DRAM cell size reduces, because as
smaller transistors and capacitors are more vulnerable to process
variation and manufacturing imperfections [8, 44]. Redundant rows
and columns can be used to fix SCFs and keep DRAM device yield
high [8]. Recent studies show that in-DRAM ECC (IECC), which
integrates ECC engines inside the DRAM device, is a promising
method to address DRAM reliability issues [8, 33, 64]. However,
IECC leads to significant storage overhead in DRAM chips [8, 58,
62, 64]. Furthermore, IECC needs to be combined with RECC [8],

2

Binary Star MICRO-52, October 12–16, 2019, Columbus, OH, USA

to achieve reliability close to commodity DRAM [79], imposing
substantial performance overhead (See Section 6).

2.2 3D DRAM Last Level Cache
Using large 3D DRAM as an LLC can accommodate the increasing
working set size of server applications and reduce the performance
overhead of capacity scaling. However, the Through Silicon Vias
(TSVs) connecting the layers of 3D DRAM can increase the BER
by introducing additional defects [32]. Previous studies adopt two-
level error correction/detection schemes to improve 3D DRAM
reliability [9, 47, 57, 77]. However, these usually require heavy
hardware modifications and significant storage overhead.

2.3 NVRAMMain Memory
To tackle the scalability issues with DRAM technologies, NVRAM
(e.g., PCM [42, 78], STT-RAM [41, 93], and RRAM [6]) introduces
a new tier in the memory hierarchy, due to its promising scalable
density and cost potential [16, 51, 80]. Many data center server soft-
ware and hardware suppliers are adopting NVRAMs in their next-
generation designs. Examples include Intel’s Optane DC PM [29],
Microsoft’s storage class memory support in Windows OS and in-
memory databases [11, 18], Red Hat’s persistent memory support
in the Linux kernel [52], and Mellanox’s persistent memory support
over the network fabric [15].
NVRAM errors. Similar to DRAM, NVRAM is also susceptible to
transient and hard errors. However, the sources of these errors are
different from DRAM. Alpha particles and cosmic rays are less of
an issue with NVRAM. Instead, NVRAM transient errors are largely
caused by resistance drift [76]. In fact, resistance drift can dominate
bit errors in MLC NVRAMs (e.g., MLC PCM [2]). Resistance drift is
a less critical issue with SLC NVRAMs, as it can be addressed by
infrequent scrubbing (e.g., every several seconds) [2, 76]. NVRAM
hard errors are often caused by limited endurance. For example,
PCM cells can wear out after 107-109 write cycles [42, 91]. Certain
NVRAM technologies, such as certain types of PCM, may have
much lower transient BER compared to DRAM before the cells
wear out [10, 91].

To mitigate transient and hard errors, previous works propose
techniques to reduce MLC NVRAM BER at low performance and
storage overheads [2, 76, 90]. SLC NVRAM main memory can be
effectively protected using existing ECC mechanisms, as done in
state-of-the-art DRAM [10, 76]. In addition to ECC, scrubbing can
be used to address NVRAM transient errors (resistance drift) [2, 76].
Tomitigate hard errors caused by endurance issues, previous studies
adopt wear leveling [42, 69, 94], which scatters NVRAM accesses
across the whole device to ensure that all bits in the device wear out
in a balanced manner. Hard errors (bits that are already worn out)
can be remapped [3, 81], which disables the faulty bits, redirecting
accesses to alternative physical locations in the memory.

2.4 Issues with Decoupled Reliability
A modern system that employs a large 3D DRAM as LLC and a
high-capacity NVRAM as main memory typically utilizes two sepa-
rate uncoordinated reliability schemes for DRAM and NVRAM [3,
21, 77, 81]. The key issue with such decoupled reliability across the
LLC and main memory is redundant protection across the memory

86%

93%

100%

YCSB TPCC Redis Memcached mysql

facesim fluidanimate freqmine vips x264

On-chip 3D-stacked DRAM LLC

Off-chip Main Memory

(Persistent)log

ECC

ECC

Error

(a)

(b)

F
ra

c
ti
o

n
 o

f

C
le

a
n

 L
L

C
 L

in
e

s

Time (Seconds)
0 5 10

Am Ap

Ac

Figure 2: (a)Multiple reliabilitymechanisms for a cache line across
LLC andmainmemory. (b) Fraction of clean LLC lines during appli-
cation execution. We collected data for ten seconds after the bench-
mark finishes the warm up stage.

hierarchy: the same piece of data can be repeatedly (and unneces-
sarily) protected multiple times. Figure 2 (a) shows an example. A
clean cache line-A is protected by ECCs in both 3D DRAM LLC and
main memory (represented by Ac and Am , respectively). In fact,
as shown in Figure 2 (b) (our methodology, system, and workload
configurations are described in Section 5), a large portion of the
3D DRAM LLC lines are clean throughout execution time (after
warm-up) with an identical copy sitting in main memory, and both
copies are protected with ECCs. In this case, carefully enforcing the
reliability of only one of the data copies is sufficient. For instance,
without ECC in LLC, we can simply invalidate a clean LLC line Ac
in case it has a transient error; the error will be naturally recovered
by servicing a cache miss to A with an ECC-protected copy Am
from main memory. As such, the LLC only needs to detect whether
or not Ac has an error. However, it is challenging to fully exploit
the coordination between cache and main memory. For example,
what if cache line Ac is dirty? Once Ac has errors, we lose the new
value of that cache line because the copy in memory (Am) does
not have the up-to-date value. Even if Ac is not dirty, Ac with Am
can lead to inconsistent data structures in the program: Ac may
belong to a data structure comprising multiple cache lines. If we
load the old value Am to recover the LLC line, the data structure
will become inconsistent: the old value of Am will be inconsistent
with new values of other dirty LLC lines that belong to the same
data structure. Section 3 discusses our solution to the reliability and
consistency problems of both clean and dirty LLC lines.

While there are several prior works that handle some SRAM
cache and DRAM main memory reliability issues together [36, 87,
88], these are not desirable for the combination of 3D DRAM and
NVRAM. On the one hand, these works are hard to scale to the
3D DRAM size. On the other hand, because these designs require
frequently clearing dirty cache lines [36, 87] or off-loading SRAM
cache ECC to the main memory [87, 88], these mechanisms further
consume NVRAM’s short endurance and low bandwidth.

Instead of coordinating the reliability schemes of caches and
main memory, persistent memory designs enhance the reliability
of the main memory when a system completely loses data in caches
due to a system crash or power failure [38, 92]. Persistent memory
allows data in NVRAM to be accessed via load/store instructions like
traditional main memory, yet recoverable across system reboots [12,

3

MICRO-52, October 12–16, 2019, Columbus, OH, USA Liu, et al.

49]. As shown in Figure 2 (a), persistent memory systems typically
maintain an additional copy of data (e.g., Ap that can be a log
entry or a checkpoint), which is used to recover original data (Am)
in NVRAM main memory if needed after a system crash. This
process can be done through controlled data versioning (e.g., by
logging [84] or shadow paging [12]), or via write-ordering (e.g.,
by cache flushes and memory barriers [12]). However, relying on
persistent memory mechanisms for error recovery purposes has at
least two major disadvantages: first, all these techniques require
code modifications, which require significant software engineering
effort [70]; second, applications with no persistence requirements
suffer from substantial performance and storage overheads in main
memory access [30, 70, 84].

In summary, we need to address the overhead and scalability
issues with (i) the decoupled reliability schemes across caches and
main memory in state-of-the-art memory systems that combine 3D
DRAM and NVRAM, and (ii) the challenges of exploiting persistent
memory techniques in order to efficiently maintain the reliabil-
ity of memory hierarchy. Our goal in this paper is to design a
comprehensive coordinated memory hierarchy reliability scheme
that is efficient and effective for memory hierarchies that combine
multiple technologies.

3 BINARY STAR DESIGN
To address the aforementioned reliability challenges, we propose
Binary Star. Binary Star 1) coordinates reliability schemes across
3D DRAM LLC and NVRAM main memory, and 2) uses an efficient
hardware-based 3D DRAM LLC error correction and a software-
based error recovery mechanism.

3D DRAM LLC and NVRAM technologies allow the memory
hierarchy to continue to scale in a cost-efficient manner. Figure 3
shows our basic architectural configuration. We assume that higher-
level caches are SRAM. The LLC in the processor is a 3D DRAM.
We use SLC PCM, which is a well-understood NVRAM technology,
as a representative for NVRAM main memory to make our design
and evaluation concrete. Our design principles can be applied to
various NVRAM technologies. In this section, we describe our de-
sign principles and mechanisms, using Figure 4 to illustrate them.
We leave the description of the implementation of our mechanisms
to Section 4.

Core

L1 Cache

Shared SRAM Caches

On-chip 3D-stacked DRAM LLC (Gigabytes)

Off-chip NVRAM Main Memory

(Hundreds of Gigabytes ~ Terabytes)

On-chip Components Off-chip Components

…

…

Core

L1 Cache

Core

L1 Cache

Figure 3: Basic architecture configuration.

3.1 Coordinated Reliability Scheme
Our coordinated reliability scheme strives to optimize the reliability
of the 3D DRAM LLC and NVRAM hierarchy as a whole, instead
of separately optimizing the reliability of individual components
at different hierarchy levels, at low performance and storage cost.
Our scheme is enabled by the following key observation:
Observation 1: Errors in the LLC can be corrected by consistent data
copies in NVRAM main memory.

The data stored in the LLC is a subset of the data in main memory.
Therefore, as long as the main memory maintains a consistent
data copy at a known point in time, errors in the corresponding
LLC line can be corrected (or ignored) using the consistent data
copy in memory. This observation makes error correction codes in
the LLC unnecessary. Instead, Binary Star coordinates 3D DRAM
LLC and NVRAM reliability in the following manner: the LLC
adopts only cyclic redundancy check (CRC) codes [39] to ensure
errors can be detected; NVRAM maintains consistent data copies
that can be used to correct (or avoid) the detected errors in the
LLC. While it is straightforward to implement CRC in the LLC,
maintaining consistent data in NVRAM for error recovery purposes
is complicated for two reasons. First, storing and updating multiple
versions of data can incur significant storage and performance
overhead [70, 92]. Second, LLC writebacks can corrupt consistent
versions of data in NVRAM: For example, a data structure update
that spans multiple cache lines can result in multiple dirty cache
lines; yet only one or several of the dirty cache lines may be written
back to NVRAM main memory at a given time, leaving the state of
the data structure in main memory inconsistent.

We need to avoid such inconsistency of data in NVRAM main
memory, in order to use the main memory contents to correct errors
that happen in LLC lines. To this end, we propose periodic forced
writeback and consistent cache writeback (depicted in Figure 4 (a)
and (b), respectively).
Periodic forced writeback. During the execution of an applica-
tion, portions of updated data might remain in the dirty cache lines,
causing inconsistent data to be present in the NVRAM. Because
dirty cache lines contain all the most recent updates, Binary Star
periodically forces the writeback of dirty cache lines from all cache
levels into the NVRAM main memory (e.g., cache lines a and b in
Figure 4 (a)). These written-back data along with previously written-
back dirty cache lines (e.g, cache line c in the figure.) generate a
set of consistent data, i.e., a checkpoint of data, in the NVRAM by
ensuring that all updates to data are propagated to the NVRAM.
When taking the checkpoint, Binary Starmarks all updated NVRAM
blocks as consistent (i.e., the striped squares in Figure 4 (a) turn
into solid squares after the checkpoint is taken). To recover to this
consistent checkpointed state in the presence of LLC errors, Binary
Star maintains a single checkpoint and saves the state of an affected
process to ensure that the process is able to recover to the point
immediately after the periodic forced writeback. The checkpointed
consistent data in NVRAM stays intact in NVRAM until the end
of the next forced writeback period. This checkpointed consistent
data in NVRAM can be used to recover from LLC errors detected by
the CRC between two consecutive forced writeback periods. In our
evaluation, we perform detailed sensitivity studies (Section 6.3) and

4

Binary Star MICRO-52, October 12–16, 2019, Columbus, OH, USA

Data remapping

via wear leveling

Natural

cache writebacks
Periodic forced

writeback

Consistent cache writeback

a’

A’

CRC
On-chip 3D DRAM

LLC

a’’

CRC
On-chip 3D DRAM

LLC

A

a’’

Off-chip NVRAM Off-chip NVRAM

All SRAM caches

a

LLC controller reads the

dirty bit of the cache line

Dirty?
N Y

LLC controller invalidates

the cache line

Error

Correction

Naturally service the
LLC miss, which reloads the
line from NVRAM into LLC

Application rolls back to
execute from the last

checkpoint

Error

Recovery

Memory controller retrieves

the consistent data in NVRAM

(a) (b) (c)

a’

Consistent

NVRAM

block

Cache line

LLC CRC detects error in a

cache line

a
b b bc c

a b

Inconsistent

NVRAM

block

Figure 4: Binary Star design overview. (a) Periodic forced writeback and (b) Consistent cache writeback of our Coordinated
Reliability scheme. (c) Binary Star error correction and error recovery mechanisms. A solid filled square represents a check-
pointed consistent data block, while a striped filled square represents a remapped inconsistent data block.

demonstrate that 30 minutes is the best periodic forced writeback
interval for the Binary Star system with our benchmarks.
Consistent cache writeback. To maintain consistency of the
checkpointed data between two forced writeback periods, we propose
a consistent cache writeback mechanism as shown in Figure 4 (b).
This mechanism redirects natural LLC writebacks to NVRAM loca-
tions that are different from the locations of the checkpointed data,
so that checkpointed data stays consistent.
Application Transparency. Maintaining data consistency
through persistent memory typically requires support for (i) a
programming interface (e.g., transactional interface), (ii) multi-
versioning (e.g., logging or copy-on-write), and (iii) write-order
control (e.g., cache flushes and memory barriers). These can impose
non-trivial performance and implementation overheads on top of
a traditional memory hierarchy [59, 92]. Furthermore, persistent
memory systems need to redirect data upon each persistent data
commit [59, 66, 84]. Our design does not impose large overheads
due to three major reasons. First, the granularity of our consistent
cache writeback mechanism is only one cache line. Therefore,
we do not require a transactional interface to the application to
determine the commit granularity. Second, our consistent cache
writeback mechanism is used to update the application’s working
data, rather than the checkpointed consistent data. Therefore, we
do not need to enforce write-order control of consistent cache
writeback. Finally, our design only needs to ensure that natural
LLC writebacks do not overwrite the original, i.e., checkpointed
copy of consistent data, which is reserved to be used to correct
errors in LLC. As such, we do not redirect each natural LLC
writeback to a new NVRAM location. Rather, in our technique, the
LLC writebacks to the same data block can repeatedly overwrite the
same NVRAM block3 that is outside of the checkpointed consistent
data. As shown in Figure 4 (b), the up-to-date version (e.g., cache
lines a′′ and b) in NVRAM is visible to applications, while the
checkpointed consistent version (e.g., the original data a) is hidden
from applications.

3A block is the minimal granularity of remapping and data consistency ensured in the
NVRAM in our design. The block size is larger than a cache line and depends on the
granularity of wear leveling mechanism used.

3.2 Coordinating Wear Leveling and
Consistent Cache Writeback

Our consistent cache writeback mechanism requires redirecting a
natural LLC writeback to an NVRAM location that is different from
the location of the checkpointed data. However, doing so with a
traditional memory system design would introduce extra effort to
(i) maintain address remapping with metadata and free data block
management and (ii) manage alternative memory regions to store
redirected natural LLC writebacks. These can impose substantial
performance and NVRAM storage overheads. Instead of explicitly
maintaining data consistency for each cache writeback, Binary Star
leverages the remapping techniques that are already employed by
existing NVRAM wear leveling mechanisms. Our method redirects
the natural LLC writebacks to memory locations different from the
checkpointed data locations during consistent cache writeback. We
make the following key observation:
Observation 2: NVRAM wear leveling naturally redirects and main-
tains the remapping of data updates to alternative memory locations.

Note that it is difficult to leverage NVRAMwear levelingwith reg-
ular persistent data commits on a system with persistent memory.
To provide crash consistency, persistent memory systems typically
require each data commit to be redirected to a new location, e.g.,
a new log entry [84], a newly allocated shadow copy [12], a new
checkpoint [70], or a new version managed by hardware [70, 92].
However, NVRAM wear leveling redirects data updates only when
the original physical memory location is repeatedly overwritten
for a given number of times [94]. Therefore, the remapping of data
typically happens infrequently. If we would like to exploit wear
leveling to provide consistency in persistent memory, wear leveling
needs to be synchronized with each persistent data commit. This
likely imposes a substantial performance overhead because it leads
to prohibitively frequent data remapping and metadata updates.

In contrast, Binary Star’s consistent cache writeback mechanism
can effectively take advantage of existing NVRAM wear leveling
mechanisms. During the interval between two consecutive occur-
rences of periodic forced writeback, Binary Star’s consistent cache
writeback mechanism needs to redirect NVRAM updates of each
data block only once. After the first update to the consistent data
block is redirected due to a natural LLCwriteback (e.g., the update of
cache line a′, which is overwritten by the later update a′′, as shown

5

MICRO-52, October 12–16, 2019, Columbus, OH, USA Liu, et al.

in Figure 4 (b)), subsequent natural LLC writebacks of the same data
block can repeatedly overwrite the same redirected data location
(e.g., the updated version a′′, as shown in Figure 4 (b)). Therefore,
Binary Star does not need to synchronize wear leveling with each
consistent cache writeback. Instead, Binary Star must trigger one
single extra data remapping via the wear leveling mechanism at
only the first update to a consistent data block; wear leveling can
operate as is during the rest of the execution.

By coordinating wear leveling with consistent data writeback,
Binary Star enables better utilization of wear leveling. Traditional
NVRAM wear leveling remaps data of frequently accessed NVRAM
blocks to infrequently accessed blocks [94], without being explicitly
aware of the consistency of data. Our design exploits this remapping
capability by exposing data consistency to the wear leveling, such
that we can guarantee data consistency by using the data remap-
ping capability of wear leveling (as illustrated in Figure 4 (b)). In
particular, we coordinate NVRAMwear leveling with our consistent
cache writeback mechanism in the following manner:
• Binary Star-triggered wear leveling: When the memory controller

receives an LLC writeback (either a natural LLC writeback or
a periodic forced writeback) to a checkpointed consistent data
block, Binary Star actively triggers wear leveling to remap the
LLC writeback to another NVRAM block. Such remapped up-
dates, along with the original blocks in the current checkpointed
consistent data, form the next checkpoint of consistent data.
As a result, Binary Star ensures that the current version of the
checkpointed consistent data block remains intact.

• Natural wear leveling: During the rest of the time, wear level-
ing can operate as is. Note that Binary Star does not prevent
natural wear leveling from remapping the checkpointed consis-
tent data blocks. In case a checkpointed consistent data block is
remapped, Binary Star simply updates the metadata to reflect
the new location of the block (Section 4).

• NVRAM updates without remapping: NVRAM wear leveling is
performed periodically [94]. During the interval when wear lev-
eling is not performed, natural LLC writebacks to the blocks
outside of the checkpointed consistent data blocks can directly
overwrite the same location.

3.3 3D DRAM LLC Error Correction and Error
Recovery

Our 3D DRAM LLC uses CRC codes that can only detect errors.
Binary Star recovers from them using the copies of cache lines
that are in the NVRAM main memory. Based on our coordinated
reliability scheme, there can be two types of data copies in NVRAM
for a given block: 1) the checkpointed consistent copy, which is
generated by periodic forced writeback and which contains the
consistent data, and 2) the latest updated copy that is managed by
Binary Star-triggered wear leveling. Once CRC detects an error in a
given 3D DRAM LLC cache line during an access to the 3D DRAM
LLC, Binary Star performs error correction and recovery via the
following steps that we also illustrate in Figure 4 (c): First, the LLC
controller reads the dirty bit of the erroneous cache line.

If the LLC line is clean, Binary Star performs error correction
in hardware as follows: 1) the LLC controller invalidates the cache
line, 2) the corresponding LLC access turns into an LLC miss, which

is serviced as a natural LLC miss without any hardware modifica-
tions. The LLC miss generates an access to the corresponding most
recently updated data block in the NVRAM. The corresponding
data block could reside in either the checkpointed consistent data
block or the remapped data block.

If the LLC line is dirty, Binary Star determines that it is an uncor-
rectable error. If such an error is detected, Binary Star triggers error
recovery through the system software by 1) reverting the memory
state to the checkpointed consistent version of application data,
and 2) rolling back the application to execute from the checkpoint.
3.4 Putting it All Together: An Example
With these design components, we demonstrate a simple example
to show the detailed operation of Binary Star when running an
unmodified application. Figure 5 depicts an example of four cases
(a to d) that a running application may encounter when our
proposed mechanisms are employed. These four cases are software
and hardware operations that conduct consistent cache writeback
(a) and periodic forced writeback (b) during normal execution,
as well as handling of correctable errors (c) and handling of un-
correctable errors (d), when an error is detected.
• Binary Star hardware conducts consistent cachewriteback during

normal application execution (a). Consistent cache writeback
is transparent and asynchronous to the application. When the
LLC has to evict a cache line, the memory controller identifies if
the cache line belongs to a consistent block (1). The cache line
is directly written into NVRAM if it belongs to an inconsistent
block, otherwise the wear leveling remaps the consistent block
to a new block and writes the cache line into it (2). Section 4.2
provides the details.

• Binary Star daemon conducts periodic forced writeback during
normal execution (b). The daemon stalls the application (1),
saves the process state, and executes the Binary Star cache line
writeback (bclwb) instruction, which enables the memory con-
troller to write back all dirty cache lines to main memory without
invalidation and mark the corresponding NVRAM data blocks
as consistent (2). This procedure creates a new checkpoint and
invalidates the previous one. The daemon resumes application
execution once the periodic forced writeback finishes (3).

• A correctable error (c), i.e., an error in a clean LLC line, is
transparent to the software. Hardware detects and corrects these
errors: memory controller detects the error using CRC (1),
reads the dirty bit and identifies that this is a correctable error
(2), invalidates the LLC line (3), and issues a cache miss to
retrieve the correct copy of the cache line from NVRAM (4).

• An uncorrectable error, i.e., an error in a dirty LLC line, requires
software and hardware operations to recover the LLC line (d).
LLC controller detects the error using CRC (1), reads the dirty
bit and identifies that this is an uncorrectable error (2), and
sends a signal to the Binary Star daemon (3). The daemon stalls
the application and triggers the rollback procedure (4). The
daemon uses the Binary Star data reset (drst) instruction to
reclaim the previously checkpointed consistent data blocks (i.e.,
the checkpoint) in NVRAM (5). The whole procedure rolls the
memory hierarchy back to the consistent checkpointed state and
resumes normal application execution (6).

6

Binary Star MICRO-52, October 12–16, 2019, Columbus, OH, USA

On-chip 3D DRAM

CRC

Consistent

Data

Off-chip NVRAM

b

Periodic forced

writeback

Time

End of periodic forced

writeback interval

Uncorrectable

error detected

Retrieve

cache line

c d

Correctable error

Erroneous

cache line

Consistent

Data

On-chip 3D DRAM

CRC

Consistent

Data

Erroneous

cache line

Off-chip NVRAM Off-chip NVRAM

Rollback

Control signal Datapath

bclwb

Normal runtime operations

drstMem

error

Stall

process

Process state Process state

Consistent

cache writeback

On-chip 3D DRAM

CRC

Consistent

Data

Off-chip NVRAM

Binary Star

Software

(daemon)

Memory

controller

a
Error handling operations

Memory

controller

Application

1
2

1

2

1

3

2

2 3

4 1

2

3 4

6

5

4

On-chip 3D DRAM

CRC
Binary Star

Software

(daemon)

Memory

controller

Binary Star

Software

(daemon)

Memory

controller

Binary Star

Software

(daemon)

Figure 5: An example of running an application on Binary Star.

4 IMPLEMENTATION
This section discusses our Binary Star implementation, including
modifications we make to the 3D DRAM LLC, the memory con-
troller and the system software.

4.1 3D DRAM LLC Modification
We replace the ECC in 3D DRAM LLC with a 32-bit CRC (CRC-
32) [39] for each 64B LLC line. This design allows Binary Star to
detect up to eight-bit errors as well as a portion of nine or more bit
errors, and all burst errors up to 32 bits long [39]. Binary Star also
modifies the finite state machine in the LLC controller to support
the steps required to handle LLC error detection, correction, and
rollback as listed in Section 3.3.

4.2 Memory Controller Modifications
Binary Star modifies the state-of-the-art area- and performance-
efficient Segment Swap design [94] for NVRAM wear leveling. Seg-
ment Swap counts the number of writes to each segment, and
periodically swaps a hot segment with a cold segment.4

Modifications to the wear leveling mechanism. To coordinate
the NVRAM wear leveling mechanism with our consistent cache
writeback mechanism, we modify Segment Swap [94] design as
shown in Figure 6. In the original design, the mapping table maps
a “virtual” segment to a “physical” segment. In our design, we
maintain a set of metadata with each segment that includes 1) a
consistent bit that indicates whether the segment belongs to the
consistent checkpoint, 2) a free bit that indicates whether the seg-
ment is free, and 3) a segment number that identifies the segment
that stores the corresponding checkpointed consistent data. The
metadata is stored in a reserved NVRAM space similar to previous
works [69, 94]. During periodic forced writeback, the memory con-
troller uses the segment numbers to release each segment belonging
to the previous checkpointed consistent data (e.g., segment A 1
in Figure 6) by resetting the free bit and adding them to the free list.
After all dirty cache lines are written back, the memory controller
also marks the current inconsistent segment as consistent (segment
A’ 2) and deletes the stored segment number. During consistent
cache writeback, NVRAM wear leveling performs remapping by
selecting a free segment, copying data from the consistent segment

4Segment is the granularity of wear leveling. In this paper, we set the segment size to
be one Mbyte, similarly to the original design [94].

A’
A

Segment

number

Off-chip NVRAM

Segment numberFree bit
Consistency bit

Periodic forced

writeback

…

Free list

A
Metadata

Segment …

…

Segment
1

A’A

B’

Consistent Cache

Writeback

B

4
B’

B

B
Free Segment

Consistent Segment

Inconsistent Segment 2

3

Figure 6: Modifications to NVRAM wear leveling.

(segment B 3) to it, and marking it as an inconsistent segment
(segment B’ 4).
Modification to NVRAM write control. We modify the mem-
ory controller’s wear leveling control logic to enable our consistent
cache writeback mechanism (Section 3.2). When the memory con-
troller performs a cache writeback, the wear leveling control logic
reads the consistent bit in the metadata space of NVRAM to deter-
mine the consistency state of a segment that the cache line belongs
to. If the cache line belongs to an inconsistent segment, the con-
troller directly writes data into NVRAM. If the cache line belongs
to a consistent segment, the segment is remapped via the wear lev-
eling mechanism. In this case, the controller selects a free segment
from the free list. The free list keeps track of all the free segments’
numbers and is stored in the memory controller. The writeback
data, along with the original data in the old segment, is moved to
the new free segment. The memory controller also changes the
entry in the mapping table to the new segment [94].
New instructions. To coordinate between the memory controller
and the system software, we add two instructions to 1) support peri-
odic forced writeback, and 2) retrieve and roll back to checkpointed
consistent data.

The first instruction is called the Binary Star cache line writeback
instruction (bclwb). Binary Star leverages the bclwb instruction
to write back all dirty cache lines. Similar to an existing cache
line writeback instruction (clwb) [38], bclwb allows Binary Star to
write back each dirty cache line to NVRAM without invalidating
the cache line. The bclwb instruction not only performs the same
cache line writeback functionality as clwb, but also triggers the
memory controller to modify wear leveling metadata to guarantee
consistency. During the execution of a bclwb instruction, after data
writeback, the memory controller marks the current segment as
consistent. The memory controller also tracks the old segment with

7

MICRO-52, October 12–16, 2019, Columbus, OH, USA Liu, et al.

the segment number, frees it by setting the free bit, and adding it
to the free list.

The second instruction is called the Binary Star data reset instruc-
tion (drst) and is used to retrieve checkpointed consistent data. drst
has only one operand: memory address. drst is used for handling
error-triggered rollback. When the memory controller receives a
drst command, the memory controller checks the consistent bit of
the associated segment’s memory address to see whether or not the
segment is consistent. The memory controller does nothing if the
segment is consistent. Otherwise, the memory controller finds the
corresponding consistent segment using the stored consistent seg-
ment number. The memory controller then invalidates the current
segment by setting the free bit, and adding the segment number to
the free list.
Reducing latency by controlling NVRAM writebacks. Be-
cause the latency of Binary Star-triggered wear leveling can degrade
the performance of a latency-critical application, Binary Star pro-
vides two optional optimizations. First, when the NVRAM bus is
idle, Binary Star allows the memory controller to issue preemptive
consistent cache writeback to remap a consistent segment in ad-
vance. Second, when read requests are delayed by the writebacks,
Binary Star allows the memory controller to postpone LLC write-
backs, which has been shown to provide performance benefits in a
previous study [68].
NVRAMover-provisioning.NVRAMpreserves a certain amount
of physical space specifically for wear leveling purposes [28]. Over-
provisioned space guarantees that wear leveling can always find a
free segment when the logical space is full. To ensure that Binary
Star-triggered wear leveling always finds a free segment, this over-
provisioned space has to be large enough to provide a sufficient
number of free segments. Our experiments (Section 3.2) show that
10% extra space for over-provisioning is sufficient to accommo-
date a 30-minute periodic forced writeback interval with all of our
benchmarks.

4.3 System Software Modifications
We implement software support as part of the operating system to
leverage the hardware support.
Binary Star daemon.We develop a Binary Star daemon, which is
in charge of periodic forced writeback and rollback. Because the
periodic forced writeback and rollback are infrequent operations,
we assume a single daemon can manage all processes on a Binary
Star enabled machine. Figure 7 shows the state machine of the dae-
mon. Binary Star daemon can be implemented as a kernel loadable
module.

Normal

application

execution

Identify

erroneous

processes

RollbackPeriodic forced writeback

Stall all

processes

Retrieve

data

with drst

Periodic forced

writeback

interval reached

Memory error

signal

Resume

all the

processes

Retrieve

the ckpted

PCBs

1

Stall all

processes

Save all

processes’

PCB

Flush

all caches

with bclwb

5

6 7

89

2

3 4

Figure 7: State machine of the Binary Star software daemon.

The Binary Star daemon operates in normal mode until either 1)
the periodic forced writeback interval is reached, or 2) a memory er-
ror signal is received. To determine if the periodic forced writeback
interval is reached, we use a simple timer, which consumes minimal
CPU resources (1). When the timer reaches a pre-defined time
interval, the daemon sends interrupt signals to stall all the running
processes and starts the periodic forced writeback procedure.

The periodic forced writeback procedure consists of five steps.
First, the daemon sends an interrupt to each of the executing pro-
cesses and stalls them (2). Second, a copy of each process control
block (PCB) is flushed into the memory, so that the process can
be restored (3). Each PCB contains process-related state, such
as process ID, stack, and page table. Instead of introducing extra
implementation cost, Binary Star leverages the PCB state to roll-
back a process to the previously written-back checkpoint in the
same way as existing designs [60]. Third, the daemon flushes all
the dirty caches lines (including SRAM and 3D DRAM caches) to
the memory, by using the bclwb instruction (4). Fourth, when all
cache line writebacks are completed, the daemon resumes all the
stalled processes (5).

The second key task of the Binary Star daemon is to manage
error-triggered rollback. When the daemon receives an unrecov-
erable memory error signal from the memory controller, it starts
the rollback procedure. First, the daemon sends an interrupt to
stall all executing processes (6). Second, the daemon identifies
the error-affected processes, inspects page tables of each process
and identifies the process that triggered the error (7). Third, the
daemon retrieves all the PCB data, such that the affected processes’
PCBs are rolled back to the checkpointed PCBs (8). Fourth, the
daemon retrieves the data of all error-affected processes (9). The
daemon rolls back memory data by retrieving the old page table
from the PCB and using the drst instruction to fetch previously
checkpointed consistent data. The daemon also employs drst to free
all the remapped inconsistent segments to avoid memory leakage.
Finally, the daemon resumes the execution of all the processes (5).
4.4 Binary Star Overheads
Overhead in 3D DRAMCache. The CRC-32 code requires 32 bits
per 64-byte cache line, i.e., 6.25% storage overhead, which is 50%
lower than the storage overhead of traditional ECC. The area and
performance overheads of CRC encoding and decoding engines are
similar to the existing ECC encoding and decoding engines.
Overhead inNVRAM.Ourmodification to NVRAMwear leveling
requires three bytes per segment. With a 512GB NVRAM and a
1MB segment size, this introduces 0.0003% storage overhead. The
free segment list takes 1.1875MB additional space at most. Because
NVRAM typically over-provisions its capacity by roughly 10% to
support wear leveling [28], our design reuses the over-provisioning
space and, as such, avoids additional storage overhead.
Software overhead. For software support, Binary Star only re-
quires a loadable module to the operating system. An application
requires no modification to utilize Binary Star.
Overhead of periodic forced writeback and uncorrectable
error-triggered rollback.We test periodic forced writeback and
rollback using several workloads on an emulated NVRAM. Typi-
cally, the periodic forced writeback takes 50µs to 3.6 seconds. Be-
cause Binary Star rollback reuses data hidden by wear leveling and

8

Binary Star MICRO-52, October 12–16, 2019, Columbus, OH, USA

avoids large amounts of data movement, the rollback takes only
dozens of microseconds. The Binary Star daemon has negligible
performance impact on the operating system and applications be-
cause of the low frequency of periodic forced writeback and the
very small likelihood of error-triggered rollback (See Section 6.3).

5 EXPERIMENTAL METHODOLOGY
We evaluate both the performance and reliability of Binary Star by
comparing it with four baseline memory configurations: 1) DRAM
memorywith 3DDRAMLLC (3DDRAM+DRAM), 2) DRAMmem-
ory without 3DDRAMLLC (DRAM), 3) PCM asmainmemory with
3D DRAM LLC (3D DRAM+PCM), and 4) PCM as main memory
without 3D DRAM LLC (PCM).

For all four memory configurations, we use various state-of-the-
art ECC mechanisms, which we describe below. With DRAM, we
evaluate both 28nm and sub-20nm process technologies. We use
Failures In Time (FIT) as our main reliability metric.
Performance simulation.We evaluate the performance of Binary
Star modifications using McSimA+ [1], which is a Pin-based [45]
cycle-level multi-core simulator. Our infrastructure models the row
buffer as well as row buffer hits and row buffer misses. We use the
FR-FCFS memory scheduling policy [71, 95] for Binary Star and all
our baselines. We configure the simulator to model a multi-core
out-of-order processor with 3D DRAM LLC and NVRAM DIMM
(for Binary Star) as described in Table 1. The higher-level L1 and L2
caches are SRAM-based. We model the 3D DRAM LLC based on the
HMC 2.1 specification [50]. We use PCM timing parameters [42] in
our basic configuration for the NVRAM DIMM. We adopt the state-
of-the-art NVRAM error protection design [81] in our evaluations.
Reliability simulation and modeling.We evaluate the reliabil-
ity of our design using a combination of reliability simulation and
theoretical calculation. We employ FaultSim [56], a configurable
memory resilience simulator, to compare the reliability and storage
overhead of various memory technologies and reliability schemes.

To evaluate the error correction and recovery ability of Binary
Star, we calculate the device failure rates using a method proposed
in previous work [8]. A device failure occurs when one or more er-
roneous bits within any 64-bit line of a ×8 device are uncorrectable
after the corresponding ECC or correction/recovery mechanisms
are applied. We calculate the device failure rate based on the error
correction/recovery capability (the number of bits that can be cor-
rected) of each mechanism given the number and distribution of
single cell errors [8]. We assume that single cell errors are randomly
distributed. We omit column, row, and connection faults for the
same reasons discussed in previous studies [8]. We only consider
errors that are found after device shipment time [8]. We evaluate
various reliability schemes, including no-ECC, RECC only [75],
combined RECC (rank-level ECC) and IECC (in-DRAM ECC) [8],
combined Chipkill and IECC [8, 58], and Binary Star (which com-
bines CRC-32 and our error correction and recovery techniques
described in Section 4). For both reliability simulation and theoreti-
cal analysis, we adopt PCM and sub-20nm DRAM device reliability
parameters published in previous works [8, 10, 56, 79]. We imple-
ment 3D DRAM Chipkill with multiple DRAM cubes. For a fair
comparison, we use multiple DRAM cubes across all the reliability
experiments. However, we note that Binary Star is applicable to

Table 1: Evaluated processor and memory configurations.

Processor
Cores 4 cores, 3.2 GHz, 2 threads/core, 22nm
IL1 Cache 32KB per core, 8-way, 64B cache lines, 1.6ns latency
DL1 Cache 32KB per core, 8-way, 64B cache lines, 1.6ns latency
L2 Cache 32MB shared, 16-way, 64B cache lines, 4.4ns latency
LLC 3D DRAM, 16 GB, CRC-32 (for Binary Star),

tCAS-tRCD-tRP: 8-8-8, tRAS-tRC: 26-34 [50, 77]
Main Memory

DRAM 512 GB DDR4-2133 timing, 2 128-bit channels,
ECC schemes: non-ECC, RECC [75], combined RECC
and IECC [8], combined Chipkill and IECC [8, 58]

PCM 512 GB and 52GB over-provisioning space, 36ns row-
buffer hit, 100/300ns read/write row-buffer conflict [42],
2 channels, 128 bits per channel, Single error correction,
double error detection (SECDED) + NVRAM remap [81]

both single-cube and multiple-cube 3D DRAM. Because 3D DRAM
does not have ranks, RECC on 3D DRAM is the same as ECC on a
single-cube as in various previous works [31, 57].
Benchmarks. We evaluate our design with various data-intensive
workloads. Redis [7] and Memcached [19] are in-memory key-value
store systems widely used in web applications. Our Redis bench-
mark has one million keys in total and simulates the case when
Redis is used as an LRU cache; Our Memcached benchmark has
100K ops (read/write), with 5% write/update operations. TPC-C [14]
is a popular on-line transaction processing (OLTP) benchmark; we
run 400K transactions, mix of reads and updates (40%). YCSB [13]
is an open-source specification and program suite for evaluating
retrieval and maintenance capabilities of computer programs; we
run eight million transactions, randomly performing inserts, up-
dates, reads, and scans. MySQL [63] is one of the most widely
used relational database management systems (RDBMSs), which
is typically used in online transaction processing; we use a table
of 10 million tuples and conduct complex OLTP operations (using
sysbench [40]), including point, range, update, delete, and insert
queries. We exercise these server workloads using four clients and
scale the memory footprint. We also evaluate Binary Star with
several memory-intensive benchmarks from the PARSEC 3.0 bench-
mark suite [5], including facesim, freqmine, fluidanimate, vips, and
x264. We configure the dataset to be the same as the capacity of our
main memory configuration (512GB) on all the benchmarks.

We evaluate application performance using instruction through-
put (instructions per cycle) for PARSEC 3.0 [5] benchmarks and
operational throughput (the number of executed application-level
operations, e.g., inserting or deleting data structure nodes, per sec-
ond, not including logging) for all other benchmarks.

6 RESULTS
This section presents the results of our Binary Star evaluation.
Section 6.1 shows Binary Star improves reliability over various
error correction baselines. Section 6.2 shows the performance of Bi-
nary Star compared to multiple memory configurations. Section 6.3
presents a study of the impact of Binary Star’s periodic forced
writeback interval on various metrics.

9

MICRO-52, October 12–16, 2019, Columbus, OH, USA Liu, et al.

6.1 Reliability
Figure 8 shows the projected 3D DRAM device failure rates of
different resilience schemes as the single cell bit error rate varies
from 10−14 to 10−4. The x-axis represents the bit error rate (BER) of
a single cell and the y-axis is the corresponding device failure rate.
We make three major observations. First, for sub-20nm DRAMwith
10−5 single cell bit error rate [8], Binary Star reduces the device
failure rate by 1012 times compared to IECC with Chipkill [8] and
by 1016 times compared to IECC with RECC [8]. Second, even
when the sub-20nm single cell error rate is lower (i.e., 10−6), Binary
Star still provides better reliability than other schemes: Binary Star
reduces the device failure rate by 1016 times compared to IECC
with Chipkill, and by 1022 times compared to IECC with RECC.
These results indicate that Binary Star is effective for technologies
that exhibit lower error rates than those projected in [8]. Third,
compared to the commonly-employed RECC DRAM, Binary Star
greatly lowers the device failure rate on both 28nm and sub-20nm
technology nodes (i.e., at 10−10 and 10−15 single cell BERs). We
conclude that Binary Star provides strong error protection on 3D
DRAM LLCs, regardless of technology node and single cell error
rate.

1.E-35

1.E-31

1.E-27

1.E-23

1.E-19

1.E-15

1.E-11

1.E-7

1.E-3

1.E-14 1.E-12 1.E-10 1.E-8 1.E-6 1.E-4

RECC RECC+IECC Chipkill+IECC Binary Star

Single Cell BER

1016

1012

S
u
b
-2

0
 n

m

2
8
 n

m

10-3

10-7

10-11

10-15

10-19

10-23

10-27

10-31

10-35

10-14 10-12 10-10 10-8 10-6 10-4

D
e
v
ic

e
 F

a
ilu

re
 R

a
te

Figure 8: Device failure rates of 3D DRAM for traditional
RECC [81], RECC with IECC [8], Binary Star, and Chipkill with
IECC [8, 58] vs. single cell bit error rate. Vertical lines represent 3D
DRAM technology nodes (28nm and sub-20nm).5

Table 2 summarizes the FIT and storage cost of five state-of-the-
art baselines and Binary Star. We show results when the device
single cell BER is 10−6 (left) and 10−5 (right). We make three ob-
servations. First, Binary Star provides a clear advantage against
all state-of-the-art baselines. Compared to IECC+Chipkill, which
is the best IECC based scheme, Binary Star reduces FIT by 14.4×.
Compared to the IECC+RECC protected sub-20nm DRAM system,
Binary Star reduces FIT by 29.7×. Second, compared to the NVRAM
based main memory system that uses RECC 3D DRAM cache and
PCM, Binary Star experiences 58.5% fewer failures. Third, Binary
Star incurs lower space overhead compared to all other state-of-
the-art designs, with only 6.25% additional space in 3D DRAM and
only 12.79% additional space in PCM, respectively. We conclude
that Binary Star is the most efficient reliability mechanism for hy-
brid emerging technologies of 3D DRAM cache and NVRAM main
memory.

5The sub-20nm single bit error rate is based on [8]. The single cell error rates of future
sub-20nm products can vary and depend on the specific technologies.

Table 2: Comparison of the evaluated resilience schemes.

System FIT Storage cost
DRAM
LLC

main
memory

No-ECC [79] 28nm DRAM 44032-66150 N/A 0%
RECC [72] 28nm DRAM 8806-13230 N/A 12.5%
IECC+RECC [8]
sub-20nm 3D DRAM + DRAM 78211-117912 18.75% 18.75%

IECC+Chipkill [8, 58]
sub-20nm 3D DRAM + DRAM 37949-59518 18.75% 18.75%

RECC [72, 81]
sub-20nm 3D DRAM + PCM 6352-9963 12.5% 12.79%

Binary Star
sub-20nm 3D DRAM + PCM 2637-3968 6.25% 12.79%

6.2 Performance
Figure 9 shows the performance of three baseline memory config-
urations, all of which have no ECC, and Binary Star normalized
to the baseline with 3D DRAM cache and DRAM main memory.6
We make two observations based on this data. First, Binary Star’s
performance is very close to the baseline with 3D DRAM. Binary
Star performs within 0.2% of a baseline with 3D DRAM and PCM
Binary Star also performs within 1% of the performance of the
baseline with 3D DRAM cache and DRAM main memory. Second,
we observe that using 3D DRAM as the LLC to PCM main mem-
ory improves performance by 10% over the PCM-only baseline.
We observe that the performance improvements are significant on
workloads that exhibit high LLC locality (e.g., memcached, facesim,
vips and x264). In summary, we find that Binary Star provides com-
parable performance to the baseline with 3D DRAM cache and
DRAM main memory but at significantly higher reliability.

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

0.6

0.7

0.8

0.9

1
DRAM PCM 3D DRAM+PCM Binary Star

Figure 9: System performance of different memory configurations
with no ECC and Binary Star. We normalize the throughput of each
configuration to the throughput of 3D DRAM LLC with DRAM.

Effect of NVRAMwear-out. To understand the effect of NVRAM
wear-out-induced latency on performance, Figure 10 provides the
performance of each workload with different NVRAM access la-
tencies. In this experiment, we vary the latency of PCM to 0.5×,
1×, 2× and 4× of the default PCM latency provided in Table 1. All
throughput values are normalized to the highest performance mem-
ory configuration (3D DRAM+DRAM). As Figure 10 shows, Binary
Star retains 99% of the performance of the baseline with a 0.5×
6We include the CRC encoding and decoding performance overheads based on [8]. We
normalize the throughput of each configuration to the throughput of 3D DRAM LLC
with DRAM. We find that the error detection and recovery overheads are negligible
compared to the CRC encoding and decoding overheads, because errors happen rarely
(See Section 6.1).

10

Binary Star MICRO-52, October 12–16, 2019, Columbus, OH, USA

0

0.2

0.4

0.6

0.8

1

0
.5

x

1
x

2
x

4
x

0
.5

x

1
x

2
x

4
x

0
.5

x

1
x

2
x

4
x

0
.5

x

1
x

2
x

4
x

0
.5

x

1
x

2
x

4
x

0
.5

x

1
x

2
x

4
x

0
.5

x

1
x

2
x

4
x

0
.5

x

1
x

2
x

4
x

0
.5

x

1
x

2
x

4
x

0
.5

x

1
x

2
x

4
x

0
.5

x

1
x

2
x

4
x

YCSB TPCC Redis Memcached mysql facesim fluidanimate freqmine vips x264 GmeanN
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Figure 10: Performance of Binary Star normalized to the performance of the 3D DRAM+DRAM configuration, as PCM latency is varied as a
multiple of its value in Table 1.

PCM latency and its average performance degradation is only 3%
with a 2× PCM access latency. In the unrealistic case where the
PCM access latency is quadrupled (4×), the average performance
degradation of Binary Star is only 5% lower than the baseline.

6.3 Impact of the Periodic Forced Writeback
Interval

Binary Star’s periodic forced writeback interval is critical to
throughput, number of rollbacks triggered by uncorrectable errors,
NVRAM lifetime, and capacity.
Throughput. Figure 11 (a) shows the normalized system through-
put of different workloads for six different periodic forced write-
back intervals, ranging from one second to one hour. We normalize
the throughput of each workload to the throughput of the same
workload under the 3D DRAM LLC with DRAM configuration. We
make two observations. First, throughput decreases when the inter-
val decreases. As the periodic forced writeback interval decreases,
both periodic forced writeback and consistent cache writeback hap-
pen more often and occupy more NVRAM bandwidth, leading to
reduction in throughput. Second, the periodic forced writeback
interval impacts the efficiency of consistent cache writeback. As
the interval decreases, the locality of NVRAM access reduces such
that Binary Star-triggered wear leveling happens more frequently.
Therefore, Binary Star triggered wear leveling overlaps much less
with endurance-triggered wear leveling, leading to throughput loss.
Rollback Triggered by Uncorrectable Errors. Figure 11 (b)
shows the rollback rate for six different intervals. Rollback is trig-
gered by uncorrectable errors that occur when accessing dirty cache
lines in 3D DRAM. As such, the results also reflect the error rate on
dirty cache lines. As the forced writeback interval decreases, dirty
cache lines remain in LLC for less time. Therefore, the possibility of
uncorrectable-error-triggered rollback reduces. When the interval
decreases to one second, the likelihood of error-triggered rollback
is < 10−11. However, the throughput loss is too much in this case,
as shown in in Figure 11 (a). At a 1800-second (30-minute) periodic
forced writeback interval, the rollback rate is 10−9, which is close
to the error rate of current DRAM without ECC.
Endurance. Figure 11 (c) shows the normalized number of NVRAM
writes for six different periodic forced writeback intervals, normal-
ized to the NVRAM writes in the 3D DRAM+PCM baseline for
each benchmark. We make three observations. First, the number of
writes increases drastically to 17.2× of the PCM-only baseline when
the interval is only one second. Such a short interval leads to a low

6.3x
2.3x

1.9x
1.2x

1.1x

0x

2x

4x

6x

8x

10x

12x

14x

16x

1 60 300 600 1800 3600

YCSB TPCC Redis Memcached

mysql facesim fluidanimate freqmine

vips x264 Gmean

0

0.2

0.4

0.6

0.8

1

1 60 300 600 1800 3600

YCSB TPCC Redis Memcached
mysql facesim fluidanimate freqmine
vips x264 GmeanN

o
rm

a
liz

e
d

T
h

ro
u

g
h
p

u
t

Periodic Forced Writeback Interval (s)

N
o
rm

a
liz

e
d

 w
ri
te

s

17.2x

3D DRAM+PCM

Periodic Forced Writeback Interval (s)

(b)

(a)

(c)

0

2E-09

4E-09

6E-09

8E-09

1 60 300 600 1800 3600

Periodic Forced Writeback Interval (s)

8×10-9

6×10-9

4×10-9

2×10-9

0

R
o
llb

a
c
k
 r

a
te

Figure 11: Effect of varying the periodic forced writeback interval
on (a) throughput, (b) probability of rollbacks (i.e., error rate on a
dirty line), and (c) NVRAM writes.

likelihood of rollback, but can cause up to 94% faster NVRAM wear-
out due to the larger number of writes. Second, when the interval
gets larger, the number of NVRAM writes gradually becomes close
to that in the 3D DRAM+PCM baseline. Third, the increase in the
interval length has diminishing benefit. We find that increasing the
interval from 30 minutes to one hour only leads to a 10% reduction
in the number of NVRAM writes, but forces applications to roll
back consistent data from earlier in the past (up to one hour instead
of up to 30 minutes) when an uncorrectable error happens, leading
to high re-execution overheads.
Lifetime impact of coordinated wear leveling. We use the
same methodology as previous work [90] to evaluate the NVRAM
lifetime impact of our design. We determine the end of NVRAM
lifetime as the time when NVRAM capacity drops below 90% of the
original capacity (i.e., when the over-provisioned space is saturated).
We make two observations when the periodic forced writeback in-
terval is 30 minutes (1800 seconds). First, Binary Star triggers 20%
additional NVRAMwrites, compared to the 3D DRAM+PCM config-
uration (Figure 11 (c)). This leads to an 8.4% NVRAM lifetime reduc-
tion compared with the baseline wear leveling mechanism [94]. As
the baseline wear leveling mechanism already offers 10× NVRAM
lifetime improvement on native NVRAMwithout wear leveling [94],
our design provides 9.2× better lifetime than native NVRAM, and
our coordinated wear leveling mechanism has minimal impact on

11

MICRO-52, October 12–16, 2019, Columbus, OH, USA Liu, et al.

NVRAM lifetime. Second, using 3D DRAM as LLC significantly pro-
longs the lifetime, because it reduces writes to NVRAM by 90.1% in
the NVRAM baseline and 87.8% in Binary Star, respectively.
Capacity. One disadvantage of consistent cache writeback on
NVRAM is that Binary Star gradually consumes more space over
time because the consistent cache writeback triggered block remap-
ping consumes free blocks and holds consistent blocks. To free up
space for incoming remapping operations, periodic forced write-
back releases space for previous checkpointed consistent data (as
discussed in Section 4.2). For the above experiments, we guarantee
that all the workloads have sufficient memory space while keeping
10% of the NVRAM space for wear leveling.

Overall, the periodic forced writeback interval length causes
a trade off between performance, reliability, NVRAM endurance
and the effective NVRAM capacity. In this work, we choose 30
minutes (1800s) as the interval, such that periodic forced writeback
only incurs less than 1% average throughput loss, with only a 10−9
chance of rollback and 5 to 7.5 FIT per GB of NVRAM.

7 RELATEDWORK
To our knowledge, Binary Star is the first memory hierarchy relia-
bility scheme that coordinates the reliability mechanisms across the
last-level cache and nonvolatile memory. In this section, we discuss
related works that provide reliability to different components in
the memory hierarchy.
Optimizing DRAMmainmemory reliability. Redundancy and
ECC are commonly used to tackle DRAM errors. Redundancy is
used to address hard errors by incorporating redundant rows and
columns. Rows and columns with hard errors are remapped using
the address decoder and/or the operating system page offlining
policy [48, 55]. ECC can be used to recover both transient and
hard errors using the parity data generated from the original data.
Bose-Chaudhuri-Hocquenghem (BCH) codes can detect and cor-
rect errors [43]. CRC codes can only detect errors but provide no
correction capability [39]. Single error correction, double error de-
tection (SECDED) is one of the most popular ECC codes used in
ECC DRAM [75], which adds an additional DRAM chip in a DIMM
to store parity bits [23]. Traditional ECC engines in ECC DRAMs
are deployed in a memory controller – we refer to such reliabil-
ity mechanisms as rank-level ECC, e.g., rank-level SECDED [8].
Server memory systems can also adopt Chipkill to protect against
both memory bit errors and chip errors [17, 22, 25]. One of the
commercial Chipkill methods is Single Device Data Correction
(SDDC) [22, 25], which remedies a single DRAM device failure us-
ing a combination of CRC and parity check codes. Several previous
works address the storage overhead on traditional ECC [35, 55, 89].

Recent works employ in-DRAM ECC [8, 20, 33, 58], which in-
tegrates the ECC engine inside the DRAM chip. Existing LPDDR4
chips have in-DRAM ECC in them [64]. In-DRAM ECC requires
changes inside a DRAM chip, introducing extra area, logic, and
manufacturing costs.
SRAM cache reliability. Kim [36] proposes a design that uses
error detection codes for clean cache lines and error correction
codes for dirty cache lines. However, this requires flushing the entire
cache every 4M cycles, which is unacceptable for a large 3D DRAM.
Memory Mapped ECC (MME) [88] uses ECC codes to protect the

dirty cache lines without periodic cache flush. However, MME
stores error correction codes in main memory, which generates
additional writes to NVRAM upon cache writeback. This is not
desirable for NVRAM as writes reduce both NVRAM performance
and endurance. ECC FIFO [87] stores error correction codes in a
FIFO in main memory. However, ECC FIFO still requires cache
flushes as frequently as [36].
Coordinating reliability in heterogeneous architectures.
Gupta et al. [21] investigate the coordination of reliability in a
system with heterogeneous main memory that consists of a 3D
DRAM and a DIMM-based DRAM. The study focuses on the place-
ment of hot data to improve system performance and reduce the
energy consumption of reliability mechanisms in main memory. In
contrast, Binary Star focuses on providing reliability by coordinat-
ing multiple reliability mechanisms across the memory hierarchy.
Persistentmemory. Persistent memory combines a fast load/store
based memory interface with data recovery support [12, 30, 38, 49,
59, 66, 70, 84, 92]. Though not explored in previous works, persis-
tent memory may also be leveraged to recover data from memory
errors via multiversioning (e.g., logging and copy-on-write) and
write-order control (e.g., memory barriers and forced cache write-
backs) [59, 61, 66]. However, these operations are costly. Instead,
Binary Star maintains memory system reliability by borrowing only
the notion of persistent data commits from persistent memory tech-
niques. As such, Binary Star is orthogonal to previous proposals
on persistent memory and can be combined with them to further
improve the performance and reliability of persistent memory.

8 CONCLUSION
We propose Binary Star, the first coordinated memory hierarchy
reliability scheme that achieves both high reliability and high per-
formance with a 3D DRAM last-level cache and nonvolatile main
memory. Binary Star coordinates 1) the reliability mechanisms
between the last-level cache and main memory, leveraging consis-
tent cache writeback and periodic forced writeback to the main
memory to allow the elimination of ECC in the last-level cache,
and 2) the wear leveling scheme in main memory with consistent
cache writeback to significantly reduce the performance and stor-
age overhead of consistent cache writeback. As a result, we can
eliminate the error correction codes in the last-level cache, while
achieving higher reliability than using costly sophisticated ECC
mechanisms. Our work rethinks the reliability support in the mem-
ory hierarchy in light of the next-generation computing systems
that may adopt two key new memory technologies, i.e., 3D DRAM
caches and byte-addressable nonvolatile memories. We hopefully
provide a critical step in reaping the full reliability advantages of
these emerging technologies beyond simply replacing the existing
memory technologies.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.
This paper is supported in part by NSF grants 1829524, 1829525,
1817077, the SRC System Level Design program, and SRC/DARPA
Center for Research on Intelligent Storage and Processing-in-
memory.

12

Binary Star MICRO-52, October 12–16, 2019, Columbus, OH, USA

REFERENCES
[1] J. H. Ahn, S. Li, S. O, and N. P. Jouppi, “McSimA+: A manycore simulator with

application-level+ simulation and detailedmicroarchitecturemodeling,” in ISPASS,
2013.

[2] M. Awasthi, M. Shevgoor, K. Sudan, B. Rajendran, R. Balasubramonian, and
V. Srinivasan, “Efficient scrub mechanisms for error-prone emerging memories,”
in HPCA, 2012.

[3] R. Azevedo, J. D. Davis, K. Strauss, P. Gopalan, M. Manasse, and S. Yekhanin,
“Zombie memory: Extending memory lifetime by reviving dead blocks,” in ISCA,
2013.

[4] J. Barr, “EC2 in-memory processing update: Instances with 4 to 16 TB of memory
and scale-out SAP HANA to 34 TB,” 2017.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark suite: Char-
acterization and architectural implications,” in PACT, 2008.

[6] C. Cagli, “Characterization and modelling of electrode impact in HfO2-based
RRAM,” in Proceedings of the Memory Workshop, 2012.

[7] J. L. Carlson, Redis in action. Manning Publications Co., 2013.
[8] S. Cha, S. O, H. Shin, S. Hwang, K. Park, S. J. Jang, J. S. Choi, G. Y. Jin, Y. H. Son,

H. Cho, J. H. Ahn, and N. S. Kim, “Defect Analysis and Cost-Effective Resilience
Architecture for Future DRAM Devices,” in HPCA, 2017.

[9] H.-M. Chen, C.-J. Wu, T. Mudge, and C. Chakrabarti, “RATT-ECC: Rate Adaptive
Two-Tiered Error Correction Codes for Reliable 3D Die-Stacked Memory,” ACM
TACO, 2016.

[10] W. C. Chien, H. Y. Cheng, M. BrightSky, A. Ray, C. W. Yeh, W. Kim, R. Bruce,
Y. Zhu, H. Y. Ho, H. L. Lung, and C. Lam, “Reliability study of a 128Mb phase
change memory chip implemented with doped Ga-Sb-Ge with extraordinary
thermal stability,” in IEDM, 2016.

[11] N. Christiansen, “Storage class memory support in the Windows OS,” in SNIA
NVM Summit, 2016.

[12] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee,
“Better I/O Through Byte-addressable, Persistent Memory,” in SOSP, 2009.

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmark-
ing cloud serving systems with YCSB,” in SoCC, 2010.

[14] T. Council, “tpc-c benchmark, revision 5.11,” 2010.
[15] K. Deierling, “Persistent memory over fabric,” in SNIA NVM Summit, 2016.
[16] K. Deierling, “Persistent memory over fabric: let it out of the box!” in Open Server

Summit, 2016.
[17] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for PC server

main memory,” IBM Microelectronics Division, 1997.
[18] C. Diaconu, “Microsoft SQL Hekaton – Towards Large Scale Use of PM for

In-memory Databases,” in SNIA NVM Summit, 2016.
[19] B. Fitzpatrick, “Distributed caching with memcached,” Linux journal, 2004.
[20] S. Gong, J. Kim, S. Lym, M. Sullivan, H. David, and M. Erez, “DUO: Exposing

On-Chip Redundancy to Rank-Level ECC for High Reliability,” in HPCA, 2018.
[21] M. Gupta, V. Sridharan, D. Roberts, A. Prodromou, A. Venkat, D. Tullsen, and

R. Gupta, “Reliability-aware data placement for heterogeneous memory architec-
ture,” in HPCA, 2018.

[22] HPE, “Memory RAS technologies in HPE ProLiant/Synergy/Blade servers,” 2019,
https://psnow.ext.hpe.com/doc?id=4aa4-3490enw.pdf.

[23] M.-Y. Hsiao, “A class of optimal minimum odd-weight-column SEC-DED codes,”
IBM Journal of Research and Development, 1970.

[24] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays don’t strike twice:
understanding the nature of DRAM errors and the implications for system design,”
in ASPLOS, 2012.

[25] Intel, “Intel Xeon Processor E7 Family: Reliability, Availability, and Serviceabil-
ity,” 2011, https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/xeon-e7-family-ras-server-paper.pdf.

[26] Intel, “An intro to MCDRAM (high bandwidth memory) on Knights
Landing,” 2016, https://software.intel.com/en-us/blogs/2016/01/20/
an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing.

[27] Intel, “Intel launches Optane DIMMs up to 512GB: Apache
Pass is here!” 2018, https://www.anandtech.com/show/12828/
intel-launches-optane-dimms-up-to-512gb-apache-pass-is-here.

[28] Intel, “Over-provisioning nand-based intel SSDs for better endurance,” 2018, https:
//www.intel.com/content/dam/www/public/us/en/documents/white-papers/
over-provisioning-nand-based-ssds-better-endurance-whitepaper.pdf.

[29] “Data-centric innovation spotlight series: Big memory breakthrough for your
biggest data challenges,” 2019, https://www.intel.com/content/www/us/en/
architecture-and-technology/optane-dc-persistent-memory.html.

[30] Intel, “PMDK: Persistent Memory Development Kit,” 2019, https://github.com/
pmem/pmdk/.

[31] H. Jeon, G. H. Loh, and M. Annavaram, “Efficient RAS support for die-stacked
DRAM,” in ITC, 2014.

[32] U. Kang, H. Chung, S. Heo, D. Park, H. Lee, J. H. Kim, S. Ahn, S. Cha, J. Ahn,
D. Kwon, J. Lee, H. Joo, W. Kim, D. H. Jang, N. S. Kim, J. Choi, T. Chung, J. Yoo,
J. S. Choi, C. Kim, and Y. Jun, “8 Gb 3-D DDR3 DRAM Using Through-Silicon-Via
Technology,” IEEE Journal of Solid-State Circuits, 2010.

[33] U. Kang, H.-s. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. S. Choi,
“Co-architecting controllers and DRAM to enhance DRAM process scaling,” in
The Memory Forum, 2014.

[34] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The
Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Com-
parative Experimental Study,” in SIGMETRICS, 2014.

[35] J. Kim, M. Sullivan, and M. Erez, “Bamboo ECC: Strong, safe, and flexible codes
for reliable computer memory,” in HPCA, 2015.

[36] S. Kim, “Area-efficient error protection for caches,” in DATE, 2006.
[37] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and

O. Mutlu, “Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors,” in ISCA, 2014.

[38] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M. Chen, and T. F.
Wenisch, “Delegated Persist Ordering,” in MICRO, 2016.

[39] P. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC) polynomial
selection for embedded networks,” in DSN, 2004.

[40] A. Kopytov, “Sysbench manual,” MySQL AB, 2012.
[41] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating

STT-RAM as an energy-efficient main memory alternative,” in ISPASS, 2013.
[42] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory

as a scalable DRAM alternative,” in ISCA, 2009.
[43] S. Lin and D. J. Costello, Error control coding. Pearson Education India, 2004.
[44] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of

Data Retention Behavior in Modern DRAM Devices: Implications for Retention
Time Profiling Mechanisms,” in ISCA, 2013.

[45] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with
dynamic instrumentation,” in PLDI, 2005.

[46] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu,
B. Khessib, K. Vaid, and O. Mutlu, “Characterizing application memory error
vulnerability to optimize datacenter cost via heterogeneous-reliability memory,”
in DSN, 2014.

[47] G. Mappouras, A. Vahid, R. Calderbank, D. R. Hower, and D. J. Sorin, “Jenga:
Efficient Fault Tolerance for Stacked DRAM,” in ICCD, 2017.

[48] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors in large-scale
production data centers: Analysis and modeling of new trends from the field,” in
DSN, 2015.

[49] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu, “A case for efficient
hardware/software cooperative management of storage and memory,” in WEED,
2013.

[50] Micron, “Hybrid memory cube specification 2.1,” 2014, http://http://www.
hybridmemorycube.org/.

[51] Micron, “3D XPoint Technology: Breakthrough Nonvolatile Memory Tech-
nology,” 2016, https://www.micron.com/products/advanced-solutions/
3d-xpoint-technology.

[52] J. Moyer, “Persistent memory in Linux,” in SNIA NVM Summit, 2016.
[53] O. Mutlu, “Memory scaling: A systems architecture perspective,” in IMW, 2013.
[54] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE TCAD, 2019.
[55] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “Archshield: Architectural framework

for assisting DRAM scaling by tolerating high error rates,” in ISCA, 2013.
[56] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “FaultSim: A fast, configurable

memory-reliability simulator for conventional and 3D-Stacked systems,” ACM
TACO, 2015.

[57] P. J. Nair, D. A. Roberts, and M. K. Qureshi, “Citadel: Efficiently protecting stacked
memory from TSV and large granularity failures,” ACM TACO, 2016.

[58] P. J. Nair, V. Sridharan, and M. K. Qureshi, “XED: Exposing on-die error detection
information for strong memory reliability,” in ISCA, 2016.

[59] S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton, “An analysis of
persistent memory use with WHISPER,” in ASPLOS, 2017.

[60] D. Narayanan and O. Hodson, “Whole-system persistence,” in ASPLOS, 2012.
[61] M. A. Ogleari, E. L. Miller, and J. Zhao, “Steal but no force: Efficient Hardware-

based Undo+Redo Logging for Persistent Memory Systems,” in HPCA, 2018.
[62] T. Oh, H. Chung, J. Park, K. Lee, S. Oh, S. Doo, H. Kim, C. Lee, H. Kim, J. Lee,

J. Lee, K. Ha, Y. Choi, Y. Cho, Y. Bae, T. Jang, C. Park, K. Park, S. Jang, and J. S.
Choi, “A 3.2 Gbps/pin 8 Gbit 1.0 V LPDDR4 SDRAMWith Integrated ECC Engine
for Sub-1 V DRAM Core Operation,” IEEE Journal of Solid-State Circuits, 2015.

[63] Oracle, “MySQL,” 2019, https://www.mysql.com/.
[64] M. Patel, J. S. Kim, H. Hassan, and O. Mutlu, “Understanding and Modeling

On-Die Error Correction in Modern DRAM: An Experimental Study Using Real
Devices,” in DSN, 2019.

[65] M. Patel, J. S. Kim, and O. Mutlu, “The Reach Profiler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,”
in ISCA, 2017.

[66] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,” in ISCA, 2014.
[67] M. K. Qureshi, D. Kim, S. Khan, P. J. Nair, and O. Mutlu, “AVATAR: A Variable-

Retention-Time (VRT) Aware Refresh for DRAM Systems,” in DSN, 2015.
[68] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-Montano, “Improving read

performance of phase change memories via write cancellation and write pausing,”
13

https://psnow.ext.hpe.com/doc?id=4aa4-3490enw.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/xeon-e7-family-ras-server-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/xeon-e7-family-ras-server-paper.pdf
https://software.intel.com/en-us/blogs/2016/01/20/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing
https://software.intel.com/en-us/blogs/2016/01/20/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing
https://www.anandtech.com/show/12828/intel-launches-optane-dimms-up-to-512gb-apache-pass-is-here
https://www.anandtech.com/show/12828/intel-launches-optane-dimms-up-to-512gb-apache-pass-is-here
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/over-provisioning-nand-based-ssds-better-endurance-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/over-provisioning-nand-based-ssds-better-endurance-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/over-provisioning-nand-based-ssds-better-endurance-whitepaper.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://github.com/pmem/pmdk/
https://github.com/pmem/pmdk/
http://http://www.hybridmemorycube.org/
http://http://www.hybridmemorycube.org/
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.mysql.com/

MICRO-52, October 12–16, 2019, Columbus, OH, USA Liu, et al.

in HPCA, 2010.
[69] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali,

“Enhancing lifetime and security of PCM-based main memory with Start-gap
wear leveling,” in MICRO, 2009.

[70] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “ThyNVM: Enabling
software-transparent crash consistency in persistent memory systems,” inMICRO,
2015.

[71] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access
scheduling,” in ISCA, 2000.

[72] D. Roberts and P. Nair, “FAULTSIM: A fast, configurable memory-resilience
simulator,” in The Memory Forum: In conjunction with ISCA, 2014.

[73] SAP, “SAP HANA: an in-memory, column-oriented, relational database manage-
ment system,” 2014, http://www.saphana.com/.

[74] S. Schechter, G. H. Loh, K. Strauss, and D. Burger, “Use ECP, not ECC, for hard
failures in resistive memories,” in ISCA, 2010.

[75] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild: a large-
scale field study,” in SIGMETRICS, 2009.

[76] N. H. Seong, S. Yeo, and H.-H. S. Lee, “Tri-level-cell phase change memory:
Toward an efficient and reliable memory system,” ISCA, 2013.

[77] J. Sim, G. H. Loh, V. Sridharan, and M. O’Connor, “Resilient die-stacked DRAM
caches,” in ISCA, 2013.

[78] V. Sousa, “Phase change materials engineering for RESET current reduction,” in
IMW, 2012.

[79] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf,
and S. Gurumurthi, “Memory errors in modern systems: The good, the bad, and
the ugly,” in ASPLOS, 2015.

[80] K. Suzuki and S. Swanson, “The Non-Volatile Memory Technology Database
(NVMDB),” 2015, http://nvmdb.ucsd.edu.

[81] S. Swami, P. M. Palangappa, and K. Mohanram, “ECS: Error-correcting strings
for lifetime improvements in nonvolatile memories,” ACM TACO, 2017.

[82] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in CVPR,
2015.

[83] The Apache Software Foundation, “Spark,” 2014, http://spark.incubator.apache.
org/.

[84] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight persistent
memory,” in ASPLOS, 2011.

[85] VoltDB, “VoltDB: Smart data fast,” 2014, http://voltdb.com/.
[86] D. S. Yaney, C. Y. Lu, R. A. Kohler, M. J. Kelly, and J. T. Nelson, “A meta-stable

leakage phenomenon in DRAM charge storage - Variable hold time,” in IEDM,
1987.

[87] D. H. Yoon and M. Erez, “Flexible cache error protection using an ECC FIFO,” in
SC, 2009.

[88] D. H. Yoon and M. Erez, “Memory mapped ECC: low-cost error protection for
last level caches,” in ISCA, 2009.

[89] D. H. Yoon and M. Erez, “Virtualized ECC: Flexible reliability in main memory,”
IEEE micro, 2011.

[90] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan, N. P. Jouppi, and
M. Erez, “FREE-p: Protecting non-volatile memory against both hard and soft
errors,” in HPCA, 2011.

[91] Z. Zhang, W. Xiao, N. Park, and D. J. Lilja, “Memory module-level testing and
error behaviors for phase change memory,” in ICCD, 2012.

[92] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing the performance
gap between systems with and without persistence support,” in MICRO, 2013.

[93] W. Zhao, E. Belhaire, Q. Mistral, C. Chappert, V. Javerliac, B. Dieny, and E. Nicolle,
“Macro-model of spin-transfer torque based magnetic tunnel junction device for
hybrid magnetic-CMOS design,” in IEEE International Behavioral Modeling and
Simulation Workshop, 2006.

[94] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main
memory using phase change memory technology,” in ISCA, 2009.

[95] W. K. Zuravleff and T. Robinson, “Controller for a Synchronous DRAM That
Maximizes Throughput by Allowing Memory Requests and Commands to Be
Issued Out of Order,” 1997.

14

http://www.saphana.com/
http://nvmdb.ucsd.edu
http://spark.incubator.apache.org/
http://spark.incubator.apache.org/
http://voltdb.com/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 DRAM Main Memory
	2.2 3D DRAM Last Level Cache
	2.3 NVRAM Main Memory
	2.4 Issues with Decoupled Reliability

	3 Binary Star Design
	3.1 Coordinated Reliability Scheme
	3.2 Coordinating Wear Leveling and Consistent Cache Writeback
	3.3 3D DRAM LLC Error Correction and Error Recovery
	3.4 Putting it All Together: An Example

	4 Implementation
	4.1 3D DRAM LLC Modification
	4.2 Memory Controller Modifications
	4.3 System Software Modifications
	4.4 Binary Star Overheads

	5 Experimental Methodology
	6 Results
	6.1 Reliability
	6.2 Performance
	6.3 Impact of the Periodic Forced Writeback Interval

	7 Related Work
	8 Conclusion
	References

