
BlockHammer
Preventing	RowHammer	at	Low	Cost	

by	Blacklisting	Rapidly-Accessed	DRAM	Rows

Abdullah	Giray Yağlıkçı
Minesh Patel				Jeremie S.	Kim				Roknoddin Azizi

Ataberk Olgun Lois	Orosa Hasan	Hassan				Jisung Park			
Konstantinos	Kanellopoulos Taha	Shahroodi

Saugata Ghose*	 Onur Mutlu

*

2

Executive	Summary
• Motivation:	RowHammer	is	a	worsening	DRAM	reliability	and	security	problem

• Problem:	Mitigation	mechanisms	have	limited	support	for	current/future	chips
- Scalabilitywith	worsening	RowHammer	vulnerability	
- Compatibilitywith	commodity	DRAM	chips

• Goal:	Efficiently and	scalably prevent	RowHammer	bit-flips	
without knowledge	of	or	modifications	to	DRAM	internals	

• Key	Idea: Selectively	throttle	memory	accesses	that	may	cause	RowHammer	bit-flips

• Mechanism:	BlockHammer	
- Tracks activation	rates	of	all	rows	by	using	area-efficient	Bloom	filters
- Throttles row	activations	that	could	cause	RowHammer	bit	flips
- Identifies	and	throttles	threads	that	perform	RowHammer	attacks

• Scalability	with	Worsening	RowHammer	Vulnerability:
- Competitivewith	state-of-the-art	mechanisms	when	there	is	no	attack
- Superior performance	and	DRAM	energy	when	a	RowHammer	attack	is	present

• Compatibility	with	Commodity	DRAM	Chips:	
- No	proprietary	information	of	DRAM	internals
- No	modifications	to	DRAM	circuitry

3

Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion

4

Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion

5

Organizing	and	Accessing	
DRAM	Cells

A	row	needs	to	be	activated to	access	its	content

A	DRAM	cell	consists	of	a	capacitor and	an	access transistor

6

DRAM	Refresh

Periodic	refresh	operations	preserve	stored	data

Ca
pa
ci
to
r	v
ol
ta
ge
	(V
dd
) 100%

0%

Vmin

Refresh	Window
tREFW

Refresh	Operations

time
REF REFREF

[Patel+ ISCA’17, Kim+ ISCA’20]

7

The	RowHammer	Phenomenon

Row	0

Row	1

Row	2

Row	3

Row	4

Repeatedly	opening (activating)	and	closing (precharging)	
a	DRAM	row	causes	RowHammer	bit	flips in	nearby	cells

Row	2open
Row	1

Row	3

Row	2closed Row	2open
Row	1

Row	3

Row	0

Row	4

Victim	Row

Victim	Row

Victim	Row

Victim	Row

Aggressor	RowRow	2open Row	2closed

DRAM Bank

[Kim+ ISCA’20]

8

Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion

9

RowHammer	Mitigation	Approaches
• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

DRAM Bank

Aggressor Row

Vic-m Rows

Isolation Rows Large-enough	distance

DRAM BankAggressor Row

Victim rows

RefreshVictim Rows

Refresh

Rapidly	activated	(hammered)

REF-to-REF	time	reduces
Fewer	activations	can	fit

Fewer	activations	can	be	performed

10

Two	Key	Challenges

Scalability
with	worsening	RowHammer	vulnerability1

Compatibility
with	commodity	DRAM	chips2 Compatibility
with	commodity	DRAM	chips2 Compatibility
with	commodity	DRAM	chips2

11

Scalability
with	Worsening	RowHammer	Vulnerability
• DRAM	chips	are	more	vulnerable	to	RowHammer	today
• RowHammer	bit-flips	occur	at	much	lower	activation	counts	
(more	than	an	order	of	magnitude	decrease):
- 139.2K	 [Y.	Kim+,	ISCA	2014]	
- 9.6K	 [J.	S.	Kim+,	ISCA	2020]

• RowHammer	blast	radius	has	increased	by	33%:
- 9	rows [Y.	Kim+,	ISCA	2014]
- 12	rows	 [J.	S.	Kim+,	ISCA	2020]

• In-DRAM	mitigation	mechanisms	are	ineffective	[Frigo+,	S&P	2020]

RowHammer	is	a	more	serious	problem	than	ever

12

Mitigation	Approaches	
with	Worsening	RowHammer	Vulnerability

DRAM Bank

Aggressor Row

Victim Rows

Isola-on RowsIsolation Rows Larger distance
more isola7on rows

DRAM BankAggressor row

Victim rows

Refresh more frequently
Refresh more rows Victim rows

Refresh more frequently
Refresh more rows

REF-to-REF	time	further	reduces
Even	fewer	activations	can	Eit

• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

More	aggressively	throttles	row	activations	

13

Mitigation	Approaches	
with	Worsening	RowHammer	Vulnerability

DRAM Bank

Aggressor Row

Victim Rows

Isola-on RowsIsolation Rows Larger distance
more isolation rows

DRAM BankAggressor row

Victim rows

Refresh more frequently
Refresh more rows Victim rows

Refresh more frequently
Refresh more rows

REF-to-REF	time	further	reduces
Even	fewer	activations	can	fit

• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

More	aggressively	throttles	row	activations	

Mitigation	mechanisms	face	the	challenge	of	
scalability	with	worsening	RowHammer

14

Two	Key	Challenges

Compatibility
with	commodity	DRAM	chips2

Scalability
with	worsening	RowHammer	vulnerability1

Compatibility
with	commodity	DRAM	chips2

Scalability
with	worsening	RowHammer	vulnerability1
Scalability
with	worsening	RowHammer	vulnerability1

15

Compatibility	
with	Commodity	DRAM	Chips

Application
Level Virtual Memory Address

System
Level

Physical Memory Address

Memory
Controller

DRAM Bus Addresses
(Channel, Rank, Bank Group, Bank, Row, Col)

Vi
sib

le
 w

ith
in

th

e
Pr

oc
es

so
r

In-DRAM
Mapping Physical Rows and Columns

DR
AM

Ch
ip

16

Compatibility	
with	Commodity	DRAM	Chips

Vendors	apply	in-DRAM	mapping	for	two	reasons:
• Design	Optimizations: By	simplifying	DRAM	circuitry
to	provide	better	density,	performance,	and	power

• Yield	Improvement:	By	mapping	faulty	rows	and	columns	
to	redundant	ones

• In-DRAM	mapping	scheme	includes	insights	into	chip	design	
and	manufacturing	quality

In-DRAM	mapping	is	proprietary	information

17

RowHammer	Mitigation	Approaches
• Increased	refresh	rate	

• Physical	isolation

• Reactive	refresh

• Proactive	throttling

REF-to-REF	time	reduces
Fewer	activations	can	fit

Fewer	activations	can	be	performed

DRAM Bank

Aggressor Row

Vic-m Rows

Isolation Rows

DRAM BankAggressor Row

Victim rows

Victim Rows

Iden%fying vic$m and isola$on rows requires
proprietary knowledge of in-DRAM mapping

18

Our	Goal

To	prevent	RowHammer	efficiently and scalably
without knowledge	of	or	modifications	to	DRAM	internals

19

Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion

20

BlockHammer	
Key	Idea

Selectively	throttle	memory	accesses	
that	may	cause	RowHammer	bit-flips

21

BlockHammer	
Overview	of	Approach

RowBlocker
Tracks row	activation	rates	using	area-efTicient	Bloom	Tilters
Blacklists rows	that	are	activated	at	a	high	rate
Throttles activations targeting	a	blacklisted	row

AttackThrottler
IdentiTies threads	that	perform	a	RowHammer	attack
Reduces memory	bandwidth	usage	of	identiTied	threads

No	row	can	be	activated	at	a	high	enough	rate	to	induce	bit-flips

Greatly	reduces	the	performance	degradation	
and energy	wastage	a	RowHammer	attack	inflicts	on	a	system

22

Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion

23

RowBlocker

• ModiTies	the	memory	request	scheduler	to	throttle	row	activations
• Blacklists rows	with	a	high	activation	rate	and	delays subsequent	
activations	targeting	blacklisted	rows

Blacklis(ng
Logic

Delaying
Logic

24

RowBlocker

• Blocks	a	row	activation	if	the	row	is	both blacklisted
and recently	activated

25

RowBlocker

• When	a	row	activation	is	performed,	both	RowBlocker-BL and	
RowBlocker-HB are	updated	with	the	row	activation	information

26

RowBlocker-BL	
Blacklisting	Logic

• Blacklists a	row	when	the	row’s	
activation	count	in	a	time	window	
exceeds	a	threshold

• Employs	two	counting	Bloom	Iilters	
for	area-efIicient	activation	rate	tracking

27

Counting	Bloom	Filters

• Blacklisting	logic	counts	activations	using	counting	Bloom	filters
• A	row’s	activation	count	

- can	be	observed	more	than	it	is	(false	positive)
- cannot	be observed	less	than	it	is	(no	false	negative)

• To	avoid	saturating	counters,	we	use	a	time-interleaving	approach

0 0 0 0 0 0 0 0 00

Hash functions

ACT Row A

1 1 1 11 1 11

ACT Row B

1 1 2 11 1 2 1

Minimum

1

Test Row A

1 1 2 1

28

RowBlocker-BL	
Blacklisting	Logic
• Blacklisting	logic	employs	two	counting	Bloom	filters
• A	new	row	activation	is	inserted	in	both	filters
• Only	one	filter	(active	filter)	responds	to	test	queries
• The	active	filter	changes	at	every	epoch

CBFA is active

CBFB is active

CBFA is passive

CBFB is passive

29

RowBlocker-BL	
Blacklisting	Logic
• Blacklisting	logic	employs	two	counting	Bloom	filters
• A	new	row	activation	is	inserted	in	both	filters
• Only	one	filter	(active	filter)	responds	to	test	queries
• The	active	filter	changes	at	every	epoch
• Blacklists	a	row	if	its	activation	count	reaches	the	blacklisting	threshold	(NBL)

Assume that the row is
activated at a high rate

Assume that the row is
not activated at a high rate

30

Limiting	the	Row	Activation	Rate

• The	activation	rate	is	RowHammer-safe if	it	is	smaller	than	or	equal	to	
RowHammer	threshold	(NRH) activations	in	a	refresh	window	(tREFW)	

• RowBlocker limits	the	activation	count	(NCBF)	in	a	CBF’s	lifetime	(tCBF)

tCBF

tCBF

Clear CBFB Clear CBFB

Clear CBFAClear CBFA

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝑖𝑛 𝑎 𝑡!"# ≤ 𝑁$% 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎 𝑟𝑒𝑓𝑟𝑒𝑠ℎ 𝑤𝑖𝑛𝑑𝑜𝑤 (𝑡$&#')

31

Limiting	the	Row	Activation	Rate

• The	activation	rate	is	RowHammer-safe if	it	is	smaller	than	or	equal	to	
RowHammer	threshold	(NRH) activations	in	a	refresh	window	(tREFW)	

• RowBlocker limits	the	activation	count	(NCBF)	in	a	CBF’s	lifetime	(tCBF)

tCBF

tCBF

Clear CBFB Clear CBFB

Clear CBFAClear CBFA

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 𝑖𝑛 𝑎 𝑡!"# ≤ 𝑁$% 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑎 𝑟𝑒𝑓𝑟𝑒𝑠ℎ 𝑤𝑖𝑛𝑑𝑜𝑤 (𝑡$&#')

!𝑵𝑪𝑩𝑭
𝒕𝑪𝑩𝑭

!𝑵𝑹𝑯
𝒕𝑹𝑬𝑭𝑾≤

RowHammer Safety Constraint

32

RowBlocker-HB	
Limiting	the	Row	Activation	Rate
• Ensures	that	all	rows	experience	
a	RowHammer-safe	activation	rate

• We	limit	NCBF by	configuring	tDelay :

Row
activation

tDelay tDelay

NCBF row	activations

⁄𝑁()* 𝑡()* ⁄𝑁+, 𝑡+-*.≤

tDelay

𝑡()* − (𝑡+(×𝑁)/)
𝑡01234

tCBF

timetDelay

tRC x	NBL tCBF – (tRC
✖

NBL)
tRC

NBL row	activations Blacklisted row activation

𝑁()* ≤ 𝑁)/ +

33

RowBlocker-HB
Delaying	Row	Activations
• RowBlocker-HB	ensures	no	subsequent	blacklisted	row	activation	
is	performed	sooner	than	tDelay

• RowBlocker-HB	implements	a	history	buffer	for	row	activations	
that	can	fit	in	a	tDelay time	window
• A	blacklisted	row	activation	is	blocked	as	long	as	a	valid	activation	
record	of	the	row	exists	in	the	history	buffer

No	row	can	be	activated	at	a	high	enough	rate	
to	induce	bit-Ilips

34

Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion

35

AttackThrottler

• Tackles	a	RowHammer	attack’s	performance	degradation	
and	energy	wastage	on	a	system

• A	RowHammer	attack	intrinsically	keeps	activating	blacklisted	rows

• RowHammer	Likelihood	Index	(RHLI):	Number	of	activations	that	target	
blacklisted	rows	(normalized	to	maximum	possible	activation	count)	

RHLI	is	larger	when	the	thread’s	access	pattern	
is	more	similar	to	a	RowHammer	attack

0.0 1.0
RHLI

Benign application
No blacklisted row activations

RowHammer attack
Blacklisted row activation count
approaches RowHammer threshold

36

AttackThrottler

• Applies	a	smaller	quota	to	a	thread’s	in-flight	request	count	as	RHLI	increases

• Reduces	a	RowHammer	attack’s	memory	bandwidth	consumption,	enabling	a	
larger	memory	bandwidth	for	concurrent	benign	applications

• RHLI	can	also	be	used	as	a	RowHammer	attack	indicator	by	the	system	software

Greatly	reduces	the	perfomance degradation	and energy	wastage	
a	RowHammer	attack	inflicts	on	a	system

RHLI

Benign application
No blacklisted row activations
No quota applied

RowHammer attack
Blacklisted row activation count
approaches RowHammer threshold
No request is allowed

0.0 1.0

37

Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion

38

Evaluation
BlockHammer’s	Hardware	Complexity
• We	analyze	six	state-of-the-art	mechanisms	and BlockHammer
• We	calculate	area,	access	energy,	and	static	power	consumption*

Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer
PARA	[73]
ProHIT [137]
MRLoc [161]
CBT	[132]
TWiCe	[84]
Graphene	[113]

Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer 51.48 1.73 0.14 0.06 20.30 22.27
PARA	[73] - - <0.01 - - -
ProHIT [137] - 0.22 <0.01 <0.01 3.67 0.14
MRLoc [161] - 0.47 <0.01 <0.01 4.44 0.21
CBT	[132] 16.00 8.50 0.20 0.08 9.13 35.55
TWiCe	[84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene	[113] - 5.22 0.04 0.02 40.67 3.11

N R
H=
32
K

BlockHammer	is	low	cost	and competitive
with	state-of-the-art	mechanisms

*Assuming	a	high-end	28-core	Intel	Xeon	processor	system	with	4-channel	single-rank	DDR4	DIMMs
with	a	RowHammer	threshold	(NRH)	of	32K

39

Evaluation
BlockHammer’s	Hardware	Complexity
Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer 51.48 1.73 0.14 0.06 20.30 22.27
PARA	[73] - - <0.01 - - -
ProHIT [137] - 0.22 <0.01 <0.01 3.67 0.14
MRLoc [161] - 0.47 <0.01 <0.01 4.44 0.21
CBT	[132] 16.00 8.50 0.20 0.08 9.13 35.55
TWiCe	[84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene	[113] - 5.22 0.04 0.02 40.67 3.11

Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer 51.48 1.73 0.14 0.06 20.30 22.27
PARA	[73] - - <0.01 - - -
ProHIT [137] - 0.22 <0.01 <0.01 3.67 0.14
MRLoc [161] - 0.47 <0.01 <0.01 4.44 0.21
CBT	[132] 16.00 8.50 0.20 0.08 9.13 35.55
TWiCe	[84] 23.10 14.02 0.15 0.06 7.99 21.28
Graphene	[113] - 5.22 0.04 0.02 40.67 3.11
BlockHammer 441.33 55.58 1.57 0.64 99.64 220.99
PARA	[73] - - <0.01 - - -
ProHIT [137] x x x x x x
MRLoc [161] x x x x x x
CBT	[132] 512.00 272.00 3.95 1.60 127.93 535.50
TWiCe	[84] 738.32 448.27 5.17 2.10 124.79 631.98
Graphene	[113] - 166.03 1.14 0.46 917.55 93.96

Mitigation SRAM CAM Area Access	Energy Static	Power
Mechanism KB KB mm2 %CPU pJ mW
BlockHammer 0.06 20.30 22.27
PARA	[73]
ProHIT [137]
MRLoc [161]
CBT	[132] 0.08 35.55
TWiCe	[84] 0.06 21.28
Graphene	[113] 0.02 40.67 3.11
BlockHammer 0.64 99.64 220.99
PARA	[73]
ProHIT [137]
MRLoc [161]
CBT	[132] 1.60 535.50
TWiCe	[84] 2.10 631.98
Graphene	[113] 0.46 917.55 93.96

20x
35x
23x

10x

15x
30x
30x

10x

23x

5x

N R
H=
32
K

N R
H=
1K

BlockHammer’s	hardware	complexity scales more	efficiently	
than	state-of-the-art	mechanisms

40

Evaluation
Performance	and	DRAM	Energy
• Cycle-level	simulations	using	Ramulator and	DRAMPower
• System	Configuration:	

• Single-Core	Benign	Workloads:
- 22	SPEC	CPU	2006
- 4	YCSB	Disk	I/O
- 2	Network	Accelerator	Traces
- 2	Bulk	Data	Copy	with	Non-Temporal	Hint	(movnti)

• Randomly	Chosen	MultiprogrammedWorkloads:	
- 125	workloads	containing	8	benign	applications
- 125	workloads	containing	7	benign	applications	and	1	RowHammer	attack	thread

Processor 3.2	GHz,	{1,8}	core,	4-wide	issue,	128-entry	instr.	window
LLC 64-byte	cacheline,		8-way	set-associative,	{2,16}	MB
Memory	scheduler FR-FCFS
Address	mapping Minimalistic	Open	Pages
DRAM DDR4	1	channel,	1	rank,	4	bank	group,	4	banks	per	bank	group
RowHammer	Threshold 32K	

41

Evaluation
Performance	and	DRAM	Energy
• We	classify	single-core	workloads	into	three	categories	based	on	
row	buffer	conflicts	per	thousand	instructions

• No	application’s	row	activation	count	exceeds	BlockHammer’s	
blacklisting	threshold	(NBL)

0.0 1.0 5.0
RBCPKI

Low (L) Medium (M) High (H)

BlockHammer does not incur performance or DRAM energy overheads
for single-core benign applications

42

Evaluation
Performance	and	DRAM	Energy
• System	throughput	(weighted	speedup)
• Job	turnaround	time	(harmonic	speedup)

• Unfairness	(maximum	slowdown)
• DRAM	energy	consumption	

RowHammer
Attack
Present

No
RowHammer
Attack

BlockHammer introduces very low performance (<0.5%) and DRAM energy (<0.4%) overheads

BlockHammer significantly increases benign application performance (by 45% on average)
and reduces DRAM energy consumption (by 29% on average)

43

Evaluation
Scaling	with	RowHammer	Vulnerability

RowHammer
Attack Present

No RowHammer
Attack

BlockHammer’s performance and energy overheads remain negligible (<0.6%)

BlockHammer scalably provides much higher performance (71% on average)
and lower energy consumption (32% on average) than state-of-the-art mechanisms

• System	throughput	(weighted	speedup)
• Job	turnaround	time	(harmonic	speedup)

• Unfairness	(maximum	slowdown)
• DRAM	energy	consumption	

44

More	in	the	Paper

• Security	Proof
- Mathematically	represent	all	possible	access	patterns	
- We	show	that	no	row	can	be	activated	high-enough	times to	induce	bit-flips
when	BlockHammer	is	configured	correctly

• Addressing	Many-Sided Attacks
• Evaluation	of	14	mechanisms representing four	mitigation	approaches

- Comprehensive	Protection
- Compatibility	with	Commodity	DRAM	Chips
- Scalability	with	RowHammer	Vulnerability
- Deterministic	Protection

45

Outline

DRAM	and	RowHammer	Background	
Motivation	and	Goal
BlockHammer

RowBlocker
AttackThrottler

Evaluation
Conclusion

46

Conclusion
• Motivation:	RowHammer	is	a	worsening	DRAM	reliability	and	security	problem

• Problem:	Mitigation	mechanisms	have	limited	support	for	current/future	chips
- Scalabilitywith	worsening	RowHammer	vulnerability	
- Compatibilitywith	commodity	DRAM	chips

• Goal:	Efficiently and	scalably prevent	RowHammer	bit-flips	
without knowledge	of	or	modifications	to	DRAM	internals	

• Key	Idea: Selectively	throttle	memory	accesses	that	may	cause	RowHammer	bit-flips

• Mechanism:	BlockHammer	
- Tracks activation	rates	of	all	rows	by	using	area-efficient	Bloom	filters
- Throttles row	activations	that	could	cause	RowHammer	bit	flips
- Identifies	and	throttles	threads	that	perform	RowHammer	attacks

• Scalability	with	Worsening	RowHammer	Vulnerability:
- Competitivewith	state-of-the-art	mechanisms	when	there	is	no	attack
- Superior performance	and	DRAM	energy	when	a	RowHammer	attack	is	present

• Compatibility	with	Commodity	DRAM	Chips:	
- No	proprietary	information	of	DRAM	internals
- No	modifications	to	DRAM	circuitry

BlockHammer
Preventing	RowHammer	at	Low	Cost	

by	Blacklisting	Rapidly-Accessed	DRAM	Rows

Abdullah	Giray Yağlıkçı
Minesh Patel				Jeremie S.	Kim				Roknoddin Azizi

Ataberk Olgun Lois	Orosa Hasan	Hassan				Jisung Park			
Konstantinos	Kanellopoulos Taha	Shahroodi

Saugata Ghose*	 Onur Mutlu

*

BlockHammer
Preventing	RowHammer	at	Low	Cost	

by	Blacklisting	Rapidly-Accessed	DRAM	Rows

Backup	Slides

49

• Timing	row	activations	is	critical	to	meet	reliability and	power constraints.	
• Two	timing	constraints	limit	row	activation	rates.

Timing	Constraints	
for	DRAM	Row	Activations

431 6 72

Bank B

5

Bank C

Bank E

Bank A

time

Bank D

Time difference > tFAW (~30-35ns)

tRC. : Minimum delay between two consecutive activations in a bank.
tFAW: Rolling time window in which at most four rows can be activated in a rank.

Bank F

ACT
Row X

ACT
Row YTime difference > tRC (~45-50ns)

ACT
Row Z

ACT
Row T

ACT
Row U

ACT
Row V

Time difference > tFAW (~30-35ns)
ACT

Row W

50

BlockHammer	Hardware	
Complexity
• RowBlocker

- RowBlocker-BL:	Implemented	per-bank
• 1K	counters	in	a	CBF	
• 4	H3	hash	functions	

- RowBlocker-HB:	Implemented	per-rank
• 887	entries	

• AttackThrottler
- Two	counters	per	<Bank,	Thread>	pair.

51

RowHammer	Characteristics

• RowHammer	Threshold	(NRH):	
The	minimum	row	activation	count	in	a	refresh	window	to	induce	
a	RowHammer	bit-flip.

• Blast	Radius	(rBlast):
The	maximum	physical	distance	from	the	aggressor	row	at	which	
RowHammer	bit-flips	can	be	observed.	

• Blast	Impact	Factor	(ci):
Set	of	coefficients	that	scale	a	RowHammer	attacks	impact	on	
victim	rows	based	on	their	physical	distance	to	the	aggressor	row.

52

Many-Sided	Attacks

• NRH			:	RowHammer	threshold	for	single-sided	attack.
• NRH*	:	Maximum	activation	count	that	BlockHammer	allows	

in	a	refresh	window.
• rBlast :	Blast	radius
• ci									:	Blast	impact	factor
• We	conTigure	NRH* such	that	hammering	all	rows	NRH* times	does	
not	cause	bit-Tlips.	

2𝑁+,∗ .
<=>

?!"#$%

𝑐< ≤ 𝑁+,

2 𝑐> + 𝑐@ + 𝑐A +⋯+ 𝑐?!"#$% 𝑁+,
∗ = 𝑁+,

53

D
RA
M
	B
an
k

local row-buffer

lo
ca

l r
ow

de

co
de

r

subarray

global row buffer

gl
ob

al
 ro

w

de
co

de
r

local row-buffer

lo
ca

l r
ow

de

co
de

r

subarraysubarraysubarraylocal
bitline

wordline

DRAM	cell

local row-buffer

lo
ca

l r
ow

de

co
de

r

subarray

local row-buffer

lo
ca

l r
ow

de

co
de

r

subarray

DRAM	row

A	DRAM	bank	is	hierarchically	organized	into	subarrays

Columns	of	cells	in	subarrays	share	a local	bitline
Rows	of	cells	in	a	subarray	share	a	wordline

DRAM	Organization

54

DRAM	Operation

…

…

…… …

Local	Row	BufferLocal	Row	Buffer

Cache	line

READ

…

READ READ

Ro
w
	D
ec
od
er

Local	Row	BufferREAD READ READ

ACT	R0 RD PRE	R0RD RD ACT	R1 RD RD RD

time

DRAM	Command	Sequence

55

DRAM	Cell

Each	cell	encodes	information	in	leaky capacitors

wordline

capacitor

access
transistor

bitline

Stored	data	is	corrupted if	too	much	charge	leaks	
(i.e.,	the	capacitor	voltage	degrades	too	much)

charge
leakage
paths

[Patel+ ISCA’17, Kim+ ISCA’20]

56

Security	Analysis

No permutation of epochs can satisfy
the necessary constraints of a successful attack

