BurstLink
Techniques for Energy-Efficient Video Display for Conventional and Virtual Reality Systems

Jawad Haj-Yahya¹
Taha Shahroodi¹
Jisung Park¹
Rahul Bera¹
Juan Gómez Luna¹
Jeremie S. Kim¹
Efraim Rotem²
Onur Mutlu¹

¹ SAFARI
SAFARI Research Group
[link]
² ETH Zürich
Our Goal: an Energy Efficient Video Streaming Scheme

- Planar and virtual reality (VR) video streaming consumes significant system energy due to high power consumption of major system components (DRAM, display interfaces, and display panel).

- We find two major inefficiencies in state-of-the-art video streaming schemes: 1) unnecessary data movement to/from DRAM, 2) underutilization of eDP interface bandwidth.

- Our Goal is to improve energy efficiency of planar and VR video streaming by leveraging display panel local memory to eliminate buffering frames in main memory.

- BurstLink Key idea: directly transfer a full decoded frame from the video-decoder (or GPU) to the display panel in a burst, exploiting the display interface’s maximum bandwidth.
BurstLink: Key Results

- **BurstLink** reduces the energy consumption of the host DRAM by eliminating data movement to/from the DRAM frame buffer.

- **BurstLink** increases the system’s idle-power state residency by reducing the usage of the processor and the display subsystem since they are active only during the burst period.

- We evaluate **BurstLink** using an analytical power model that we rigorously validate on an Intel Skylake mobile system. **BurstLink:**
 - Reduces system energy consumption for 4K planar/VR video streaming by 41%/33%.
 - Provides an even higher energy reduction in future video streaming systems with higher display resolutions and/or display refresh rates.

- We *show* that using main memory (DRAM) as a communication hub between system components is energy-inefficient.
 - BurstLink uses small remote memory near the data consumer to significantly reduce the number of costly main memory accesses in frame-based applications.
BurstLink
Techniques for Energy-Efficient Video Display for Conventional and Virtual Reality Systems

Jawad Haj-Yahya¹
Taha Shahroodi¹
Jisung Park¹
Rahul Bera¹
Juan Gómez Luna¹
Jeremie S. Kim¹
Efraim Rotem²
Onur Mutlu¹

¹ SAFARI Research Group
² ETH Zürich

SAFARI
safari.ethz.ch

ETH zürich

intel®