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2: Background and Key Ideas
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2) We can trade-off restoration and activation latency or e
reductions to maximize the overall benefit 64 ms 64 ms 64 ms
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(a) Normal Restoration

Charge-level-aware look-ahead Partial
restoration (CAL):
Accurately predict the next access-to-access

<¢--- DRAM Row

<€ --- Sense Amplifiers

. | (a) To compensate for the charge depletion and avoid data loss, DRAM fully restores the
Interva | | | (Row Buffer) charge level of the cell during access; (b) Restore Truncation[zhang+HPCA 2016] partially
 Carefully apply partial restoration according to restores the charge of soon-to-be-refreshed cell to a level, such that the amount of
the prediction and next scheduled refresh DRAM subarray structure charge is just enough to ensure that the refresh operation can still correctly read the

Two ciritial parts of DRAM access latency:
1) : Sensing and amplifying the charge of cell ( )
2) Restoration: Restoring the charge of cell after access (tRAS)

data; (c)b AL effectively enable partial restoration for both soon-to-be-refreshed an
soon-to-be-reactivated cells, while still effectively exploiting the benefits of activation
latency reduction

Greatly improve overall performance and energy
efficiency at low cost

3: Motivations

T T T T T | How to know the ' A charge level aware partial restoration
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4: Charge-Level-Aware Look-Ahead Partial Restoration

Hardware Structure High Level Operations Reduced Timing Parameters

Key Mechanism 5 O i @ ' Th to reduce tRCD/tRAS/tWR
E @ Insert =—p|Tag| Timer [PR |V _>[PRE] E » Insertion: New items are inserted upon PRE i accr(fl?d(i:?l;etso tohl(;eti:lllceer Value/ (T): /
1. Uses the last access-to-access interval | [PRE] [ACT] i command, potentially evicting other items, | T o 15, <1 ) | L
of a row to predict whether the row will | itializati . andlissuing ACT and PRE commands 5 S oi= ms since fast restoration
P | 8 [nitialization \ > Initialization: The timer value is initialized | 11.2/16.1/6.8ns
be reactivated again soon | [PRE] ' upon PRE command i
| @ 1 > Undate: The ti tabl dat »0<T<15:1-15ms since last restoration
2. Decides by how much the restoration || @ Self-updat i g da € performs C;" PR 1375 /19.4/8.4ns
i - Tms @ Lookup | every 1ms to record access intervals |
latency should be reduced, based on the |; very [ACT][WRITE] > Lookup: Each ACT/WRITE incurs a lookup in | s __ 0. 15 c0 o o (or lookup miss)
prediction and trade-off i Tag: row number, Timer: 4-bit timer, i Zﬁi;i’gii’jgg;ble o reduce timing parameters i Defa_lzlt i)arametle)rs P

PR: partially restored, V: valid

5: Evaluation

charge level
» lIdealized CAL (IdealCAL)

DDR4 timing tRCD/tRAS/tWR:

13.75/35/15ns CAL always outperforms the other mechanisms

By an average of 7.4%/(14.7%) for single-core (8-core) workloads

System Energy Breakdown

Methodology - Mechanisms Evaluated ; Performance Improvement
Simulator S CAL i § 0 B CC B RT m CCRT H GreedyPR m CAL = IdealCAL
DRAM Simulator (Ramulator [Kim+, CAL’15]) ! , -
https://github.com/CMU-SAFARIl/ramulator ! > ChargeCache (CC) [Hassan+, HPCA'16] | g i;g Single-core 8-core
i reduces tRCD and tRAS for highly-charged rows | + 1.
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Mechanism Parameters 4 Slmp_ © _Com tnation o an Intensive Intensive Intensive Intensive Intensive Memory
8-way cache-like set-associative timer table | GreedyPR: similar to CAL, but unaware of future i Intensive

6: Hardware Overhead & Sensitivity Analysis
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c;, o » Area: 0.034mm2, 0.11% of 16 MB LLC
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o . o : o0 o . o . m . » Partial restoration level plays an important role, trading tRCD with
Mem 25% 50% 75% 100% tRAS reduction can provide opportunities for performance gain

Mem Intensive

Mem Intensive Mem Intensive

On average, CAL reduces system energy by 10.1% and 18.9%
for memory intensive single-core and 8-core workloads

Non-Intensive Mem Intensive Mem Intensive

» CAL's is still effective to high temperatures, where the refresh rate is

increased SA FA R l




