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Long DRAM access latency is a major bottleneck for system
performance. In order to access data in DRAM, a memory
controller (1) activates (i.e., opens) a row of DRAM cells in a
cell array, (2) restores the charge in the activated cells back to
their full level, (3) performs read and write operations to the
activated row, and (4) precharges the cell array to prepare for
the next activation. The restoration operation is responsible for
a large portion (up to 43.6%) of the total DRAM access latency.

We �nd two frequent cases where the restoration operations
performed by DRAM do not need to fully restore the charge level
of the activated DRAM cells, which we can exploit to reduce the
restoration latency. First, DRAM rows are periodically refreshed
(i.e., brought back to full charge) to avoid data loss due to
charge leakage from the cell. The charge level of a DRAM row
that will be refreshed soon needs to be only partially restored,
providing just enough charge so that the refresh can correctly
detect the cells’ data values. Second, the charge level of a DRAM
row that will be activated again soon can be only partially
restored, providing just enough charge for the activation to
correctly detect the data value. However, partial restoration
needs to be done carefully: for a row that will be activated
again soon, restoring to only the minimum possible charge level
can undermine the bene�ts of complementary mechanisms that
reduce the activation time of highly-charged rows.

To enable e�ective latency reduction for both activation and
restoration, we propose charge-level-aware look-ahead partial
restoration (CAL). CAL consists of two key components. First,
CAL accurately predicts the next access time, which is the
time between the current restoration operation and the next
activation of the same row. Second, CAL uses the predicted next
access time and the next refresh time to reduce the restoration
time, ensuring that the amount of partial charge restoration
is enough to maintain the bene�ts of reducing the activation
time of a highly-charged row. We implement CAL fully in the
memory controller, without any changes to the DRAM module.
Across a wide variety of applications, we �nd that CAL improves
the average performance of an 8-core system by 14.7%, and
reduces average DRAM energy consumption by 11.3%.

1. Introduction
Main memory (i.e., DRAM) access latency has become a

critical bottleneck for system performance [57, 58]. While
DRAM capacity has increased due to manufacturing process
technology scaling, DRAM access latency has not decreased
signi�cantly for decades [9, 11, 42, 46]. Due to a combina-
tion of increasing core counts, modern applications that are
increasingly data-intensive, and inherent limitations to in-

creasing memory bandwidth, the DRAM access latency is
becoming a growing obstacle to improving overall system per-
formance [13, 17, 24, 29, 41, 45, 46, 52, 54, 57, 58, 61, 70, 73, 75, 85].

DRAM access latency is predominantly composed of the
latency of three fundamental DRAM operations: activa-
tion, restoration, and precharge. DRAM stores data in two-
dimensional arrays of cells, where each cell holds one bit
of data by storing a small amount of charge in a capacitor.
In order to read from or write to DRAM cells, the memory
controller must �rst activate (i.e., open) the array row that
contains the target cells. During activation, each cell in the
row shares its charge with its corresponding bitline. A sense
ampli�er detects the correct data value on the bitline, and
the data value is stored in a latch (as part of the row bu�er),
after which the memory controller can issue read and write
commands. The process of sharing charge between the cell
and the bitline depletes the amount of charge in the cell. To
compensate for this charge depletion and avoid data loss,
DRAM must restore the charge level of the cell, as shown
in Figure 1a. Once restoration is complete, and the memory
controller is done issuing read and write commands to the
activated row, the memory controller precharges the array,
which empties the row bu�er and prepares the array for the
next activation operation.

Because a DRAM cell is made up of a capacitor, the cell
leaks charge even when it is not accessed. In order to prevent
data loss, the DRAM issues periodic refresh operations to all
cells. A refresh operation brings the charge level of a cell back
to its full value. In DDR DRAM, each cell must be refreshed
every 64 ms under normal operating conditions [25, 26, 51].

Prior works [24, 45, 73, 87] show that the charge level of
cells can be exploited to reduce the activation and restora-
tion latencies. A DRAM cell that has been accessed or re-
freshed recently (e.g., within the last 1 ms) contains a high
amount of charge, as very little charge leakage has occurred
since the last restoration or refresh operation. A number of
mechanisms [24,45,73] exploit this observation to reduce the
activation latency of a highly-charged cell.1 Likewise, if an
activated cell is scheduled to be refreshed soon, the restora-
tion operation does not need to fully restore the cell’s charge,
as the refresh operation will take care of this. As a result,
the Restore Truncation mechanism [87] only partially restores
the charge after an access, such that the amount of charge
is just enough to ensure that the refresh operation can still
correctly read the data, as shown in Figure 1b. While Restore

1For clarity and consistency, we describe the opportunities at the cell
level. In reality, opportunities occur at the row level.
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(b) Refresh-Based Partial Restoration
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(c) CAL Partial Restoration

Figure 1: (a) Normal charge restoration for each memory access (Acc) and refresh (Ref ), (b) charge restoration using Restore
Truncation [87], (c) charge restoration using CAL.

Truncation helps to reduce DRAM access latency, we �nd that
it does not achieve the full bene�ts of partial restoration. We
make two new key observations about restoration in DRAM.

First, in addition to using partial restoration for soon-to-be-
refreshed DRAM cells, we can use partial restoration for soon-
to-be-reactivated DRAM cells as well, to enable further access
latency reduction. Recent work has shown that DRAM access
patterns have high temporal locality, and that a recently-
accessed row is likely to be accessed again soon [24]. If we
can predict that a currently-activated cell will be activated
again soon (e.g., in the next 16 ms), we can partially restore
the charge level of the cell, to a level just high enough for the
future activation to correctly read the data.

Second, while partial restoration for soon-to-be-reactivated
DRAM cells can provide performance bene�ts, we observe
that some of the latency savings from partial restoration can
work against those mechanisms that reduce the activation
latency of highly-charged cells [24,45,73]. If we were to use a
naive approach to partial restoration, where the charge level
of a cell is reduced to the minimum charge level necessary
for the next activation, most cells that were previously highly
charged can no longer bene�t from activation latency reduc-
tion mechanisms. We �nd that there is an optimal amount of
charge for a cell that allows us to still perform partial restora-
tion and thus reduce the restoration latency, while also taking
advantage of the activation latency reduction mechanisms,
to maximize the overall access latency reduction.

Based on our two observations, our goal in this paper
is to design a mechanism that can e�ectively enable partial
restoration for both soon-to-be-refreshed and soon-to-be-
reactivated cells, while still e�ectively exploiting the bene�ts
of activation latency reduction.

To this end, we propose charge-level-aware look-ahead par-
tial restoration (CAL). The key idea of CAL is to provide
balanced activation and restoration latency reductions for
soon-to-be-reactivated rows, in a way that maximizes the
overall reduction in DRAM latency. CAL consists of two
major components. First, CAL looks ahead to future mem-
ory accesses, by predicting whether an activated DRAM row
will be reactivated soon (e.g., in the next 16 ms). This pre-
dictor achieves a very high accuracy of 96% for single-core
applications, and 98% for multi-core workloads, on average.
Second, CAL uses this prediction and the scheduled refresh
time of the activated row to apply charge-level-aware partial

restoration. Using our second observation about the trade-o�
between restoration latency reduction and activation latency
reduction, CAL partially restores the charge of the DRAM
cells in the activated row to a level that maximizes the overall
access latency reduction (as shown in Figure 1c), due to both
restoration and activation.

Our evaluations show that CAL improves the performance
of a system using DDR4 DRAM by 14.7% and reduces DRAM
energy by 11.3%, on average across a wide range of 8-core
workloads. We show that the performance bene�ts of CAL are
robust across many system and mechanism parameters (e.g.,
page management policy, address mapping scheme, restora-
tion level, operating temperature). CAL outperforms both
Restore Truncation [87] and ChargeCache [24], two state-
of-the-art works that exploit partial restoration and highly-
charged rows, respectively, and outperforms a system that
employs a simple combination of Restore Truncation and
ChargeCache by 9.8% for our 8-core workloads. CAL requires
no changes to the DRAM chip or module. It can be combined
easily with other complementary DRAM architecture opti-
mizations (e.g., [11,12,13,14,23,39,46,61,67,75,86]) to provide
further performance and energy improvements.

We make the following major contributions in this work:
• We observe that for DRAM rows that are accessed again

in the near future, we can safely apply partial restoration
to reduce the restoration latency. However, we observe
that there is a trade-o� between restoration latency and
activation latency reduction for highly-charged rows, and
that the largest overall DRAM access latency reduction can
be achieved by balancing the restoration and activation
latency reductions for such rows.

• We propose charge-level-aware look-ahead partial restora-
tion (CAL), a mechanism that e�ectively reduces the DRAM
access latency by carefully exploiting both partial restora-
tion and activation latency reduction. CAL requires no
changes to the DRAM chip or module, and can be imple-
mented completely in the memory controller.

• We comprehensively evaluate the performance and energy
e�ciency of CAL. We show that CAL substantially im-
proves both the performance and energy e�ciency of sys-
tems with DDR4 DRAM. We also demonstrate that CAL’s
performance gains are robust across many system and
mechanism parameters.
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2. Background
We �rst introduce necessary background on DRAM organi-

zation and fundamental DRAM operations. We next discuss
state-of-the-art mechanisms that exploit the charge level of a
DRAM cell to reduce the access latency of DRAM.

2.1. DRAM Organization
In the main memory subsystem, DRAM is organized in

a hierarchical manner, The topmost level of the hierarchy
is the memory channel. Each channel connects to one or
more DRAM modules that share a pin-limited bus to the
processor. Each channel has its own memory controller that
sends commands to, and manages the state of, all modules
that are connected to the channel.

Each module consists of multiple DRAM chips, where each
chip contains millions of DRAM cells. As shown in Figure 2, a
DRAM cell consists of a single capacitor, which holds one bit
of data in the form of stored charge, and an access transistor.
These cells are organized into banks, where each bank can
perform operations in parallel with other banks.2 A bank
contains multiple two-dimensional arrays of DRAM cells,
which are called subarrays [39]. Figure 2 also shows the high-
level design of a subarray. In a subarray, each cell in a row
shares a common wordline, which is used to enable the access
transistor of all of the cells in the row (i.e., activate the row),
and each cell in a column shares a common bitline, which is
used to sense data from the cell in the activated row. Each
bitline is connected to its own local sense ampli�er, where
the sense ampli�ers of the subarray serve as the row bu�er.

DRAM Row

Sense Amplifiers 
(Row Buffer)

Wordline

Bitline

Cell

Wordline

B
itline

Figure 2: DRAM subarray organization and cell structure.

Several chips in the DRAM module are grouped together
into a rank. Each cache line stored in DRAM is distributed
across all of the chips in a rank. As a result, in order to operate
on a single cache line, all chips in a rank are accessed concur-
rently, and they respond to the same DRAM commands.

2.2. Fundamental DRAM Operations
There are �ve fundamental operations that need to be per-

formed when accessing data in DRAM. (1) Activation opens
one of the DRAM rows in a bank, and copies the data in the
opened row into the row bu�er. (2) Restoration ensures that
the charge that is drained from each cell in the DRAM row
during activation is restored to its full level, to prevent data
loss. (3) Reads and (4) writes can be performed once the data

2Modern DRAM architectures such as DDR4 DRAM employ bank
groups [26], where each bank group contains several banks. Bank grouping
is used to provide more banks at low cost for a DRAM module.

of an activated row is copied to the row bu�er. (5) Precharge
releases the data from the row bu�er when the memory con-
troller is done issuing reads and writes to the activated row,
and prepares the bank to activate a di�erent row.

Figure 3 shows a timeline of the commands issued to per-
form a read (top) or a write (bottom) to a single cache line of
data. The memory controller issues four commands: (1) ACT
(activate), (2) READ or (3) WRITE, and (4) PRE (precharge).
Note that restoration does not have an explicit command, and
is instead triggered automatically after an ACT command.
The time spent on each operation is dictated by a set of timing
parameters that are determined by DRAM vendors [25, 26].
While each command operates at a row granularity, for sim-
plicity, we describe how the DRAM operations a�ect a single
DRAM cell.

tRCD

tRAS tRP
(activation)

(activation + restoration) (precharge)

Read

Timing
Parameters

tRCD

Write

burst write tWR
Timing

Parameters

ACT READ PRE ACT

ACT WRITE PRE ACT

Figure 3: Commands and timing parameters for reading (top)
and writing (bottom) data from/to DRAM.

Figure 4 shows the charge levels of a cell that is activated
and restored. In the initial precharged state ( 1 in Figure 4),
the bitline is held at a voltage level of VDD/2, where VDD is
the full DRAM supply voltage. The wordline is at 0 V, and
therefore the bitline is disconnected from the capacitor. After
the memory controller issues an ACT command, the wordline
is raised to Vh, thereby connecting the DRAM cell capacitor
to the bitline. As the voltage of the capacitor (in this example)
is higher than that of the bitline, charge �ows into the bitline,
raising the voltage level of the bitline up to VDD/2 + δ ( 2 ).
This process is called charge sharing. The sense ampli�er
then senses the deviation on the bitline and ampli�es that
deviation correspondingly. This phase, referred to as sense
ampli�cation, eventually drives the voltage level of the bitline
and the cell back to the original voltage state of the cell (VDD
in this example).

Wordline B
itlin

eCapacitor

VDD/2

Precharged1

VDD/2 + δ

Charge 
Sharing

2

3VDD/4

Sense 
Amplification
3

VDD

Restoration4

0V Vh Vh Vh

Figure 4: Cell charge levels during DRAM operations.

As soon as the sense ampli�er has su�ciently ampli�ed the
data on the bitline (e.g., the voltage level reaches 3VDD/4; 3 ),
the memory controller can issue a READ or WRITE command
to access the cell’s data in the row bu�er. The time taken
to reach this state ( 3 ) after the ACT command is speci�ed
by the timing parameter tRCD , as shown in Figure 3. After
the READ or WRITE command is issued, the sense ampli�-
cation phase continues to drive the voltage on the bitline
until the voltage level of the bitline and the cell reaches VDD
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( 4 ). In other words, the original charge level of the cell is
fully restored to its original value for a READ, or correctly
updated to the new value for a WRITE. For DRAM read re-
quests, the latency for the cell to be fully restored after ACT
is determined by the timing parameter tRAS . For DRAM write
requests, the time taken to fully update the cell is determined
by tWR . After restoration, the bitline can be precharged using
the PRE command to prepare the subarray for a future access
to a di�erent row. This process disconnects the cell from the
bitline by lowering the voltage on the wordline. It then resets
the voltage of the bitline to VDD/2. The time to complete the
precharge operation is speci�ed by the timing parameter tRP .

2.3. Charge Leakage and Refresh
A DRAM cell starts leaking charge after it is disconnected

from the bitline [50, 51]. As described above, a DRAM access
fully restores the charge in a cell, but if the cell is not accessed
for a long time, the charge level of the cell eventually decays
to a point where the original data value cannot be sensed
correctly. To maintain data integrity, DRAM cells have to be
periodically refreshed to a full charge level [50, 51, 62].

According to the DDR3 and DDR4 DRAM speci�cations, a
DRAM cell must be refreshed every 64 ms [25,26]. To achieve
this, the DRAM rows in a chip are assigned to one of 8K
refresh bins. One bin of rows is refreshed at a time by an
auto-refresh command (REF ). The interval between REF com-
mands is known as the refresh interval (tREFI ), which is 7.8 µs
in DDR3/DDR4 (i.e., 64 ms/8K). The DRAM chip maintains
an internal counter to determine which bin to refresh when
it receives a REF command. As in prior work [5, 22, 36, 51, 87],
we assume that the memory controller knows the mapping
between bin and row addresses. In other words, the mem-
ory controller has complete knowledge of when each bin is
refreshed and the corresponding rows in each bin.

2.4. Exploiting Charge Levels to Reduce Latency
Conventional DRAM chips perform activation and restora-

tion operations for a �xed latency, which is determined by
the value of the timing parameters shown in Figure 3. How-
ever, prior works [24, 45, 73, 87] show that the current charge
level of a cell can be exploited to reduce the activation and
restoration latencies for a cell in several cases.

The charge level of a DRAM cell has a noticeable e�ect
on the activation latency [24, 45, 73]. If a cell has a high
charge level, the corresponding voltage perturbation process
on the bitline during activation is faster, and consequently,
the sense ampli�er takes less time to reach states 3 and 4 in
Figure 4. ChargeCache [24] is a state-of-the-art mechanism
that exploits this insight to safely reduce the tRCD and tRAS
timing parameters (see Figure 3) for a highly-charged cell.
ChargeCache tracks rows that have been recently accessed.
The charge level of the cells in such a row is high, as only
a short amount of time has elapsed since the cells were last
restored to the full charge level. Therefore, if a recently-
accessed row is activated again within a short time interval
(e.g., 1 ms), ChargeCache uses smaller tRCD and tRAS values
for the row, which reduces the overall DRAM access latency.

A similar approach can be applied to reduce the restoration
latency. In a conventional DRAM chip, each ACT command

triggers a restoration operation that fully restores the charge
level of the cells in the activated row. Likewise, each refresh
operation fully restores the charge level of a cell at a �xed
time interval (every 64 ms in DDRx DRAM). Zhang et al. [87]
observe that it is not necessary for a restoration operation to
fully restore the charge level of a cell if the cell is scheduled to
be refreshed soon after the restoration operation takes place.
They propose the Restore Truncation mechanism, which par-
tially restores the cell charge level such that the charge in the
cell is just enough to retain correct data until the next refresh
of the cell. In order to determine the latency of partial restora-
tion, Restore Truncation divides the 64 ms refresh interval
into four 16 ms sub-windows. A cell that is activated in the
last sub-window (i.e., the one closest to the next refresh op-
eration) will be refreshed in less than 16 ms, and is therefore
restored to the lowest of the partial charge levels possible
in Restore Truncation. A cell that is activated in an earlier
sub-window is restored to a higher partial charge level, as
it would take longer before the next refresh operation takes
place on the cell. The level of the restored charge can be
reduced by decreasing the values of tRAS and tWR (shown in
Figure 3). As these timing parameter values are reduced, the
overall DRAM access latency reduces.

3. Motivation
As we discuss in Section 2.4, prior works propose mech-

anisms that reduce either the activation latencies of highly-
charged cells or the restoration latencies of soon-to-be-
refreshed cells. We �nd that we can use similar principles to
take advantage of new opportunities for latency reduction that
are complementary to these existing approaches. In particular,
we can apply the concept of partial restoration to soon-to-be-
reactivated cells in addition to soon-to-be-refreshed cells.

In this section, we perform a detailed study of opportunities
and trade-o�s related to performing partial restoration on
soon-to-be-reactivated cells across a wide range of single-core
and multi-core workloads (see Section 5 for our experimental
methodology). We discuss two key observations that emerge
from our study: (1) there are many unexploited opportunities
to apply partial restoration to soon-to-be-reactivated cells
(Section 3.1); and (2) there is a trade-o� between reducing
the restoration latency and reducing the activation latency
of highly-charged cells, and these two reductions can work
against each other (Section 3.2).

3.1. Partial Restoration of
Soon-to-Be-Reactivated Rows

As we discuss in Section 2.4, both the restoration opera-
tion during a memory access and a refresh operation restore
the charge level of a cell. The Restore Truncation mecha-
nism [87] uses this insight to reduce the restoration operation
latency when a row activation (which triggers restoration;
see Section 2.2) takes place shortly before a refresh opera-
tion. Likewise, if a row activation takes place shortly before
another activation of the same row (which we call a soon-to-
be-reactivated row), we can similarly reduce the latency of
the restoration operation that is triggered by the earlier row
activation.
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To understand the potential of partial restoration for soon-
to-be-reactivated rows, we study the distribution of the access-
to-access interval, which we de�ne as the time between a PRE
command to the bank that has the row open and the next ACT
command to the same row, across the memory operations
of an application. We compare the access-to-access interval
with the access-to-refresh interval, which is the time between
a PRE command to the bank that has the row open and the
next refresh operation to the same row in the bank. As we
discuss in Section 2.4, Restore Truncation [87] categorizes the
access-to-refresh interval into one of four 16 ms sub-windows.
We use a similar methodology.

Figure 5 shows the distribution of the access-to-refresh
(left bar) and access-to-access (right bar) intervals for both
single-core and 8-core workloads. We break down the in-
terval distributions into �ve categories based on 16 ms sub-
windows. We make two observations from the �gure. First,
for both single-core and 8-core workloads, only 25% of mem-
ory accesses are followed by a refresh in less than 16 ms, and,
thus, can use the smallest restoration latency. This is because
refresh happens at �xed time intervals, independent of the
memory access pattern. As a result, when we divide the re-
fresh interval into four 16 ms sub-windows, the number of
memory accesses that fall into each sub-window tends to be
similar. Second, unlike the access-to-refresh interval, the vast
majority of the access-to-access intervals (95% for single-core,
97% for 8-core workloads) are less than 16 ms. This is due
to a combination of the access locality of applications, and
the high number of row con�icts that occur due to bank con-
�icts [24, 38, 39, 46, 55, 59, 60, 73, 88]. As a result, a row that
is to be accessed again is likely to be �rst closed due to a
bank con�ict and then reactivated for the next access. Prior
work [87] demonstrates that partially restoring the charge
level of a cell, such that it has enough charge to be sensed
correctly in the next 16 ms, yields a 57.1% decrease in the
restoration latency.

In order to use partial restoration on a soon-to-be-
reactivated row, a mechanism must be able to predict whether
a row will be reactivated soon (e.g., in the next 16 ms).3 This
prediction needs to be made at the time the restoration oper-

3Even though we �nd signi�cant diversity in the access-to-access inter-
val distribution if we study smaller sub-windows (e.g., 8 ms; not shown in
Figure 6), we also �nd that the additional bene�t of classifying the intervals
into smaller sub-windows is small. As a result, we can signi�cantly simplify
a mechanism that makes use of access-to-access intervals, by tracking only
whether the interval for a row falls within 16ms.

ation starts. We �nd that we can accurately predict the next
access-to-access interval of a row based on the last access-
to-access interval length. Figure 6 shows the relationship
between last and next access-to-access intervals of the same
row for single-core and 8-core workloads. In the �gure, we
say that an access-to-access interval is small if it is less than
16 ms, and that it is large otherwise. We classify last and next
interval pairs into four types: (small, small), (small, large),
(large, small), and (large, large). DRAM rows that are accessed
only once during the entire execution are not included. As
shown in the �gure, 96% of the pairs for single-core work-
loads, and 98% of the pairs for 8-core workloads, are classi�ed
as (small, small). In other words, if the last access-to-access
interval is less than 16 ms, the next access-to-access interval
is highly likely to also be less than 16 ms. We conclude that we
can simply use the last access-to-access interval type to very
accurately predict the next access-to-access interval type.

3.2. Balancing Activation and Restoration
Latency Reductions

As we discuss in Section 2.4, prior works show that the
activation latency can be reduced for a DRAM cell with a high
charge level [24, 45, 73]. We can combine activation latency
reduction for highly-charged cells with partial restoration
for soon-to-be-reactivated cells. However, partial restora-
tion can reduce or even eliminate the ability to reduce the
activation latency for a highly-charged cell that is soon to
be reactivated. This is because partial restoration reduces
the charge level of the cell, which can cause the cell to no
longer be highly charged by the time the reactivation takes
place. If we naively combine an activation latency reduction
mechanism [24] with a restoration latency reduction mech-
anism [87], where the partial restoration mechanism works
to maximize the restoration latency reduction, the combined
mechanisms yield only a slight improvement (up to 2.6%, see
Section 6.1) over the individual mechanisms.

We �nd that there is a fundamental trade-o� between
restoration latency reduction and activation latency reduc-
tion. We can exploit this trade-o� to maximize the overall
reduction in DRAM access latency. To understand the trade-
o�, we perform SPICE simulations of the core DRAM circuitry
(i.e., row decoder, cell capacitor, access transistor, sense am-
pli�er, bitline capacitance, and resistance) based on the PTM
low-power transistor models [3], with parameters taken from
the Rambus model [65]. These SPICE simulations allow us
to observe how the charge level of a cell at the time an ACT
command is issued a�ects the required activation latency.
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Figure 5: Distribution of access-to-access and access-to-refresh intervals for single-core (left) and 8-core (right) workloads.
[a, b] represents all intervals of length t where a ≤ t < b, with a, b, and t expressed in milliseconds.
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Figure 6: Distribution of last and next access-to-access interval type pairs for single-core (left) and 8-core (right) workloads.

Figure 7 shows the bitline voltage during the activation
of three DRAM cells with three di�erent initial charge lev-
els right before the activation starts. 1 shows a cell that is
activated 1 ms after a full restoration (i.e., a cell with a high
charge level). 2 shows a cell that is activated 1 ms after a
partial restoration, which restores the voltage of the cell to
only Vpartial–restoration–level . 3 shows a cell that is activated
almost 64 ms after full restoration but before refresh, which
means that the cell starts activation at the minimum possible
charge level. Compared to cell 3 , cell 1 can use smaller acti-
vation (tRCD) and restoration (tRAS) latencies by exploiting the
fact that the cell is highly charged. This is because a highly-
charged cell reaches (1) the voltage level at which a read or
write operation can begin (Vready–to–access in the �gure) and
(2) the full restoration voltage VDD more quickly than a cell
that starts activation at the minimum possible charge level.
We observe from the �gure that for cell 2 , by using partial
restoration, we lose a small amount of the tRCD reduction
compared to cell 1 , but this allows us to signi�cantly reduce
tRAS . Thus, there is a trade-o� between tRCD (A in the �gure)
and tRAS (B) reductions.
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Figure 7: E�ect of charge level and restoration level on tRCD
(activation) and tRAS (restoration) latency reductions.

We can use a simple heuristic to approximate the maximum
bene�t of the trade-o� between tRCD and tRAS reductions. We
quantify PRBene�t(Vx ), the bene�t of partially restoring a cell
to voltage level Vx , as:

PRBene�t(Vx ) = ∆tRAS(Vx)
∆tRCD(Vfull) – ∆tRCD(Vx) (1)

In the equation, ∆tRCD(Vfull) is the tRCD reduction of a fully-
restored cell ( 1 ), and ∆tRCD(Vx ) and ∆tRAS(Vx ) are the re-

ductions of tRCD and tRAS for a cell that is partially restored
to voltage level Vx .

In order to minimize the overall DRAM access latency, we
want to maximize PRBene�t(Vx ) without sacri�cing data in-
tegrity. To do this, we must �rst determine Vx_min, the lowest
value of voltage level Vx for which we can guarantee data
integrity after partial restoration. Recall from Section 3.1 that
we want to apply partial restoration only to cells that are re-
activated or refreshed within 16 ms after their last precharge.
In other words, after the precharge operation, there must be
enough charge left in a cell such that at the end of the 16 ms
window, the voltage level of the cell must be at least Vmin, the
lowest voltage at which data can be sensed correctly. Because
a DRAM cell uses a capacitor to store data, the amount of
charge in the cell decays over time. Thus, Vx_min should be
set to ensure that at a charge decay rate of rdecay , the cell
voltage reaches Vmin after 16 ms:

Vx_min = Vmin + rdecay × 16 ms (2)

Using Monte Carlo simulations of our SPICE model, with
up to +–5% process variation on each component, we �nd that
Vmin = 0.67VDD .4 To model the charge level decay rate rdecay ,
we employ a linear decay model, which is more conservative
than the actual documented exponential decay behavior [87]:

rdecay =
(Vfull – Vmin)VDD

64 ms (3)

where Vfull is the voltage level of a cell after full restoration
(0.975VDD).

We solve Equation 3 to determine the value of rdecay , and
then use the values of Vmin and rdecay in Equation 2 to �nd
that Vx_min = 0.75VDD . Now, we can �nd the maximum
value of PRBene�t(Vx ) for all values of Vx > 0.75VDD . For
each value of Vx , we use SPICE simulations to determine the
values of ∆tRCD(Vx ) and ∆tRAS(Vx ), and then use these in
Equation 1 to determine the value of PRBene�t(Vx ). We �nd
that setting the partial restoration voltage Vx = 0.85VDD pro-
vides the best trade-o� between restoration latency reduction
and activation latency reduction. We perform a sensitivity
study of di�erent partial restoration voltages in Section 6.5.

3.3. Summary and Our Goal
From our motivational study, we conclude that (1) there

is a new opportunity to apply partial restoration to soon-to-
be-reactivated rows (Section 3.1); (2) soon-to-be-reactivated

4This is more conservative than prior work [1], which assumes that
Vmin = 0.4VDD .
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rows can be predicted with very high accuracy (Section 3.1);
and (3) we can trade o� restoration latency reduction with
activation latency reduction for highly-charged, soon-to-be-
reactivated rows to maximize the overall DRAM access la-
tency reduction (Section 3.2). Based on these conclusions, our
goal in this work is to design a mechanism that can e�ectively
exploit partial restoration on both soon-to-be-reactivated and
soon-to-be-refreshed rows.

4. CAL Design
Based on our observations from Section 3, we propose

charge-level-aware look-ahead partial restoration (CAL) for
DRAM. The key idea of CAL is to predict which rows in
DRAM will be reactivated or refreshed soon, and to perform
careful partial restoration on the cells in these rows that
maximizes the overall access latency due to the reduction
in restoration and activation latencies. CAL consists of two
major components. First, CAL uses the last access-to-access
interval length (see Section 3.1) of a row to predict whether
the row will be activated again soon (e.g., within 16 ms). Sec-
ond, CAL uses this prediction, along with information about
the next scheduled refresh to the row, to decide by how much
the restoration latency of the row should be reduced.

Both of these components are enabled by a hardware struc-
ture called the timer table, which we implement in the mem-
ory controller. The timer table tracks the last access-to-access
interval of the most-recently-accessed rows. To do so, CAL
allocates an entry in the timer table when a row is precharged
(i.e., when the current access to the row �nishes), and sets a
16 ms timer. The timer value indicates (1) whether the cell
is highly charged, and (2) whether the cell is likely to be ac-
cessed again in the next 16 ms. When the row is accessed
again, CAL looks up the timer table. If an entry exists for the
row, and the timer is non-zero, the row is likely to continue
having a small access-to-access latency, and CAL (1) reduces
both the activation and restoration latencies if the cells in the
row are highly charged, or (2) reduces the restoration latency
otherwise.

4.1. Timer Table Design
Figure 8 illustrates the basic structure of the timer table.

The timer table uses a set-associative structure, indexed by
the DRAM row address, to record the last access-to-access
interval for the most-recently-accessed DRAM rows. Each
timer table entry contains (1) a tag, which stores the DRAM
row address; (2) a timer, which records the time elapsed since
the row was last precharged; (3) a partially restored (PR) bit,
which is set to zero when an entry is initially allocated, and
is set to one whenever a row is partially restored; and (4) a
valid bit, which is set to zero for an unallocated entry.5

Figure 8 shows the four major operations performed by
CAL using the timer table:
1. Insertion: CAL inserts a new entry into the table when-

ever the memory controller issues a PRE command to the
5The timer table can be implemented as either a single shared table or as

per-core tables. In our evaluation, we assume that each core has a dedicated
timer table. We choose per-core timer tables to avoid the need to tune the
optimal size of a shared table based on the core count, and to simplify table
organization.

row ( 1 in Figure 8), potentially evicting an existing entry
from the table ( 2 ). CAL sets the tag of the new entry to
the current row address, sets the valid bit to one, and sets
the PR bit to zero.

2. Timer Initialization: Whenever a row is precharged ( 3 ),
CAL initializes the timer for the row to 15 ms (see Sec-
tion 4.4).

3. Timer Update: Every 1 ms, the table checks each entry’s
timer ( 4 ). If the timer is greater than zero, the timer table
decrements the timer by 1 ms.

4. Lookup: Every time the memory controller issues an ACT
or WRITE command to a row, CAL queries the table to
see if an entry exists for the row ( 5 ). If an entry exists,
CAL uses this information to decide if it should reduce
the activation and/or restoration latencies for the row (see
Section 4.3). CAL then sets the PR bit of the entry to
one if it partially restores the row. CAL uses the PR bit
to determine if a partially-restored row needs to be fully
restored when its access-to-access interval is large (see
Section 4.4).

[PRE] Insert

Timer Update

Evict
[PRE] 
[ACT]

Lookup

Timer Table

..
.

Tag Timer PR V 2

45
4

1
[PRE] 

Initialization3

Figure 8: High-level overview of timer table operations.

4.2. Maintaining Row Timers
Whenever a row is precharged, CAL starts tracking the

time until the row is activated again. This allows CAL to de-
termine the current access-to-access interval type (i.e., small
or large), which it uses to predict the next access-to-access
interval type of the row (see Section 3.1). To track the access-
to-access interval, CAL queries the timer table to see if there
is an entry for the row that is precharged. If an entry does
not exist, CAL inserts a new entry. The timer table contains
a �xed number of entries, and the new entry insertion may
evict an existing entry, using LRU replacement.6

CAL then initializes the entry timer to start tracking the
access-to-access time. The timer table uses a 1 ms resolution
for the timer, where it decrements the timer of each entry
every millisecond. As shown by prior work [24], a 1 ms resolu-
tion is small enough for meaningful charge level exploitation.
We �nd that this resolution provides a good trade-o� between
charge level exploitation and table size.

When the timer table decrements the entry timers, it checks
to see if any of the timers are now 0. If a timer reaches 0,
this means that the row corresponding to the entry has not
been activated in a 16 ms window (i.e., the row has a large
access-to-access interval). If this row was partially restored
in the past (i.e., if the PR bit of the timer table entry is set

6When an existing entry is evicted, if the evicted entry is for a row
that was partially restored (i.e., the PR bit is set), CAL must fully restore
the charge level of the row as soon as the entry is evicted to maintain data
integrity. We describe this in detail in Section 4.4.
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to 1), CAL must fully restore the charge level of the row to
maintain data integrity (see Section 4.4).

4.3. Using the Timer to Reduce Latencies
CAL uses the current value of the timer at the time that

a row is activated or written to, in order to determine if it
can reduce the activation and/or restoration latencies for a
row. This is because the current timer value indicates both
(1) the current charge level of the cells in the row, and (2) the
last access-to-access interval type for the row. There are one
of three possible categories for the row based on the current
value of the timer (recall from Section 4.1 that the timer starts
counting down from 15 ms):
1. If the timer is 15 ms, this indicates that less than 1 ms has

passed since the row was precharged. As a result, the row
is currently at a high charge level, and has a short access-
to-access interval. For such a row, CAL reduces both the
activation and restoration latencies (see Table 1 in Section 5
for the reduced latency values), and sets the PR bit to 1.

2. If the timer is less than 15 ms but greater than zero, this
indicates that between 1–15 ms have passed since the row
was precharged. As a result, the row may no longer be at a
high charge level, but the row has a short access-to-access
interval. For such a row, CAL reduces only the restoration
latency (see Table 1 in Section 5), as it may not be able
to reduce the activation latency without the possibility of
data loss, and sets the PR bit to 1.

3. If the timer is at zero, this indicates that more than 15 ms
have passed since the row was precharged. As a result, the
row is likely not at a high charge level, and the row has a
large access-to-access interval. For such a row, CAL does
not reduce the activation or restoration latencies, and sets
the PR bit to 0. Note that if CAL cannot �nd an existing
entry for a row in the timer table, it assumes that the row
falls into this category to ensure reliable operation.

4.4. Handling Large Access-to-Access Intervals
When a row timer reaches zero after decrementing, or

when a timer table entry is evicted, CAL checks to see if the
row corresponding to the entry was partially restored (i.e., if
the PR bit is set to 1). If the row was partially restored, the row
may not have enough charge anymore. This is because CAL
expected the row to have a short access-to-access interval,
but the access-to-access interval of the row either (1) actually
is long (in the case where the row entry’s timer reaches zero),
or (2) can no longer be accurately tracked (in the case where
the entry is evicted).

In order to maintain data integrity for such a row, CAL
must fully restore the charge level before the charge level
drops below the minimum amount that can be sensed cor-
rectly. CAL immediately issues an (ACT, PRE) command pair
to the row, which preempts other pending commands in the
memory controller. The (ACT, PRE) pair uses full activation
and restoration latencies, ensuring that the row is fully re-
stored. In order to ensure that the two commands can be
issued without violating any requirements, CAL guarantees
that there is at least 1 ms left for the command pair to take
place, which is plenty of time to schedule the two commands.
To ensure this, CAL initializes the timer to count down for

only 15 ms, even though it uses a partial restoration latency
that provides enough charge for a 16 ms window.

For the workloads evaluated in this paper, the extra com-
mands performed to fully restore a row that was initially only
partially restored have a very small performance overhead
of less than 0.1% for a 256-entry timer table per core. Our
evaluation in Section 6.1 shows that even when we account
for this small overhead, CAL provides signi�cant speedup
and outperforms other mechanisms that reduce activation
and restoration latencies.

5. Methodology
We use a modi�ed version of Ramulator [40], an open

source cycle-accurate DRAM simulator, in conjunction with
a front-end CPU and cache model based on Pin [53], to eval-
uate CAL and other mechanisms. Table 1 provides detailed
con�guration parameters of the simulated system, including
the latency parameters used by CAL and other mechanisms.
We obtain timing parameters from the SPICE model described
in Section 3.
Components Parameters
Processor 1–8 cores, 4 GHz, 3-wide issue,

128-entry inst. window, 8 MSHRs/core
Last-Level Cache 2 MB/core, 64 B cache line, 16-way
Memory Controller 64-entry RD/WR request queues,

FR-FCFS scheduling [66, 89],
closed-row policy

DRAM DDR4-1600, 800 MHz bus frequency,
1–2 channels, 1 rank, 4 bank groups,
4 banks, 512 K rows/bank, 1 kB row,
baseline tRCD/tRAS/tWR: 13.75/35/15 ns

ChargeCache [24] 256-entry/core, 8-way associative,
LRU replacement policy, 1 ms caching
duration, reduced tRCD/tRAS : 9.7/23.8 ns

Restore reduced tRAS/tWR
Truncation [87] for the four 16 ms sub-windows:

35/15, 24.6/10.8, 19.4/8.4, 15.9/6.6 ns
CAL 256 entries/core, 8-way associativity,

LRU replacement policy,
reduced tRCD/tRAS/tWR:
- hit within 1 ms: 11.2/16.1/6.8 ns
- hit between 1–16 ms: 13.75/19.4/8.4 ns

Table 1: Simulated system con�guration.

To measure system energy, we build our energy model
based on prior work [6], which captures all major compo-
nents of our evaluated system, including the CPU core, caches,
o�-chip interconnect, and DRAM. The model makes use of
multiple tools, including McPAT 1.0 [49] for the CPU core,
CACTI 6.5 [56] for the caches, Orion 3.0 [28] for the intercon-
nect, and a version of DRAMPower [8] for DRAM, which we
modify to accurately capture the power consumption of CAL.
We estimate the area overhead of CAL using McPAT 1.0 [49].

Mechanism Parameters. We use an 8-way cache-like
set-associative structure for the CAL timer table, with 256
entries per core. To ensure a fair comparison, we evaluate
ChargeCache [24] using the same capacity, set associativity,
and replacement policy for the highly-charged row access
cache (HCRAC).
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Workloads. We evaluate twenty single-thread applica-
tions from the TPC [83], MediaBench [19], Memory Schedul-
ing Championship [27] BioBench [2], and SPEC CPU2006 [76]
benchmark suites.7 We use PinPoints [63, 72] to identify the
representative phases of each application. We classify the
applications into two categories: memory intensive (greater
than 10 last-level cache misses per kilo-instruction, or MPKI)
and memory non-intensive (less than 10 MPKI). To evaluate
the e�ect of CAL on a multicore system, we form twenty 8-
application multiprogrammed workloads. To vary the load on
the memory system, we generate workloads where 25%, 50%,
75%, and 100% of the applications are memory intensive. For
both the single-thread applications and multiprogrammed
workloads, each core executes at least one billion instruc-
tions. We report the instruction-per-cycle (IPC) speedup for
single-thread applications, and weighted speedup [74] as the
system performance metric [18] for the multiprogrammed
workloads.

6. Evaluation
We compare CAL to a conventional baseline memory sub-

system (Base), two state-of-the-art memory latency reduction
mechanisms:
• ChargeCache [24] (CC), which reduces tRCD and tRAS for

highly-charged rows;
7We do not simulate the entire software stack with system services, such

as context switches and VM exits. In the event of a context switch or VM
exit, the timer table may need to be �ushed, which can incur performance
overhead. However, since we employ a timer table with only 256 entries, the
worst-case overhead of one context switch would be 256 additional ACT and
PRE commands to fully restore all of the rows whose entries are �ushed. We
calculate this overhead to be approximately 0.1% of the overall execution
time for a high context switching frequency of 100 times per second [16].
The corresponding energy overhead is around 0.12%.

• Restore Truncation [87] (RT ), which reduces tRAS and tWR
for soon-to-be-refreshed rows;

and two mechanisms that naively combine techniques to
reduce both activation and restoration latency:
• CCRT , a simple combined mechanism that (1) partially

restores all soon-to-be-refreshed rows using Restore Trun-
cation and (2) reduces the activation latency of only the
highly-charged rows that are not partially restored using
ChargeCache;

• GreedyPR, a partial restoration mechanism that is similar
to CAL but greedily maximizes the restoration latency re-
duction without considering its impact on the potential for
reducing the activation latency (see Section 3.2).

Table 1 lists the reduced latencies used by CAL, ChargeCache,
and Restore Truncation. In addition, we provide performance
comparisons to three idealized (i.e., unimplementable) ver-
sions of the latency reduction mechanisms, which provide
upper bounds to the potential speedup of various mecha-
nisms:
• IdealCC, where all rows are accessed with the same reduced
tRCD and tRAS latencies used by ChargeCache (see Table 1);

• IdealRT , where all rows are restored with the same reduced
tRAS and tWR latencies used by Restore Truncation; and

• IdealCAL, where all rows are activated and restored with
the same reduced tRCD , tRAS , and tWR latencies used by
CAL.

6.1. Impact on System Performance
Figure 9 shows the performance improvement over Base

for our single-core system. Figure 10 shows the weighted
speedup improvement over Base, for our 8-core system. In
both �gures, we group the applications and workloads based
on memory intensity (see Section 5). We make four observa-
tions from Figures 9 and 10.
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Figure 9: Speedup for our single-core system over Base.
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First, we observe that CAL always outperforms the other
mechanisms (Base, CC, RT , CCRT , and GreedyPR). For our
single-core system, CAL provides an average speedup over
Base of 1.0% (up to 3.0%) for memory non-intensive applica-
tions, and 13.8% (up to 22.9%) for memory intensive appli-
cations. For our 8-core system, CAL improves the weighted
speedup over Base by an average of 3.8%, 13.0%, 20.3%, and
22.7% for workloads in the 25%, 50%, 75%, and 100% memory
intensive categories, respectively. Across all twenty 8-core
workloads, the average performance improvement of CAL is
14.7%. By carefully balancing the bene�ts and trade-o�s of
activation latency reduction and restoration latency reduc-
tion, CAL is able to outperform CCRT and GreedyPR, which
naively combine activation and restoration latency reduction
mechanisms. This demonstrates that the judicious trade-o�
made by CAL is important to improve system performance.

Second, we observe that �nding a good trade-o� between
restoration latency reduction and activation latency reduc-
tion can provide a much higher performance gain than a
naive combination of both. As we have already discussed,
CAL outperforms GreedyPR and CCRT because of this trade-
o�. We can also understand the importance of this trade-o�
on overall memory access latency by comparing IdealCC,
IdealRT , and IdealCAL. IdealCAL always achieves higher
performance than IdealCC and IdealRT (by 7.3% and 9.1%,
respectively, for 8-core, 100% memory intensive workloads),
even though IdealCC provides a larger decrease in tRCD and
IdealRT provides a larger decrease in tRAS and tWR for all
memory accesses.

Third, the bene�ts of CAL increase as workload mem-
ory intensity increases. With a higher memory intensity,
there is a higher rate of bank con�icts (not shown due to
space constraints). This is particularly true for our multipro-
grammed workloads, where multiple concurrently-executing
applications often interfere with each other for access to the
same bank. When a bank con�ict occurs, the open row is
precharged, and a new row is activated. It is highly likely
due to temporal and spatial locality that the precharged row
will be accessed again in the near future. We observe that
when the bank con�ict rate increases, the number of row
activations also increases (not shown). This creates more op-
portunities for CAL. We run experiments on a 16-core system
with four memory channels, and �nd that the average speedup
of CAL over Base increases by 3% (not shown) compared to
our baseline 8-core 2-channel con�guration, because there
are more bank con�icts in the 16-core system.

Fourth, CAL approaches the ideal performance improve-
ment of exploiting both partial restoration and highly-charged
rows (IdealCAL), coming within 4.5%, on average, for our
8-core system. IdealCAL improves performance over CAL
because it assumes, ideally, that every row can be accessed
with minimal activation and restoration latencies (i.e., every
row has an access-to-access interval of less than 1 ms), and
that the timer table is perfect (i.e., no entries are evicted).
We explore the sensitivity of CAL to the timer table size in
Section 6.4.

We conclude that CAL signi�cantly reduces the DRAM
latency and outperforms state-of-the-art mechanisms for
DRAM latency reduction and their combinations.

6.2. Impact on System Energy
Figure 11 shows the overall system energy consumption

for Base, CAL, CC, and RT , averaged across each workload
category. We break down the system energy into the energy
consumed by the CPU, caches, o�-chip interconnect (OLink),
and DRAM. DRAM energy is further broken down into acti-
vate and precharge (Act/Pre), read and write (Rd/Wr), refresh
(Ref ), and idle energy.
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Figure 11: System energy breakdown.

We observe from the �gure that CAL reduces the average
system energy in each workload category over Base. For the
memory intensive single-thread applications, CAL reduces
the system energy consumption by an average of 10.1% com-
pared to Base. The energy reduction increases with memory
intensity: the average reduction is 18.9% for 8-core workloads
where 100% of the applications in the workload are memory
intensive. CAL also achieves lower energy consumption than
CC and RT , by 11.2% and 12.3% respectively, for 8-core 100%
memory intensive workloads. CAL reduces CPU, cache, and
interconnect energy by reducing the execution time required
for each application. We observe that the primary source of
energy reduction in DRAM is the reduced energy consumed
by activation and precharge, since CAL reduces the amount
of time spent on activating and restoring a row when it re-
duces the activation and/or restoration latencies. Overall,
we conclude that CAL is e�ective at reducing system energy
consumption, due to its ability to reduce DRAM latency.

6.3. Area and Power Overhead
The area overhead of CAL predominantly consists of the

storage required for the timer table (see Section 4.1) in the
memory controller. Each entry of the table consists of a row
address tag, a 4-bit timer, and two bits for the PR and valid bits.
The width of the tag is dependent on the number of DRAM
rows in the system. For our 8-core system, which contains
16 GB of DRAM, there are 16 M rows, which requires a tag
size of 24 bits. In total, each entry consumes 30 bits.

We assume per-core timer tables, where each table has
256 entries. Therefore, each timer table consumes 960 B. For
our 8-core system, the total area consumed by all of the timer
tables is 7.7 kB. Using McPAT, we compute the total area of
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these tables to be 0.034 mm2. This overhead is only 0.11% of
the area consumed by the 16 MB last-level cache.

The timer table is also the predominant source of power
consumption in CAL. Timer table entry insertions, lookups,
and updates are the major operations that increase dynamic
power consumption, and the table dissipates static power.
We analyze the timer table activity for our applications, ac-
counting for all of the major table operations, and �nd that
the table consumes 0.202 mW on average. This is only 0.08%
of the average power consumed by the last-level cache. We
include this additional power consumption in our system
energy evaluations in Section 6.2.

Aside from the timer table, we need to introduce a mecha-
nism that allows CAL to reduce the activation and restoration
latencies. One simple way to do so is by introducing new
commands to the DDR interface, which perform shortened ac-
tivation and restoration. These new commands can make use
of the unde�ned encodings that are reserved for future use in
the DDR4 speci�cation [26]. Because the unused encodings
are already accounted for in the speci�cation, no additional
bits are needed for the command bus when we introduce our
new commands.

We conclude that CAL incurs small chip area, power con-
sumption, and DRAM interface change overheads.

6.4. E�ect of Timer Table Capacity
We perform a sensitivity study on how the number of

entries in the timer table a�ects performance. Figure 12 shows
the speedup of CAL over Base as we vary the size of each
core’s timer table from 16 to 1024 entries, along with the
speedup for a table with in�nite capacity. We make two
observations from the �gure.
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Figure 12: Speedup for di�erent timer table capacities.

First, we observe that as the timer table capacity increases,
CAL’s performance improvement also increases. A larger
number of entries reduces the number of evictions, and has
the potential to provide more opportunities for CAL to reduce
the activation and restoration latencies for rows that would
otherwise be evicted.

Second, CAL’s performance improvement tapers o� at
larger timer table sizes. For example, increasing the table size
from 256 to 1024 entries improves the performance by less
than 2% for 8-core workloads where 100% of the applications
are memory intensive, even though these applications bene�t
most from CAL. The larger number of entries requires an
additional 23 kB of storage overhead, but the higher overhead
yields diminishing returns, making the additional storage less

cost-e�ective. Even an in�nite timer table improves perfor-
mance by only 3% on average across all of our applications
over a 1024-entry table.

We conclude that a larger number of timer table entries
provides higher performance, but that the performance im-
provements diminish at larger table capacities. We implement
256-entry per-core timer tables to achieve a balance between
performance improvement and storage overhead.

6.5. E�ect of Di�erent Restoration Levels
The charge restoration level can a�ect CAL performance

because it a�ects the trade-o� between tRCD and tRAS/tWR
reductions. Recall from Section 3 that a lower restoration level
can achieve larger tRAS and tWR reductions, at the expense
of reducing the amount by which CAL can reduce tRCD . We
choose 0.85VDD as the optimal trade-o� point in this paper.

We examine the performance e�ect of di�erent restora-
tion levels. Figure 13 compares the performance speedup of
CAL with restoration levels that are lower (L-Level1, L-Level2)
and higher (H-Level1, H-Level2) than the optimal restoration
level (Opt-Level) used in this paper. L-Level1 and L-Level2 are
0.83VDD and 0.81VDD , respectively. H-Level1 and H-Level2
are 0.87VDD and 0.91VDD , respectively.
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Figure 13: Speedup for di�erent restoration levels.

As shown in the �gure, Opt-Level outperforms all other
choices for all types of workloads. We conclude that the
charge restoration level of a DRAM cell plays an important
role in balancing the performance bene�ts from restoration
latency reduction and activation latency reduction.

6.6. E�ect of DRAM Row Management Policy
All of the results presented so far are on a system that uses

a closed-row policy for DRAM. The closed-row policy closes
a DRAM row if there are no more pending requests in the
memory controller request bu�er that target the opened row.
Conversely, an open-row policy keeps a row open until a re-
quest to a di�erent row is scheduled by the memory controller.
The row policy can a�ect the opportunities available for CAL
to reduce the activation and restoration times. Therefore, we
evaluate the sensitivity of CAL to three row management
policies: (1) closed-row; (2) open-row; and (3) minimalist
open-page [30], which keeps a row open for a certain period
of time (i.e., the minimum delay of back-to-back activations
to two di�erent rows within the same bank), unless there is a
pending request to the open row.

Figure 14 shows the speedup of CAL over Base with the
three row policies. We observe that CAL provides signi�-
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cant speedups for all three row policies. The speedup of CAL
is lower for open-row and minimalist-open page than for
closed-row by 6.5% on average for our 8-core workloads as
the open-row and minimalist open-page policies reduce the
number of row bu�er con�icts, which results in fewer acti-
vation and restoration operations. However, there are still
many opportunities for CAL to reduce the latency even with
the open-row and minimalist open-page policies. Overall, we
conclude that CAL is e�ective with di�erent row manage-
ment policies.
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Figure 14: Speedup for di�erent row management policies.

6.7. E�ect of Address Mapping Policy
We choose a commonly-used channel interleaving address

mapping scheme in this paper, which maps the physical ad-
dress into the tuple (row_ID, rank_ID, bankgroup_ID, bank_ID,
channel_ID, column_ID, cache_o�set), where the cache_o�set
corresponds to the least signi�cant bits of the address. To
analyze the performance e�ect of di�erent address map-
ping schemes, we implement a permutation-based mapping
scheme (PAM) [88], which XORs the lower k bits of the row_ID
with the original bank_ID to produce a new bank_ID, where k
is the length of bank_ID in bits. In doing so, PAM randomizes
the bank_ID to reduce the number of row bu�er con�icts
that occur. We evaluate the sensitivity of CAL to the address
mapping policy, for both PAM and an o�ine address mapping
scheme (OAM) [20]. OAM is an idealized address mapping
policy that analyzes the entropy of each bit in the address
o�ine to determine the address mapping in a way that is
supposed to minimize bank con�icts.

Figure 15 shows the speedup of CAL over Base for the
three address mapping policies. We observe that PAM has
only a small impact on the speedup that CAL achieves, while
OAM has a slightly larger impact, where the speedup of CAL
under OAM is about 3.8% lower than that under channel in-
terleaving, on average for our 8-core, 100% memory-intensive
workloads. However, CAL still provides signi�cant perfor-
mance improvements over OAM mapping, which may not
be feasible in many systems where o�ine address mapping
is not possible. We conclude that CAL e�ectively improves
performance under di�erent address mapping schemes.

6.8. E�ect of High Temperature
So far, we assume a 64 ms refresh interval, which maintains

data integrity for cells at normal temperatures. At higher tem-
peratures, the refresh interval reduces [50, 51]. We evaluate
the sensitivity of CAL to the refresh interval, for intervals of
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Figure 15: Speedup for di�erent address mapping schemes.

64 ms, 32 ms, and 16 ms. For smaller refresh intervals, we lin-
early scale the maximum access-to-access interval for which
CAL applies partial restoration, to account for the increased
rate of charge decay at higher temperatures. For example, for
a 32 ms refresh interval, partial restoration is applied only
when the access-to-access interval is less than 8 ms.

Figure 16 shows the speedup of CAL over Base for the three
refresh intervals. We observe that the speedup decreases as
the refresh interval becomes smaller. This is because when we
decrease the maximum time considered to be a small access-
to-access interval, a row with such an interval is less likely to
have a similarly small access-to-access interval in the future,
reducing the accuracy of CAL’s access-to-access interval type
predictor. Even then, CAL is still e�ective at reduced refresh
intervals. We can further improve the performance of CAL
by using more sophisticated prediction methods, but we leave
this for future work.
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Figure 16: Speedup for di�erent refresh intervals.

Note that for a high refresh rate, the cost of refresh itself
becomes more signi�cant [12,22,32,51], and it becomes more
promising to extend CAL to support partial refresh [15], in
which the restoration level, and thus the cost, of refresh can be
reduced by shortening the refresh latency for a row that will
be activated soon after the refresh. We leave this extension
for future work. We conclude that CAL is robust to di�erent
refresh intervals.

7. Related Work
To our knowledge, this is the �rst work to (1) enable par-

tial restoration for rows with small access-to-access intervals,
and (2) cooperatively exploit both restoration latency reduc-
tion for soon-to-be-reactivated cells and activation latency
reduction for cells with a high charge level. We already quan-
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titatively demonstrate that CAL outperforms two state-of-
the-art mechanisms for partial restoration [87] and activation
latency reduction [24], and their combinations, in Section 6.
In this section, we describe other related works in (1) high
charge level exploitation, (2) characterization-based DRAM
optimizations, and (3) DRAM architecture modi�cations and
memory scheduling.
High Charge Level Exploitation. Similar to Charge-

Cache [24], NUAT [73] employs reduced DRAM timing pa-
rameters for recently-refreshed DRAM rows. NUAT is orthog-
onal to, and can be combined with, CAL, as the two mech-
anisms target di�erent opportunities for latency reduction.
Smart Refresh [22] eliminates unnecessary refresh operations
for recently-accessed rows, because these rows have cells
with high charge levels. Tovletoglou et al. [82] reduce the
number of refresh operations by scheduling memory accesses
that can fully restore the charge level of a row in place of a
refresh operation. In contrast, CAL reduces the latency of
the restoration operation, and is complementary to the mech-
anisms of [22] and [82]. We can combine CAL with these
mechanisms to achieve further performance improvements.
Characterization-Based DRAM Optimizations. Sev-

eral studies [7, 10, 11, 15, 21, 31, 33, 34, 44, 45, 62, 64, 68] experi-
mentally investigate various reliability, data retention, and
latency characteristics of modern DRAM chips to provide
opportunities for lower DRAM latency and energy consump-
tion. CAL achieves latency reduction independent of operat-
ing conditions and cell characteristics, and can be combined
with mechanisms that are proposed by these characterization-
based studies to further improve performance.
DRAM Architecture Modi�cations and Memory

Scheduling. Tiered-Latency DRAM (TL-DRAM) [46] divides
each bitline into two segments, and enables faster access to
the segment closer to the sense ampli�ers. LISA [13] uses iso-
lation transistors to provide wide inter-subarray connections
within a bank, which can be used to quickly cache the most
frequently accessed rows into a fast subarray, and to reduce
the precharge latency. Lee et al. [48] propose a mechanism
that allows write requests to memory to activate only part
of a row. Other works [12, 23, 35, 43, 47, 52, 69, 71, 75] pro-
pose optimized DRAM architectures that lower the DRAM
latency or energy consumption. E�cient memory schedul-
ing mechanisms [4, 37, 38, 59, 60, 77, 78, 79, 80, 81, 84] can also
reduce DRAM latency by making better use of the existing
DRAM resources. The mechanisms in these works are largely
orthogonal to CAL, and CAL can be implemented together
with these works to further improve DRAM performance and
energy e�ciency.

8. Conclusion
We propose CAL, a novel, low-overhead mechanism that

(1) performs partial restoration on both soon-to-be-refreshed
and soon-to-be-reactivated rows, and (2) mitigates the nega-
tive e�ect of partial restoration on activation latency reduc-
tion for highly-charged DRAM rows. CAL consists of two key
components. First, with very high accuracy, CAL predicts
when a row will be reactivated in the future. Second, CAL
uses the future reactivation time, the next refresh time, and
the current charge level of a row to reduce both the activation

and restoration latencies for the row in a way that provides
the largest decrease in overall DRAM access latency. We im-
plement CAL fully within the memory controller, without any
changes to the DRAM module. We �nd that CAL improves
the average performance of an 8-core system by 14.7%, and
reduces the average DRAM energy consumption by 11.3%,
across a wide range of workloads. We show that CAL outper-
forms two state-of-the-art mechanisms for DRAM restoration
and activation latency reduction, and their combinations. We
conclude that CAL is an e�ective mechanism to signi�cantly
reduce the DRAM access latency, which is a major bottleneck
in modern computing systems.
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