CLR-DRAM: A Low-Cost DRAM Architecture Enabling Dynamic Capacity-Latency Trade-off

Haocong Luo Taha Shahroodi Hasan Hassan Minesh Patel
A. Giray Yaglıkçı Lois Orosa Jisung Park Onur Mutlu
Motivation & Goal

- Workloads and systems have **varying** main memory capacity and latency demands.
- Existing commodity DRAM makes **static** capacity-latency trade-off at **design time**.
- Systems miss opportunities to improve performance by adapting to changes in main memory capacity and latency demands.

Goal: Design a low-cost DRAM architecture that can be **dynamically** configured to have high capacity or low latency at a fine granularity (i.e., at the granularity of a row).
CLR-DRAM (Capacity-Latency-Reconfigurable DRAM):
- A low cost DRAM architecture that enables a single DRAM row to *dynamically* switch between **max-capacity mode** or **high-performance mode**.

Key Idea:
Dynamically configure the connections between DRAM cells and sense amplifiers in the density-optimized open-bitline architecture.

Open-bitline (Baseline) ➔ CLR-DRAM
CLR-DRAM (Capacity-Latency-Reconfigurable DRAM)

- **Max-capacity mode**

 - The same storage capacity as the conventional open-bitline architecture

- **High-performance mode**

 - Reduced latency and refresh overhead via coupled cell/SA operation

 mimics the cell-to-SA connections as in the open-bitline architecture
Key Results

- **DRAM Latency Reduction:**
 - Activation latency (tRCD) by 60.1%
 - Restoration latency (tRAS) by 64.2%
 - Precharge latency (tRP) by 46.4%
 - Write-recovery latency (tWR) by 35.2%

- **System-level Benefits:**
 - Performance improvement: 18.6%
 - DRAM energy reduction: 29.7%
 - DRAM refresh energy reduction: 66.1%

We hope that CLR-DRAM can be exploited to develop more flexible systems that can adapt to the diverse and changing DRAM capacity and latency demands of workloads.
CLR-DRAM:
A Low-Cost DRAM Architecture
Enabling Dynamic Capacity-Latency Trade-off

Haocong Luo Taha Shahroodi Hasan Hassan Minesh Patel
A. Giray Yaglıkçĩ Lois Orosa Jisung Park Onur Mutlu