CoNDA:

Efficient Cache Coherence Support for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng, Onur Mutlu

Specialized Accelerators

Specialized accelerators are now everywhere!

Recent advancement in 3D-stacked technology enabled Near-Data Accelerators (NDA)

SAFARI

Coherence For NDAs

Challenge: Coherence between NDAs and CPUs

It is impractical to use traditional coherence protocols

SAFARI

Existing Coherence Mechanisms

We extensively study existing NDA coherence mechanisms and make three key observations:

These mechanisms eliminate a significant portion of NDA's benefits

The majority of off-chip coherence traffic generated by these mechanisms is unnecessary

Much of the off-chip traffic can be eliminated if the coherence mechanism has insight into the memory accesses

3

An Optimistic Approach

We find that an optimistic approach to coherence can address the challenges related to NDA coherence

- Gain insights before any coherence checks happens
- **2** Perform only the necessary coherence requests

CoNDA

We propose CoNDA, a mechanism that uses optimistic NDA execution to avoid unnecessary coherence traffic

CoNDA

We propose CoNDA, a mechanism that uses optimistic NDA execution to avoid unnecessary coherence traffic

CoNDA comes within 10.4% and 4.4% of performance and energy of an ideal NDA coherence mechanism

SAFARI

7

CoNDA:

Efficient Cache Coherence Support for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh, Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng, Onur Mutlu

