
CoNDA:
 Efficient Cache Coherence Support

for Near-Data Accelerators

Amirali Boroumand
Saugata Ghose, Minesh Patel, Hasan Hassan,

Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,

Onur Mutlu

ASIC

Specialized Accelerators

2

FPGA GPU

NDA ASIC

ASIC

Specialized accelerators are now everywhere!

Recent advancement in 3D-stacked technology
enabled Near-Data Accelerators (NDA)

CPU
DRAM

NDA

ASIC

Coherence For NDAs

3

Challenge: Coherence between NDAs and CPUs

DRAM
L2 L1

CPU
CPU CPU CPU

NDA

Compute
Unit

(1) Large cost of
off-chip communication

It is impractical to use traditional coherence protocols

(2) NDA applications generate
a large amount of off-chip data movement

ASIC

Existing Coherence Mechanisms

4

We extensively study existing NDA coherence
mechanisms and make three key observations:

 These mechanisms eliminate
a significant portion of NDA’s benefits 1

 The majority of off-chip coherence traffic
generated by these mechanisms is unnecessary 2

Much of the off-chip traffic can be eliminated
if the coherence mechanism has insight

 into the memory accesses
3

ASIC

An Optimistic Approach

5

1 Gain insights before any coherence checks happen

We find that an optimistic approach to coherence can
address the challenges related to NDA coherence

2 Perform only the necessary coherence requests

We propose CoNDA, a coherence mechanism that lets an
NDA optimistically execute an NDA kernel

Optimistic execution enables CoNDA to identify and avoid
unnecessary coherence requests

 CoNDA comes within 10.4% and 4.4% of performance
and energy of an ideal NDA coherence mechanism

Outline

•  Introduction

•  Background
•  Motivation
•  CoNDA
•  Architecture Support
•  Evaluation
•  Conclusion

6

Background
•  Near-Data Processing (NDP)
–  A potential solution to reduce data movement
–  Idea: move computation close to data

•  Enabled by recent advances in 3D-stacked memory

7

Reduces data movement
Exploits large in-memory bandwidth
Exploits shorter access latency to memory

Outline

•  Introduction
•  Background

•  Motivation
•  CoNDA
•  Architecture Support
•  Evaluation
•  Conclusion

8

Application Analysis

ASIC

Sharing Data between NDAs and CPUs

10

1st key observation: CPU threads often concurrently
access the same region of data that NDA kernels

access which leads to significant data sharing

Graph Processing Hybrid Databases
 (HTAP)

We find not all portions of applications benefit from NDA

1 Memory-intensive portions benefit from NDA

2 Compute-intensive or cache friendly portions should remain
on the CPU

ASIC

Shared Data Access Patterns

11

2nd key observation: CPU threads and NDA kernels
typically do not concurrently access the same cache lines

CPU threads rarely update the same data
 that an NDA is actively working on

For Connected Components application, only 5.1% of the CPU
accesses collide with NDA accesses

Analysis of
NDA Coherence Mechanisms

ASIC

Analysis of Existing Coherence Mechanism

13

1 Non-cacheable (NC)
•  Mark the NDA data as non-cacheable

2 Coarse-Grained Coherence (CG)
•  Get coherence permission for the entire NDA region

We analyze three existing coherence mechanisms:

3 Fine-Grained Coherence (FG)
•  Traditional coherence protocols

Analysis of Existing Coherence Mechanisms

14

0.0

0.5

1.0

1.5

2.0

CC Radii PR CC Radii PR

arXiV Gnutella

Sp
ee

du
p

CPU-only NC CG FG Ideal-NDA

GMEAN

0.0

0.5

1.0

1.5

2.0

GMEAN

N
or

m
al

iz
ed

 E
ne

rg
y

NC suffers from a large number of off-chip accesses
from CPU threads

CG unnecessarily flushes a large amount of dirty data FG suffers from high amount of unnecessary
off-chip coherence traffic

 Poor handling of coherence eliminates much
of an NDA’s performance and energy benefits

Performs 0.4% worse
 than CPU-only

Increases energy over CPU-only by 64.4%
and performs 6.0% worse than CPU-only

 Loses a significant portion of the
performance and energy benefits

Motivation and Goal

15

1

2

3

Poor handling of coherence eliminates much
of an NDA’s benefits 1

The majority of off-chip coherence traffic
is unnecessary 2

Our goal is to design a coherence mechanism that:

1 Retains benefits of Ideal NDA

2 Enforces coherence with only the necessary
data movement

Outline

•  Introduction
•  Background
•  Motivation

•  CoNDA
•  Architecture Support
•  Evaluation
•  Conclusion

16

ASIC

Optimistic NDA Execution

17

We propose to use optimistic execution for NDAs

We leverage two key observations:

1 Having insight enables us to eliminate much of
unnecessary coherence traffic

2 Low rate of collision for CPU threads and NDA kernels

2 Gains insights into memory accesses

Performs only the necessary coherence requests

NDA executes the kernel:

1 Assumes it has coherence permission

When execution is done:

Starts optimistic execution

High-Level Overview of Optimistic Execution Model

18

Time

Optimistic
Execution

CPU NDA

CPU Thread
Execution

Concurrent
CPU + NDA

Execution
No Coherence Request

Coherence Resolution
Commit or Re-execute

Fits well within the context of NDA coherence:
1 Allows us to identify the necessary coherence traffic

2 Most of the time optimistic execution works à low re-
execution rate

High-Level Overview of CoNDA

19

Time

Optimistic
Execution

CPU NDA

Concurrent
CPU + NDA

Execution

Offload NDA kernel

Signature Signature

Send signatures

Coherence Resolution
Commit or Re-execute

CPU Thread
Execution

We propose CoNDA, a mechanism that uses optimistic
NDA execution to avoid unnecessary coherence traffic

No
Coherence Request

How do we identify
 coherence violations?

ASIC

Necessary Coherence Requests

•  Coherence requests are only necessary if:
–  Both NDA and CPU access a cache line
–  At least one of them updates it

21

We discuss three possible interleaving of accesses
to the same cache line:

1 NDA Read and CPU Write (coherence violation)

2 NDA Write and CPU Read (no violation)
 3 NDA Write and CPU Write (no violation)

Identifying Coherence Violations

22

Time CPU NDA

C1. Wr Z
C2. Rd A
C3. Wr B

N1. Rd X
N2. Wr Y
N3. Rd Z

Any Coherence Violation?

C4. Wr Y
C5. Rd Y

N4. Rd X
N5. Wr Y
N6. Rd Z

Any Coherence Violation?

C6. Wr X

Yes. Flush Z to DRAM

No. Commit NDA operations

Coherence checks happen
 at the end of NDA kernel

No coherence checks
during NDA execution

NDA reads old value of Z

“C4” and “C5”
 are ordered before

 “N5”

 1) NDA Read and CPU Write: violation

 2) NDA Write and CPU Read : no violation

 3) NDA Write and CPU Write: no violation

Outline

•  Introduction
•  Background
•  Motivation
•  CoNDA

•  Architecture Support
•  Evaluation
•  Conclusion

23

ASIC

CoNDA: Architecture Support

24

CPU
DRAM

CPU

CPUWriteSet

Shared LLC
Coherence
Resolution

L1

NDA
Core

L1

NDAReadSet

NDAWriteSet

NDAReadSet

NDAWriteSet CPUWriteSet

Coherence
Resolution

ASIC

Optimistic Mode Execution

25

CPU

CPUWriteSet

Shared LLC
Coherence
Resolution

L1
NDA
Core NDAReadSet

NDAWriteSet

L1
NDA
Core

L1

Per-word dirty bit mask to mark
 all uncommitted data updates

NDAReadSet

NDAWriteSet

CPUWriteSet

The NDAReadSet and NDAWriteSet are used
to track memory accesses from NDA

The CPU records all writes
to the NDA data region in the CPUWriteSet

ASIC

Signatures

26

CPU

CPUWriteSet

Shared LLC
Coherence
Resolution

L1
NDA
Core NDAReadSet

NDAWriteSet

L1

NDAReadSet

NDAWriteSet

CPUWriteSet

Address

…1 1 0 0 0 1 1 1 0 0 0 1

hk-1 h1 h0 …

Bloom filter based signature has two major benefits:

•  Allows us to easily perform coherence resolution
•  Allows for a large number of addresses to be stored

within a fixed-length register

ASIC

Coherence Resolution

27

CPU

CPUWriteSet

Shared LLC
Coherence
Resolution

L1
NDA
Core NDAReadSet

NDAWriteSet

L1

NDAReadSet

CPUWriteSet
Coherence
Resolution

NDAReadSet CPUWriteSet

Conflict

If conflicts happens:

•  The CPU flushes the dirty cache lines that match
addresses in the NDAReadSet

•  NDA invalidates all uncommitted cache lines

•  Signatures are erased and NDA restarts execution

If no conflicts:

•  Any clean cache lines in the CPU that match an
address in the NDAWriteSet are invalidated

•  NDA commits data updates

Outline

•  Introduction
•  Background
•  Motivation
•  CoNDA
•  Architecture Support

•  Evaluation
•  Conclusion

28

Evaluation Methodology
•  Simulator

–  Gem5 full system simulator

•  System Configuration:
–  CPU

•  16 cores, 8-wide, 2GHz frequency
•  L1 I/D cache: 64 kB private, 4-way associative, 64 B block
•  L2 cache: 2 MB shared, 8-way associative, 64 B blocks
•  Cache Coherence Protocol: MESI

–  NDA
•  16 cores, 1-wide, 2GHz frequency
•  L1 I/D cache: 64 kB private, 4-way associative, 64 B Block
•  Cache coherence protocol: MESI

–  3D-stacked Memory
•  One 4GB Cube, 16 Vaults per cube

29

Applications
•  Ligra

–  Lightweight multithreaded graph processing
–  We used three Ligra graph applications

•  PageRank (PR)
•  Radii
•  Connected Components (CC)

–  Real-world Input graphs:
•  Enron
•  arXiV
•  Gnutella25

•  Hybrid Database (HTAP)
–  In-house prototype of an in-memory database
–  Capable of running both transactional and analytical queries on

the same database (HTAP workload)
–  32K transactions, 128/256 analytical queries 30

Speedup

31

0.0

0.5

1.0

1.5

2.0

2.5

CC Radii PR CC Radii PR CC Radii PR 128 256

arXiV Gnutella Enron HTAP

Sp
ee

du
p

CPU-only NDA-only FG CoNDA Ideal-NDA

GMEAN

FG loses a significant portion of
Ideal-NDA’s improvement

NDA-only eliminates 82.2% of
Ideal-NDA’s improvement CG and NC eliminate the entire performance

 benefit of Ideal-NDA execution
 CoNDA consistently retains most of Ideal-NDA’s benefits,

coming within 10.4% of the Ideal-NDA performance

66.0%

Memory System Energy

32

0.00	

0.25	

0.50	

0.75	

1.00	

1.25	

CC	 Radii	 PR	 CC	 Radii	 PR	 CC	 Radii	 PR	 128	 256	

arXiV	 Gnutella	 Enron	 HTAP	

N
or
m
al
iz
ed

	E
ne

rg
y	

CPU-only	 FG	 CoNDA	 Ideal-NDA	

GMEAN	

FG loses a significant portion of benefits because
of a large number of off-chip coherence messages

CoNDA significantly reduces energy consumption

and comes within 4.4% of Ideal-NDA

33

Other Results in the Paper
•  Results for larger data sets
–  8.4x over CPU-only
–  7.7x over NDA-only
–  38.3% over the best prior coherence mechanism

•  Sensitivity analysis
–  Multiple memory stacks
–  Effect of optimistic execution duration
–  Effect of signature size
–  Effect of data sharing characteristics

•  Hardware overhead analysis
–  512 B NDA signature, 2 kB CPU signature, 1 bit per page

table, 1 bit per TLB entry, 1.6% increase in NDA L1 cache

Outline

•  Introduction
•  Background
•  Motivation
•  CoNDA
•  Architecture Support
•  Evaluation

•  Conclusion

34

Conclusion
•  Coherence is a major system challenge for NDA
–  Efficient handling of coherence is critical to retain NDA

benefits
•  We extensively analyze NDA applications and existing

coherence mechanisms. Major Observations:
–  There is a significant amount of data sharing between CPU

threads and NDAs
–  A majority of off-chip coherence traffic is unnecessary
–  A significant portion of off-chip traffic can be eliminated if the

mechanism has insight into NDA memory accesses
•  We propose CoNDA, a mechanism that uses

optimistic NDA execution to avoid unnecessary
coherence traffic

•  CoNDA comes within 10.4% and 4.4% of performance
and energy of an ideal NDA coherence mechanism

35

CoNDA:
 Efficient Cache Coherence Support

for Near-Data Accelerators

Amirali Boroumand
Saugata Ghose, Minesh Patel, Hasan Hassan,

Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,

Onur Mutlu

Backup

38

Breakdown of Performance Overhead

•  CoNDA’s execution time consist of three major parts:
–  (1) NDA kernel execution
–  (2) Coherence resolution overhead (3.3% of execution time)
–  (3) Re-execution overhead (8.4% of execution time)

•  Coherence resolution overhead is low
–  CPU-threads do not stall during resolution
–  NDAWriteSet contains only a small number of addresses (6)
–  Resolution mainly involves sending signatures and checking

necessary coherence

•  Overhead of re-execution is low
–  The collision rate is low for our applications à 13.4%
–  Re-execution is significantly faster than original execution

ASIC

Non-Cacheable (NC) Approach

39

Hybrid
Database
(HTAP)

Transactions Analytics

CPU CPU

Transactions

NDA

Analytics

Data Sharing

(1) Generates a large number
 of off-chip accesses

(2) Significantly hurts CPU
threads performance

NC fails to provide any energy saving and perform
6.0% worse than CPU-only

Mark the NDA data as non-cacheable

ASIC

Coarse-Grained (CG) Coherence

40

CPU CPU NDA

Flush dirty data

Get coherence permission for the entire NDA region

Unnecessarily flushes
 a large amount of dirty data,
especially in pointer-chasing

applications

Use coarse-grained locks to provide exclusive access
Access to
NDA data

CPU NDA
Time

STALL Blocks CPU threads when they
access NDA data regions

CG fails to provide any performance benefit of NDA
and perform 0.4% worse than CPU-only

Fine-Grained (FG) Coherence

41

Using fine-grained coherence has two benefits:
1 Simplifies NDA programming model

2 Allows us to get permissions for only the pieces of data
that are actually accessed

CPU CPU NDA

High amount of
off-chip coherence Traffic

(1) Memory-intensive
(2) Poor locality

Large amount of these coherence messages
are unnecessary

FG eliminates 71.8% of the energy benefits of
an ideal NDA mechanism

Memory System Energy

42

0.00	

0.25	

0.50	

0.75	

1.00	

1.25	

CC	 Radii	 PR	 CC	 Radii	 PR	 CC	 Radii	 PR	 128	 256	

arXiV	 Gnutella	 Enron	 HTAP	

N
or
m
al
iz
ed

	E
ne

rg
y	

CPU-only	 NC	 CG	 FG	 CoNDA	 Ideal-NDA	

3.8x	 3.1x	 4.0x	 3.3x	 2.4x	 3.1x	 2.8x	 2.2x	 2.7x	 2.3x	

GMEAN

•  NC suffers greatly from the large number of accesses to DRAM

•  Interconnect and DRAM energy increase by 3.1x and 4.5x

CG and FG loses a significant portion of benefits because of
large number of writebacks and off-chip coherence messages

 CoNDA significantly reduces energy consumption
and comes within 4.4% of Ideal-NDA

Speedup

43

0.0

0.5

1.0

1.5

2.0

2.5

CC Radii PR CC Radii PR CC Radii PR 128 256

arXiV Gnutella Enron HTAP

Sp
ee

du
p

CPU-only NDA-only NC CG FG CoNDA Ideal-NDA

GMEAN

CG and NC eliminate the entire
benefit of Ideal-NDA execution

FG loses a significant portion of
Ideal-NDA’s improvement

 CoNDA consistently retains most of Ideal-NDA’s benefits,
coming within 10.4% of the Ideal-NDA performance NDA-only eliminates 82.2% of

Ideal-NDA’s improvement

ASIC

Effect of Multiple Memory Stacks

44

ASIC

Effect of Optimistic Execution Duration

45

ASIC

Effect of Signature Size

46

Identifying Coherence Violations

47

Time CPU NDA

C1. Wr Z
C2. Rd A
C3. Wr B

N1. Rd X
N2. Wr Y
N3. Rd Z

Any Coherence Violation?

C4. Wr Y
C5. Rd Y

N4. Rd X
N5. Wr Y
N6. Rd Z

Any Coherence Violation?

C6. Wr X

Effective Ordering

C1. Wr Z
C2. Rd A
C3. Wr B

C4. Wr Y
C5. Rd Y
N4. Rd X
N5. Wr Y
N6. Rd Z
C6. Wr X

Yes. Flush Z to DRAM

No. commit NDA operations

 1) NDA Read and CPU Write: violation

 2) NDA Write and CPU Read : no violation

 3) NDA Write and CPU Write: no violation

ASIC

Optimistic NDA Execution

48

We propose to use optimistic execution for NDAs
When executing in optimistic mode:
•  An NDA gains insight into its memory accesses without issuing

any coherence requests

When optimistic mode is done:
•  The NDA uses the tracking information to perform necessary

coherence requests

We leverage two key observations

1 Majority of coherence

2 Enforce coherence with only the necessary data movement

ASIC

Example: Hybrid Database (HTAP)

49

Hybrid Database
(HTAP)

Transactions Analytics

Transactions

CPU CPU NDA

Analytics

Data Sharing

ASIC

Application Analysis Wrap up

50

There is a significant amount of data sharing
 between CPU threads and NDAs 1

CPU threads and NDAs often do not access
the same cache lines concurrently 2

CPU threads rarely update the same data
that NDAs are actively working on 3

Background
•  Near-Data Processing (NDP)
–  A potential solution to reduce data movement
–  Idea: move computation close to data

•  Enabled by recent advances in 3D-stacked memory

51

Specialized Accelerators

52

Accelerators

FPGA GPU

NDA ASIC

ASIC Near-Data Accelerator

Specialized accelerators are now everywhere!

On-chip Accelerators Off-chip Accelerators

Applications
•  Ligra

–  Lightweight multithreaded graph processing for shared
memory system

–  We used three Ligra graph applications
•  PageRank (PR)
•  Radii
•  Connected Components (CC)

–  Input graphs constructed from real-world network datasets:
•  Enron email communication network (36K nodes, 183K edges)
•  arXiV General Relativity (5K nodes, 14K edges)
•  peer-to- peer Gnutella25 (22K nodes, 54K edges).

•  IMDB
–  In-house prototype of an in-memory database (IMDB)
–  Capable of running both transactional queries and analytical queries on

the same database tables (HTAP workload)
–  32K transactions, 128/256 analytical queries

53

ASIC

Optimistic NDA Execution

54

We propose to use optimistic execution for NDAs

We leverage two key observations:

1 Eliminate much of unnecessary coherence traffic by
having insight into memory accesses

2 CPU threads and NDA kernels typically do not
concurrently access the same cache lines

2 Gains insights into memory accesses

Performs only the necessary coherence requests

NDA executes the kernel:

1 Assumes it has coherence permission

When execution is done:

Analysis of Existing Coherence Mechanisms

55

NC fails to provide any energy saving and
perform 6.0% worse than CPU-only

 Poor handling of coherence eliminates much
of an NDA’s performance and energy benefits

0.0

0.5

1.0

1.5

2.0

C
C

R
ad

ii

Pa
ge

R
an

k C
C

R
ad

ii

Pa
ge

R
an

k

arXiV Gnutella

Sp
ee

du
p

CPU-only NC CG FG Ideal-NDA

GMEAN

0.0

0.5

1.0

1.5

2.0

GMEAN

N
or

m
al

iz
ed

E

ne
rg

y

Suffers from a large number of
off-chip accesses

Unnecessarily flushes
 a large amount of dirty data

Blocks CPU threads when they
access NDA data regions

FG suffers from high amount of unnecessary
off-chip coherence Traffic

