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Specialized Accelerators

Specialized accelerators are now everywhere!
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FPGA ASIC

Recent advancement in 3D-stacked technology
enabled Near-Data Accelerators (NDA)
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Coherence For NDAs

Challenge: Coherence between NDAs and CPUs

(1) Large cost of
off-chip communication

(2) NDA applications generate NDA
a large amount of off-chip data movement

It is impractical to use traditional coherence protocols
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Existing Coherence Mechanisms

We extensively study existing NDA coherence
mechanisms and make three key observations:

1 These mechanisms eliminate
a significant portion of NDA'’s benefits

2 The majority of off-chip coherence traffic
generated by these mechanisms is unnecessary

Much of the off-chip traffic can be eliminated
3 if the coherence mechanism has insight
into the memory accesses
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An Optimistic Approach

We find that an optimistic approach to coherence can
address the challenges related to NDA coherence

| Gain insights before any coherence checks happen

2 Perform only the necessary coherence requests

We propose CoNDA, a coherence mechanism that lets an
NDA optimistically execute an NDA kernel
\
Optimistic execution enables CoNDA to identify and avoid
unnecessary coherence requests

CoNDA comes within 10.4% and 4.4% of performance

and energy of an ideal NDA coherence mechanism
SAFARI 5



Outline

* Introduction

* Background
 Motivation

« CoNDA

* Architecture Support
 Evaluation

* Conclusion

SAFARI



Background

* Near-Data Processing (NDP)
— A potential solution to reduce data movement
— ldea: move computation close to data

v Reduces data movement
v’ Exploits large in-memory bandwidth

v’ Exploits shorter access latency to memory

* Enabled by recent advances in 3D-stacked memory

Through-Silicon Via
1 (TSV)
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Application Analysis
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Sharing Data between NDAs and CPUs

Hybrid Databases Graph Processing
(HTAP)

We find not all portions of applications benefit fromm NDA

| Memory-intensive portions benefit from NDA

7 Compute-intensive or cache friendly portions should remain
on the CPU

It key observation: CPU threads often concurrently
access the same region of data that NDA kernels
access which leads to significant data sharing
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Shared Data Access Patterns

2"d key observation: CPU threads and NDA kernels
typically do not concurrently access the same cache lines

g - - - . - .y

For Connected Components application, only 5.1% of the CPU
accesses collide with NDA accesses

CPU threads rarely update the same data
that an NDA is actively working on
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Analysis of
NDA Coherence Mechanisms
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Analysis of Existing Coherence Mechanism

We analyze three existing coherence mechanisms:

| Non-cacheable (NCO)
e Mark the NDA data as non-cacheable

2 Coarse-Grained Coherence (CG)

* Get coherence permission for the entire NDA region

3 Fine-Grained Coherence (FG)

* Traditional coherence protocols
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Analysis of Existing Coherence Mechanisms
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Poor handling of coherence eliminates much
of an NDA’s performance and energy benefits
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Motivation and Goal

1 Poor handling of coherence eliminates much
of an NDA'’s benefits

2 The majority of off-chip coherence traffic
IS unnecessary

Our goal is to desigh a coherence mechanism that:

| Retains benefits of ldeal NDA

) Enforces coherence with only the necessary
data movement
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Optimistic NDA Execution

We leverage two key observations:

| Having insight enables us to eliminate much of
unnecessary coherence traffic

2 Low rate of collision for CPU threads and NDA kernels

We propose to use optimistic execution for NDAs

NDA executes the kernel:

| Assumes it has coherence permission

2 Gains insights into memory accesses

When execution is done:

Performs only the necessary coherence requests
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High-Level Overview of Optimistic Execution Model
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High-Level Overview of CoONDA

We propose CoNDA, a mechanism that uses optimistic
NDA execution to avoid unnecessary coherence traffic
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How do we identify
coherence violations?
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Necessary Coherence Requests

* Coherence requests are only necessary if:
— Both NDA and CPU access a cache line

— At least one of them updates it

We discuss three possible interleaving of accesses
to the same cache line:

| NDA Read and CPU Write (coherence violation)

2 NDA Write and CPU Read (no violation)
3 NDA Write and CPU Write (no violation)
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1) NDA Read and CPU Write: violation

2) NDA Write and CPU Read : no violation

3) NDA Write and CPU Write: no violation
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NDAReadSet
Coherence

Resolution CPUW/riteSet NDAWEFriteSet



The CPU records all writes
to the NDA data region in the CPUWriteSet

/ LI
/' NDA :
/, Core N DAReasiSet
4 NDAW/YriteSet
CPUW/riteSet / /

Per-word dirty bit mask to mark
all uncommitted datz updates

The NDAReadSet and NDAWriteSet are used
to track memory accesses from NDA




----------------------------- NDAReadSet

-—
-— -
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NDAWeriteSet

CPUW/riteSet

Bloom filter based signature has two major benefits:
* Allows us to easily perform coherence resolution

* Allows for a large number of addresses to be stored
within a fixed-length register




CPUW/riteSet NDAReadSet

Conflict

NDAReadSet

Coherence

Resolution CPUW/riteSet

If conflicts happens:

If no conflicts:

* Any clean cache lines in the CPU that match an
address in the NDAWriteSet are invalidated

* NDA commits data updates
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Evaluation Methodology

* Simulator
— Gemb full system simulator

* System Configuration:
— CPU

* 16 cores, 8-wide, 2GHz frequency

* LI 1/D cache: 64 kB private, 4-way associative, 64 B block
* L2 cache: 2 MB shared, 8-way associative, 64 B blocks

« Cache Coherence Protocol: MESI

— NDA

* 16 cores, |-wide, 2GHz frequency
LI 1/D cache: 64 kB private, 4-way associative, 64 B Block
* Cache coherence protocol: MESI

— 3D-stacked Memory

* One 4GB Cube, |6 Vaults per cube
SAFARI
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Applications

* Ligra
— Lightweight multithreaded graph processing
— We used three Ligra graph applications
* PageRank (PR)
* Radii
* Connected Components (CC)
— Real-world Input graphs:

e Enron
e arXiV
e Gnutella25

* Hybrid Database (HTAP)

— In-house prototype of an in-memory database

— Capable of running both transactional and analytical queries on
the same database (HTAP workload)

— 32K transactions, 128/256 analytical queries
SAFARI
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Speedup
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Memory System Energy
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Other Results in the Paper

* Results for larger data sets

— 8.4x over CPU-only
— 1.7x over NDA-only

— 38.3% over the best prior coherence mechanism

* Sensitivity analysis
— Multiple memory stacks
— Effect of optimistic execution duration
— Effect of signature size
— Effect of data sharing characteristics

 Hardware overhead analysis

— 512 B NDA signature, 2 kB CPU signature, | bit per page

table, | bit per TLB entry, 1.6% increase in NDA LI cache
SAFARI 33
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Conclusion

* Coherence is a major system challenge for NDA

— Efficient handling of coherence is critical to retain NDA
benefits

* We extensively analyze NDA applications and existing
coherence mechanisms. Major Observations:

— There is a significant amount of data sharing between CPU
threads and NDAs

— A majority of off-chip coherence traffic is unnecessary
— A significant portion of off-chip traffic can be eliminated if the
mechanism has insight into NDA memory accesses
* We propose CoNDA, a mechanism that uses

optimistic NDA execution to avoid unnecessary
coherence traffic

* CoNDA comes within 10.4% and 4.4% of performance
and energy of an ideal NDA coherence mechanism
SAFARI 35
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Backup
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Breakdown of Performance Overhead

* CoNDA'’s execution time consist of three major parts:
— (1) NDA kernel execution
— (2) Coherence resolution overhead (3.3% of execution time)
— (3) Re-execution overhead (8.4% of execution time)

* Coherence resolution overhead is low
— CPU-threads do not stall during resolution
— NDAWYriteSet contains only a small number of addresses (6)

— Resolution mainly involves sending signatures and checking
necessary coherence

* Overhead of re-execution is low
— The collision rate is low for our applications 2> 13.4%

— Re-execution is significantly faster than original execution
SAFARI 38



Non-Cacheable (NC) Approach

Mark the NDA data as nhon-cacheable
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Coarse-Grained (CG) Coherence

Get coherence permission for the entire NDA region

Unnecessarily flushes %% Flush dirty data gg

a large amount of dirty data,
— 3

especially in pointer-chasing
Use coarse-grained locks to provide exclusive access

applications

CPU NDA
Time ccess to
i NDA data
Blocks CPU threads when they STAL g
access NDA data regions S D |

CG fails to provide any performance benefit of NDA



Fine-Grained (FG) Coherence

Using fine-grained coherence has two benefits:
| Simplifies NDA programming model

) Allows us to get permissions for only the pieces of data

that are actually accessed . .
(1) Memory-intensive

2) Poor localit
High amount of( ) Y

off-chip coherence Traffic /

=

FG eliminates 71.8% of the energy benefits of
an ideal NDA mechanism
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Memory System Energy

* NC suffers greatly from the large number of accesses to DRAM
* Interconnect and DRAM energy increase by 3.1x and 4.5x
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Speedup
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Effect of Multiple Memory Stacks
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Effect of Optimistic Execution Duration

......

[l Normalized Execution Time L& Normalized Off-Chip Traffic

0.6

0.4

0.2

0.0

SAFARI

150

250
CC: Enron

350

150

250
HTAP-128

350

45



Effect of Signature Size
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1) NDA Read and CPU W/rite: violation

2) NDA Write and CPU Read : no violation

3) NDA Write and CPU Write: no violation




Optimistic NDA Execution

We leverage two key observations
| Majority of coherence

2 Enforce coherence with only the necessary data movement

We propose to use optimistic execution for NDAs

When executing in optimistic mode:

* An NDA gains insight into its memory accesses without issuing
any coherence requests

When optimistic mode is done:

* The NDA uses the tracking information to perform necessary
coherence requests
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Example: Hybrid Database (HTAP)
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Application Analysis Wrap up

1 There is a significant amount of data sharing
between CPU threads and NDAs

CPU threads and NDAs often do not access
the same cache lines concurrently

3 CPU threads rarely update the same data
that NDAs are actively working on
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Background

* Near-Data Processing (NDP)
— A potential solution to reduce data movement
— ldea: move computation close to data

* Enabled by recent advances in 3D-stacked memory

Through-Silicon Via
7 (TSV)
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Specialized Accelerators

Specialized accelerators are now everywhere!

Accelerators

:

T TIL
ASIC Near-Data Accelerator

On-chip Accelerators Off-chip Accelerators
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Applications

* Ligra
— Lightweight multithreaded graph processing for shared
memory system

— We used three Ligra graph applications
* PageRank (PR)
* Radii
* Connected Components (CC)

— Input graphs constructed from real-world network datasets:
* Enron email communication network (36K nodes, 183K edges)
* arXiV General Relativity (5K nodes, 14K edges)
* peer-to- peer Gnutella25 (22K nodes, 54K edges).

« IMDB

— In-house prototype of an in-memory database (IMDB)

— Capable of running both transactional queries and analytical queries on
the same database tables (HTAP workload)

— 32K transactions, 128/256 analytical queries
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Optimistic NDA Execution

We leverage two key observations:

| Eliminate much of unnecessary coherence traffic by
having insight into memory accesses

) CPU threads and NDA kernels typically do not
concurrently access the same cache lines

We propose to use optimistic execution for NDAs

NDA executes the kernel:

| Assumes it has coherence permission

2 Gains insights into memory accesses

When execution is done:
Performs only the necessary coherence requests

SAFARI 54



Analysis of Existing Coherence Mechanisms
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