CoNDA:

Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,
Onur Mutlu

SAFARI CarnegieMellon @

9 A
3 2
=y, y
S o
: S mz
ot R oo o h
(=%
SF ’ R uric
Sooe I
¥ oF TeCS

Specialized Accelerators

Specialized accelerators are now everywhere!

= o1y ER =
B

FPGA ASIC

Recent advancement in 3D-stacked technology
enabled Near-Data Accelerators (NDA)

SAFARI

Coherence For NDAs

Challenge: Coherence between NDAs and CPUs

(1) Large cost of
off-chip communication

(2) NDA applications generate NDA
a large amount of off-chip data movement

It is impractical to use traditional coherence protocols

SAFARI 3

Existing Coherence Mechanisms

We extensively study existing NDA coherence
mechanisms and make three key observations:

1 These mechanisms eliminate
a significant portion of NDA'’s benefits

2 The majority of off-chip coherence traffic
generated by these mechanisms is unnecessary

Much of the off-chip traffic can be eliminated
3 if the coherence mechanism has insight
into the memory accesses

SAFARI

An Optimistic Approach

We find that an optimistic approach to coherence can
address the challenges related to NDA coherence

| Gain insights before any coherence checks happen

2 Perform only the necessary coherence requests

We propose CoNDA, a coherence mechanism that lets an
NDA optimistically execute an NDA kernel
\
Optimistic execution enables CoNDA to identify and avoid
unnecessary coherence requests

CoNDA comes within 10.4% and 4.4% of performance

and energy of an ideal NDA coherence mechanism
SAFARI 5

Outline

* Introduction

* Background
 Motivation

« CoNDA

* Architecture Support
 Evaluation

* Conclusion

SAFARI

Background

* Near-Data Processing (NDP)
— A potential solution to reduce data movement
— ldea: move computation close to data

v Reduces data movement
v’ Exploits large in-memory bandwidth

v’ Exploits shorter access latency to memory

* Enabled by recent advances in 3D-stacked memory

Through-Silicon Via
1 (TSV)

SAFARI

Outline

* Introduction

* Background
 Motivation

« CoNDA

* Architecture Support
e Evaluation

* Conclusion

SAFARI

Application Analysis

SAFARI

Sharing Data between NDAs and CPUs

Hybrid Databases Graph Processing
(HTAP)

We find not all portions of applications benefit fromm NDA

| Memory-intensive portions benefit from NDA

7 Compute-intensive or cache friendly portions should remain
on the CPU

It key observation: CPU threads often concurrently
access the same region of data that NDA kernels
access which leads to significant data sharing
SAFARI 10

Shared Data Access Patterns

2"d key observation: CPU threads and NDA kernels
typically do not concurrently access the same cache lines

g - - - . - .y

For Connected Components application, only 5.1% of the CPU
accesses collide with NDA accesses

CPU threads rarely update the same data
that an NDA is actively working on

SAFARI 11

Analysis of
NDA Coherence Mechanisms

SAFARI

Analysis of Existing Coherence Mechanism

We analyze three existing coherence mechanisms:

| Non-cacheable (NCO)
e Mark the NDA data as non-cacheable

2 Coarse-Grained Coherence (CG)

* Get coherence permission for the entire NDA region

3 Fine-Grained Coherence (FG)

* Traditional coherence protocols

SAFARI 13

Analysis of Existing Coherence Mechanisms

BCPU-only 4NC ECG H8FG UOldeal-NDA

8 2.0

|
] 1 F i 5 s A
k5 | c |5 IZ|—
a | ' s 10 AN
5 = 3 .
i o= . /78 EN
I < :/ N
: o, /ML
CC | Radii PR = CC Radii| PR iGMEAN 3 GMEAN
|

arXiV
4 Loses a significant portion of the
performance and energy benefits

Poor handling of coherence eliminates much
of an NDA’s performance and energy benefits

SAFARI 14

Motivation and Goal

1 Poor handling of coherence eliminates much
of an NDA'’s benefits

2 The majority of off-chip coherence traffic
IS unnecessary

Our goal is to desigh a coherence mechanism that:

| Retains benefits of ldeal NDA

) Enforces coherence with only the necessary
data movement

SAFARI 15

Outline

 Introduction
* Background
e Motivation

« CoNDA
* Architecture Support

e Evaluation

e Conclusion

SAFARI

16

Optimistic NDA Execution

We leverage two key observations:

| Having insight enables us to eliminate much of
unnecessary coherence traffic

2 Low rate of collision for CPU threads and NDA kernels

We propose to use optimistic execution for NDAs

NDA executes the kernel:

| Assumes it has coherence permission

2 Gains insights into memory accesses

When execution is done:

Performs only the necessary coherence requests
SAFARI 17

High-Level Overview of Optimistic Execution Model

= CPU NDA

ime
CPU Thread
Execution
~ Concurrent Otlmlstlc
CPU + NDA Ep SHe
' Execution xecution

Commit or Re-execute
4

SAFARI 18

High-Level Overview of CoONDA

We propose CoNDA, a mechanism that uses optimistic
NDA execution to avoid unnecessary coherence traffic

CPU Thread
Execution

. Concurrent
. CPU + NDA
. Execution

SAFARI

Ry

CPU

=

| Signature

NDA

| £

Optimistic
Execution

19

How do we identify
coherence violations?

SAFARI

Necessary Coherence Requests

* Coherence requests are only necessary if:
— Both NDA and CPU access a cache line

— At least one of them updates it

We discuss three possible interleaving of accesses
to the same cache line:

| NDA Read and CPU Write (coherence violation)

2 NDA Write and CPU Read (no violation)
3 NDA Write and CPU Write (no violation)

SAFARI 21

1) NDA Read and CPU Write: violation

2) NDA Write and CPU Read : no violation

3) NDA Write and CPU Write: no violation

Outline

* Introduction
* Background
 Motivation
- CoNDA

* Architecture Support
* Evaluation

e Conclusion

SAFARI

23

NDAReadSet
Coherence

Resolution CPUW/riteSet NDAWEFriteSet

The CPU records all writes
to the NDA data region in the CPUWriteSet

/ LI
/' NDA :
/, Core N DAReasiSet
4 NDAW/YriteSet
CPUW/riteSet / /

Per-word dirty bit mask to mark
all uncommitted datz updates

The NDAReadSet and NDAWriteSet are used
to track memory accesses from NDA

----------------------------- NDAReadSet

-—
-— -
g

NDAWeriteSet

CPUW/riteSet

Bloom filter based signature has two major benefits:
* Allows us to easily perform coherence resolution

* Allows for a large number of addresses to be stored
within a fixed-length register

CPUW/riteSet NDAReadSet

Conflict

NDAReadSet

Coherence

Resolution CPUW/riteSet

If conflicts happens:

If no conflicts:

* Any clean cache lines in the CPU that match an
address in the NDAWriteSet are invalidated

* NDA commits data updates

Outline

* Introduction

* Background
 Motivation

- CoNDA

* Architecture Support
* Evaluation

e Conclusion

SAFARI

28

Evaluation Methodology

* Simulator
— Gemb full system simulator

* System Configuration:
— CPU

* 16 cores, 8-wide, 2GHz frequency

* LI 1/D cache: 64 kB private, 4-way associative, 64 B block
* L2 cache: 2 MB shared, 8-way associative, 64 B blocks

« Cache Coherence Protocol: MESI

— NDA

* 16 cores, |-wide, 2GHz frequency
LI 1/D cache: 64 kB private, 4-way associative, 64 B Block
* Cache coherence protocol: MESI

— 3D-stacked Memory

* One 4GB Cube, |6 Vaults per cube
SAFARI

29

Applications

* Ligra
— Lightweight multithreaded graph processing
— We used three Ligra graph applications
* PageRank (PR)
* Radii
* Connected Components (CC)
— Real-world Input graphs:

e Enron
e arXiV
e Gnutella25

* Hybrid Database (HTAP)

— In-house prototype of an in-memory database

— Capable of running both transactional and analytical queries on
the same database (HTAP workload)

— 32K transactions, 128/256 analytical queries
SAFARI

30

Speedup

B CPU-only NSNDA-only BNFG ECoNDA Uldeal-NDA

I
| 66.0%
2.5
I
0 2.0 - - | et
3 . 7 S p m B i 1 EL)
§ .5 8] | 0 N
& Ml Nl s ~ IR
" N iR
os N N
& & NI
7 & i § e
0.0 - HE

I

I

CC Radii| PR | CC | Radiii PR | CC |Radii, PR 128 256:
I

arXiV Gnutella Enron HTAP |

I

LB - LN - A - A 7

CoNDA consistently r'etalns most of Ideal NDA’ benef'ts,

coming within 10.4% of the Ideal-NDA performance
SAFARI 31

Memory System Energy

L11deal-NDA

i CoNDA

NFG

B CPU-only

a\\\\\.\ w\\\\\\

-.- .1.. .1.. -.- .1.. .1.. -.- .1.. .1.. -”-.

SIS

SIS

\\\\\\\\\\

777 IPIII IS

.1..1--.1..1.--.1..1..--.1..1.---

V7772

n O wn O wun O
N O N 1n o O
1 < O O O O

A319u3 poazijewopN

128 | 256

Radii, PR

CC

PR

CC | Radii

PR

CC | Radii

GMEAN

HTAP

Enron

Gnutella

arxXiV

ion

ficantly reduces energy consumpti

igni

and comes within 4.4% of Ildeal-NDA

CoNDA s

32

SAFARI

Other Results in the Paper

* Results for larger data sets

— 8.4x over CPU-only
— 1.7x over NDA-only

— 38.3% over the best prior coherence mechanism

* Sensitivity analysis
— Multiple memory stacks
— Effect of optimistic execution duration
— Effect of signature size
— Effect of data sharing characteristics

 Hardware overhead analysis

— 512 B NDA signature, 2 kB CPU signature, | bit per page

table, | bit per TLB entry, 1.6% increase in NDA LI cache
SAFARI 33

Outline

* Introduction

* Background
 Motivation

- CoNDA

* Architecture Support
e Evaluation

e Conclusion

SAFARI

34

Conclusion

* Coherence is a major system challenge for NDA

— Efficient handling of coherence is critical to retain NDA
benefits

* We extensively analyze NDA applications and existing
coherence mechanisms. Major Observations:

— There is a significant amount of data sharing between CPU
threads and NDAs

— A majority of off-chip coherence traffic is unnecessary
— A significant portion of off-chip traffic can be eliminated if the
mechanism has insight into NDA memory accesses
* We propose CoNDA, a mechanism that uses

optimistic NDA execution to avoid unnecessary
coherence traffic

* CoNDA comes within 10.4% and 4.4% of performance
and energy of an ideal NDA coherence mechanism
SAFARI 35

CoNDA:

Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand

Saugata Ghose, Minesh Patel, Hasan Hassan,
Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,
Onur Mutlu

SAFARI CarnegieMellon @

9 A
3 2
=y, y
S o
: S mz
ot R oo o h
(=%
SF ’ R uric
Sooe I
¥ oF TeCS

Backup

SAFARI

Breakdown of Performance Overhead

* CoNDA'’s execution time consist of three major parts:
— (1) NDA kernel execution
— (2) Coherence resolution overhead (3.3% of execution time)
— (3) Re-execution overhead (8.4% of execution time)

* Coherence resolution overhead is low
— CPU-threads do not stall during resolution
— NDAWYriteSet contains only a small number of addresses (6)

— Resolution mainly involves sending signatures and checking
necessary coherence

* Overhead of re-execution is low
— The collision rate is low for our applications 2> 13.4%

— Re-execution is significantly faster than original execution
SAFARI 38

Non-Cacheable (NC) Approach

Mark the NDA data as nhon-cacheable

C@:@

Transactions Analytics
N Flytics | v

Y [Q
(1) Generates a large number S
of off-chip accesses Hybrid _-1
Datab \-l
(2) Significantly hurts CPU preeallogy 1§

threads performance .
Tre ons & Anélgtics
Data Sharing
M m

NC fails to provide any energy saving and perform

CPU

6.0% worse than CPU-only
SAFARI 39

Coarse-Grained (CG) Coherence

Get coherence permission for the entire NDA region

Unnecessarily flushes %% Flush dirty data gg

a large amount of dirty data,
— 3

especially in pointer-chasing
Use coarse-grained locks to provide exclusive access

applications

CPU NDA
Time ccess to
i NDA data
Blocks CPU threads when they STAL g
access NDA data regions S D |

CG fails to provide any performance benefit of NDA

Fine-Grained (FG) Coherence

Using fine-grained coherence has two benefits:
| Simplifies NDA programming model

) Allows us to get permissions for only the pieces of data

that are actually accessed . .
(1) Memory-intensive

2) Poor localit
High amount of() Y

off-chip coherence Traffic /

=

FG eliminates 71.8% of the energy benefits of
an ideal NDA mechanism

SAFARI 41

Memory System Energy

* NC suffers greatly from the large number of accesses to DRAM
* Interconnect and DRAM energy increase by 3.1x and 4.5x

Ideal-NDA

=
N
9]

—
o
o

o
~
O

Normalized Energy
"
o

I
\S)
Ul

A A A A AR AR A

A LA LA LA LA LA LA LA LA AL LA

o
o
S

CG and FG loses a significant portion of benefits because of | IGMEAN
large number of writebacks and off-chip coherence messages

SAF !\V\A AAAAAAAA :4-[4\:“ A AO/ A-‘. Illt\—\l klnA 42

Speedup

HCPU-only NNDA-only @NC ECG NFG ECoNDA Uldeal-NDA

2.5

RELLLL L L L L LD

FG loses a significant portigwof

CoNDA consj . benefits,
coming wi NDA-only eliminates 82.2% of hance

Ideal-NDA’s improvement
on

SAFARI 43

Effect of Multiple Memory Stacks

BCPU-only ZNC [CG ESFG & CoNDA [lideal-NDA
3.3x

1 Stack 2 Stacks 4 Stacks

SAFARI

44

Effect of Optimistic Execution Duration

......

[l Normalized Execution Time L& Normalized Off-Chip Traffic

0.6

0.4

0.2

0.0

SAFARI

150

250
CC: Enron

350

150

250
HTAP-128

350

45

Effect of Signature Size

0.8

0.6

0.4

0.2

SRnER L
S

EIRRRTRIE
R

0.0

SAFARI

256

R
.......
Hre

R

] \
et et 1
SEAEEEN

ffffffffffff

512
CC: Enron

Ehani
............
HEESES
.............

eza&aa;:-\%
]

S
HEEEEE N\
e) \

i
SRARRRLRLRL

1024

256

512
HTAP-128

1024

46

1) NDA Read and CPU W/rite: violation

2) NDA Write and CPU Read : no violation

3) NDA Write and CPU Write: no violation

Optimistic NDA Execution

We leverage two key observations
| Majority of coherence

2 Enforce coherence with only the necessary data movement

We propose to use optimistic execution for NDAs

When executing in optimistic mode:

* An NDA gains insight into its memory accesses without issuing
any coherence requests

When optimistic mode is done:

* The NDA uses the tracking information to perform necessary
coherence requests

SAFARI 48

Example: Hybrid Database (HTAP)

C@:@

& Transactions Analytics \L’f
\ / O
A 2

ol 4

—

e |
Hybrid Database \-’Jt

HTAP) o B
_-J

Transactions ¢ Analytics

§§ Data Sharing §§
SAFARI m 49

Application Analysis Wrap up

1 There is a significant amount of data sharing
between CPU threads and NDAs

CPU threads and NDAs often do not access
the same cache lines concurrently

3 CPU threads rarely update the same data
that NDAs are actively working on

SAFARI 50

Background

* Near-Data Processing (NDP)
— A potential solution to reduce data movement
— ldea: move computation close to data

* Enabled by recent advances in 3D-stacked memory

Through-Silicon Via
7 (TSV)

SAFARI 51

Specialized Accelerators

Specialized accelerators are now everywhere!

Accelerators

:

T TIL
ASIC Near-Data Accelerator

On-chip Accelerators Off-chip Accelerators
SAFARI 52

Applications

* Ligra
— Lightweight multithreaded graph processing for shared
memory system

— We used three Ligra graph applications
* PageRank (PR)
* Radii
* Connected Components (CC)

— Input graphs constructed from real-world network datasets:
* Enron email communication network (36K nodes, 183K edges)
* arXiV General Relativity (5K nodes, 14K edges)
* peer-to- peer Gnutella25 (22K nodes, 54K edges).

« IMDB

— In-house prototype of an in-memory database (IMDB)

— Capable of running both transactional queries and analytical queries on
the same database tables (HTAP workload)

— 32K transactions, 128/256 analytical queries
SAFARI 53

Optimistic NDA Execution

We leverage two key observations:

| Eliminate much of unnecessary coherence traffic by
having insight into memory accesses

) CPU threads and NDA kernels typically do not
concurrently access the same cache lines

We propose to use optimistic execution for NDAs

NDA executes the kernel:

| Assumes it has coherence permission

2 Gains insights into memory accesses

When execution is done:
Performs only the necessary coherence requests

SAFARI 54

Analysis of Existing Coherence Mechanisms

BCPU-only ZNC ECG AENFG UUldeal-NDA
2.0] 2.0

[
— I
i

1.5 = ' > 1.5

!
i i
=N
o I
L |
I
I
I
I
I
I

Speedup
77,
]
7
%

D 0.5

Normalized

20
£ 1.0
AN N
v,

CC SRR R
Rad || e

Radii &=

Page Ra n R e
k
PageRan

Suffers from a @rgfe

S
ff-)
Poor hangtings % e BHhd sty

’ €
of an NDA’s perfoiitfiait %éregl nefits

SAFARI 55

