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Specialized Accelerators 
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FPGA GPU 

NDA ASIC 

ASIC 

Specialized accelerators are now everywhere! 

Recent advancement in 3D-stacked technology 
enabled Near-Data Accelerators (NDA) 

CPU 
DRAM 

NDA 
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Challenge: Coherence between NDAs and CPUs 

DRAM 
L2 L1 

CPU 
CPU CPU CPU 

NDA 

Compute 
Unit  

(1) Large cost of  
off-chip communication 

It is impractical to use traditional coherence protocols 

(2) NDA applications generate  
a large amount of off-chip data movement 
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We extensively study existing NDA coherence 
mechanisms and make three key observations:  

 These mechanisms eliminate  
a significant portion of NDA’s benefits 1

 The majority of off-chip coherence traffic  
generated by these mechanisms is unnecessary 2

Much of the off-chip traffic can be eliminated  
if the coherence mechanism has insight 

 into the memory accesses 
3
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An Optimistic Approach 
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1 Gain insights before any coherence checks happen 

We find that an optimistic approach to coherence can 
address the challenges related to NDA coherence 

2 Perform only the necessary coherence requests 

We propose CoNDA, a coherence mechanism that lets an 
NDA optimistically execute an NDA kernel 

Optimistic execution enables CoNDA to identify and avoid 
unnecessary coherence requests  

 CoNDA comes within 10.4% and 4.4% of performance  
and energy of an ideal NDA coherence mechanism 
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•  Introduction 

•  Background 
•  Motivation 
•  CoNDA 
•  Architecture Support 
•  Evaluation 
•  Conclusion 
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Background 
•  Near-Data Processing (NDP)  
–  A potential solution to reduce data movement 
–  Idea: move computation close to data 

•  Enabled by recent advances in 3D-stacked memory 
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Reduces data movement 
Exploits large in-memory bandwidth 
Exploits shorter access latency to memory 
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Application Analysis 
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1st key observation:  CPU threads often concurrently 
access the same region of data that NDA kernels 

access which leads to significant data sharing 

Graph Processing Hybrid Databases 
 (HTAP) 

We find not all portions of applications benefit from NDA 

1 Memory-intensive portions benefit from NDA   

2 Compute-intensive or cache friendly portions should remain 
on the CPU 
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Shared Data Access Patterns 
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2nd key observation:  CPU threads and NDA kernels 
typically do not concurrently access the same cache lines 

CPU threads rarely update the same data 
 that an NDA is actively working on   

For Connected Components application, only 5.1% of the CPU 
accesses collide with NDA accesses 



Analysis of  
NDA Coherence Mechanisms 
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1 Non-cacheable (NC) 
•  Mark the NDA data as non-cacheable 

2 Coarse-Grained Coherence (CG) 
•  Get coherence permission for the entire NDA region 

We analyze three existing coherence mechanisms: 

3 Fine-Grained Coherence (FG) 
•  Traditional coherence protocols 
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NC suffers from a large number of off-chip accesses  
from CPU threads 

CG unnecessarily flushes a large amount of dirty data FG suffers from high amount of unnecessary  
off-chip coherence traffic 

 Poor handling of coherence eliminates much  
of an NDA’s performance and energy benefits 

Performs 0.4% worse 
 than CPU-only 

Increases energy over CPU-only by 64.4% 
and performs 6.0% worse than CPU-only 

 Loses a significant portion of the 
performance and energy benefits 



Motivation and Goal 
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1

2

3

Poor handling of coherence eliminates much  
of an NDA’s benefits 1

The majority of off-chip coherence traffic  
is unnecessary 2

Our goal is to design a coherence mechanism that: 

1 Retains benefits of Ideal NDA 

2 Enforces coherence with only the necessary  
data movement 
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We propose to use optimistic execution for NDAs 

We leverage two key observations: 

1 Having insight enables us to eliminate much of 
unnecessary coherence traffic 

2 Low rate of collision for CPU threads and NDA kernels 

2 Gains insights into memory accesses  

Performs only the necessary coherence requests 

NDA executes the kernel: 

1 Assumes it has coherence permission  

When execution is done: 



 
 

Starts optimistic  execution 

High-Level Overview of Optimistic Execution Model 
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Time 

 
 

Optimistic 
Execution 

CPU NDA 

CPU Thread 
Execution 

Concurrent 
CPU + NDA  

Execution 
No Coherence Request 

Coherence Resolution 
Commit or Re-execute 

Fits well within the context of NDA coherence: 
1 Allows us to identify the necessary coherence traffic 

2 Most of the time optimistic execution works à low re-
execution rate  



High-Level Overview of CoNDA 
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Time 

 
 

 
 

Optimistic 
Execution 

CPU NDA 

Concurrent 
CPU + NDA  

Execution 

Offload NDA kernel 

Signature Signature 

Send signatures 

Coherence Resolution 
Commit or Re-execute 

CPU Thread 
Execution 

We propose CoNDA, a mechanism that uses optimistic 
NDA execution to avoid unnecessary coherence traffic 

No  
Coherence Request 



How do we identify 
 coherence violations? 
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Necessary Coherence Requests 

•  Coherence requests are only necessary if: 
–  Both NDA and CPU access a cache line 
–  At least one of them updates it 
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We discuss three possible interleaving of accesses  
to the same cache line: 

1 NDA Read and CPU Write (coherence violation) 

2 NDA Write and CPU Read (no violation) 
   3 NDA Write and CPU Write (no violation)  



Identifying Coherence Violations 
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Time CPU NDA 

C1.  Wr Z 
C2.   Rd A  
C3.   Wr B 

N1.  Rd X 
N2.  Wr Y 
N3.  Rd Z 

Any Coherence Violation? 
 

C4.   Wr Y 
C5.   Rd  Y 

N4.  Rd X 
N5.  Wr Y 
N6.  Rd Z 

Any Coherence Violation? 
 

C6.   Wr X 

Yes. Flush Z to DRAM 

No. Commit NDA operations 

Coherence checks happen 
 at the end of NDA kernel 

No coherence checks 
during NDA execution  

 
NDA reads old value of Z 

“C4” and “C5” 
 are ordered before 

 “N5” 

 1) NDA Read and CPU Write: violation 
 
 2) NDA Write and CPU Read : no violation 
 
 3) NDA Write and CPU Write: no violation 
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CPU 

CPUWriteSet 

Shared LLC 
Coherence 
Resolution  

L1 
NDA 
Core NDAReadSet 

NDAWriteSet 

L1 
NDA 
Core 

L1 

Per-word dirty bit mask to mark 
 all uncommitted data updates   

NDAReadSet 

NDAWriteSet 

CPUWriteSet 

The NDAReadSet and NDAWriteSet are used  
to track memory accesses from NDA 

The CPU records all writes  
to the NDA data region in the CPUWriteSet 
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CPU 

CPUWriteSet 

Shared LLC 
Coherence 
Resolution  

L1 
NDA 
Core NDAReadSet 

NDAWriteSet 

L1 

NDAReadSet 

NDAWriteSet 

CPUWriteSet 

Address 
 

…1 1 0 0 0 1 1 1 0 0 0 1 

hk-1 h1 h0 …

Bloom filter based signature has two major benefits: 
 
  

 

•  Allows us to easily perform coherence resolution 
•  Allows for a large number of addresses to be stored 

within a fixed-length register  
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CPU 

CPUWriteSet 

Shared LLC 
Coherence 
Resolution  

L1 
NDA 
Core NDAReadSet 

NDAWriteSet 

L1 

NDAReadSet 

CPUWriteSet 
Coherence 
Resolution  

NDAReadSet CPUWriteSet 

Conflict 

If conflicts happens: 

•  The CPU flushes the dirty cache lines that match 
addresses in the NDAReadSet 

•  NDA invalidates all uncommitted cache lines 

•  Signatures are erased and NDA restarts execution 

If no conflicts: 

•  Any clean cache lines in the CPU that match an 
address in the NDAWriteSet are invalidated 

•  NDA commits data updates 
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Evaluation Methodology 
•  Simulator 

–  Gem5 full system simulator 

•  System Configuration: 
–  CPU 

•  16 cores, 8-wide, 2GHz frequency 
•  L1 I/D cache: 64 kB private, 4-way associative, 64 B block 
•  L2 cache: 2 MB shared, 8-way associative, 64 B blocks 
•  Cache Coherence Protocol: MESI 

–  NDA 
•  16 cores, 1-wide, 2GHz frequency 
•  L1 I/D cache: 64 kB private, 4-way associative, 64 B Block 
•  Cache coherence protocol: MESI 

–  3D-stacked Memory 
•  One 4GB Cube, 16 Vaults per cube 
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Applications 
•  Ligra 

–  Lightweight multithreaded graph processing 
–  We used three Ligra graph applications 

•   PageRank (PR) 
•   Radii  
•  Connected Components (CC) 

–  Real-world Input graphs: 
•  Enron 
•  arXiV 
•  Gnutella25 

•  Hybrid Database (HTAP) 
–  In-house prototype of an in-memory database  
–  Capable of running both transactional and analytical queries on 

the same database (HTAP workload) 
–  32K transactions, 128/256 analytical queries 30 
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FG loses a significant portion of  
Ideal-NDA’s improvement 

NDA-only eliminates 82.2% of 
Ideal-NDA’s improvement CG and NC eliminate the entire performance 

 benefit of Ideal-NDA execution 
 CoNDA consistently retains most of Ideal-NDA’s benefits, 

coming within 10.4% of the Ideal-NDA performance 

66.0% 
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FG loses a significant portion of benefits because 
of a large number of off-chip coherence messages 

 
CoNDA significantly reduces energy consumption  

and comes within 4.4% of Ideal-NDA 
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Other Results in the Paper 
•  Results for larger data sets 
–  8.4x over CPU-only 
–  7.7x over NDA-only 
–  38.3% over the best prior coherence mechanism 

•  Sensitivity analysis 
–  Multiple memory stacks 
–  Effect of optimistic execution duration 
–  Effect of signature size 
–  Effect of data sharing characteristics 

•  Hardware overhead analysis 
–  512 B NDA signature, 2 kB CPU signature, 1 bit per page 

table, 1 bit per TLB entry, 1.6% increase in NDA L1 cache 
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Conclusion 
•  Coherence is a major system challenge for NDA 
–  Efficient handling of coherence is critical to retain NDA 

benefits 
•  We extensively analyze NDA applications and existing 

coherence mechanisms. Major Observations: 
–  There is a significant amount of data sharing between CPU 

threads and NDAs 
–  A majority of off-chip coherence traffic is unnecessary 
–  A significant portion of off-chip traffic can be eliminated if the 

mechanism has insight into NDA memory accesses 
•  We propose CoNDA, a mechanism that uses 

optimistic NDA execution to avoid unnecessary 
coherence traffic 

•  CoNDA comes within 10.4% and 4.4% of performance  
and energy of an ideal NDA coherence mechanism 
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Breakdown of Performance Overhead 

•  CoNDA’s execution time consist of three major parts: 
–  (1) NDA kernel execution 
–  (2) Coherence resolution overhead (3.3% of execution time) 
–  (3) Re-execution overhead (8.4% of execution time) 

•  Coherence resolution overhead is low 
–  CPU-threads do not stall during resolution 
–  NDAWriteSet contains only a small number of addresses (6)  
–  Resolution mainly involves sending signatures and checking 

necessary coherence 
 

•  Overhead of re-execution is low 
–  The collision rate is low for our applications à 13.4%  
–  Re-execution is significantly faster than original execution 
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Hybrid 
Database 
(HTAP) 

Transactions Analytics 

CPU CPU 

Transactions 

NDA 

Analytics 

Data Sharing 

(1) Generates a large number 
 of off-chip accesses 

(2) Significantly hurts CPU 
threads performance 

NC fails to provide any energy saving and perform 
6.0% worse than CPU-only  

Mark the NDA data as non-cacheable 
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CPU CPU NDA 

Flush dirty data 

Get coherence permission for the entire NDA region 

Unnecessarily flushes 
 a large amount of  dirty data, 
especially in pointer-chasing 

applications  

Use coarse-grained locks to provide exclusive access 
Access to 
NDA data 

CPU NDA 
Time 

STALL Blocks CPU threads when they 
access NDA data regions 

CG fails to provide any performance benefit of NDA 
and perform 0.4% worse than CPU-only  



Fine-Grained (FG) Coherence 
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Using fine-grained coherence has two benefits: 
1 Simplifies NDA programming model 

2 Allows us to get permissions for only the pieces of data 
that are actually accessed 

CPU CPU NDA 

High amount of  
off-chip coherence Traffic 

(1) Memory-intensive 
(2) Poor locality 

Large amount of these coherence messages  
are unnecessary  

FG eliminates 71.8% of the energy benefits of  
an ideal NDA mechanism 
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•  NC suffers greatly from the large number of accesses to DRAM 
 

 

 
•  Interconnect and DRAM energy increase by 3.1x and 4.5x 

CG and FG loses a significant portion of benefits because of 
large number of writebacks and off-chip coherence messages 

 

 CoNDA significantly reduces energy consumption 
and comes within 4.4% of Ideal-NDA 
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CG and NC eliminate the entire  
benefit of Ideal-NDA execution 

FG loses a significant portion of  
Ideal-NDA’s improvement 

 CoNDA consistently retains most of Ideal-NDA’s benefits, 
coming within 10.4% of the Ideal-NDA performance NDA-only eliminates 82.2% of 

Ideal-NDA’s improvement 
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Time CPU NDA 

C1.  Wr Z 
C2.   Rd A  
C3.   Wr B 

N1.  Rd X 
N2.  Wr Y 
N3.  Rd Z 

Any Coherence Violation? 
 

C4.   Wr Y 
C5.   Rd  Y 

N4.  Rd X 
N5.  Wr Y 
N6.  Rd Z 

Any Coherence Violation? 
 

C6.   Wr X 

Effective Ordering 

C1.  Wr Z 
C2.   Rd A  
C3.   Wr B 

C4.   Wr Y 
C5.   Rd  Y 
N4.  Rd X 
N5.  Wr Y 
N6.  Rd Z 
C6.  Wr X 

Yes. Flush Z to DRAM 

No. commit NDA operations 

 1) NDA Read and CPU Write: violation 
 
 2) NDA Write and CPU Read : no violation 
 
 3) NDA Write and CPU Write: no violation 
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We propose to use optimistic execution for NDAs 
When executing in optimistic mode: 
•  An NDA gains insight into its memory accesses without issuing 

any coherence requests 

When optimistic mode is done: 
•  The NDA uses the tracking information to perform necessary 

coherence requests  

We leverage two key observations 

1 Majority of coherence  

2 Enforce coherence with only the necessary data movement 
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Hybrid Database 
(HTAP) 

Transactions Analytics 

Transactions 

CPU CPU NDA 

Analytics 

Data Sharing 
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There is a significant amount of data sharing 
 between CPU threads and NDAs 1

CPU threads and NDAs often do not access 
the same cache lines concurrently 2

CPU threads rarely update the same data  
that NDAs are actively working on 3



Background 
•  Near-Data Processing (NDP)  
–  A potential solution to reduce data movement 
–  Idea: move computation close to data 
 

•  Enabled by recent advances in 3D-stacked memory 
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Specialized Accelerators 
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Accelerators 

FPGA GPU 

NDA ASIC 

ASIC Near-Data Accelerator 
 

Specialized accelerators are now everywhere! 

On-chip Accelerators Off-chip Accelerators 



Applications 
•  Ligra 

–  Lightweight multithreaded graph processing for shared 
memory system 

–  We used three Ligra graph applications 
•   PageRank (PR) 
•   Radii  
•  Connected Components (CC) 

–  Input graphs constructed from real-world network datasets: 
•  Enron email communication network (36K nodes, 183K edges) 
•   arXiV General Relativity (5K nodes, 14K edges) 
•  peer-to- peer Gnutella25 (22K nodes, 54K edges).  

•  IMDB 
–  In-house prototype of an in-memory database (IMDB) 
–  Capable of running both transactional queries and analytical queries on 

the same database tables (HTAP workload) 
–  32K transactions, 128/256 analytical queries 
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We propose to use optimistic execution for NDAs 

We leverage two key observations: 

1 Eliminate much of unnecessary coherence traffic by 
having insight into memory accesses 

2 CPU threads and NDA kernels typically do not 
concurrently access the same cache lines 

2 Gains insights into memory accesses  

Performs only the necessary coherence requests 

NDA executes the kernel: 

1 Assumes it has coherence permission  

When execution is done: 
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NC fails to provide any energy saving and 
perform 6.0% worse than CPU-only  

 Poor handling of coherence eliminates much  
of an NDA’s performance and energy benefits 
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Suffers from a large number of  
off-chip accesses 

Unnecessarily flushes 
 a large amount of  dirty data 

Blocks CPU threads when they 
access NDA data regions 

FG suffers from high amount of unnecessary  
off-chip coherence Traffic 


