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Early detection and isolation of COVID-19 patients are essential for successful

implementation of mitigation strategies and eventually curbing the disease spread. With

a limited number of daily COVID-19 tests performed in every country, simulating the

COVID-19 spread along with the potential effect of each mitigation strategy currently

remains one of the most effective ways in managing the healthcare system and guiding

policy-makers. We introduce COVIDHunter, a flexible and accurate COVID-19 outbreak

simulation model that evaluates the current mitigation measures that are applied to a

region, predicts COVID-19 statistics (the daily number of cases, hospitalizations, and

deaths), and provides suggestions on what strength the upcoming mitigation measure

should be. The key idea of COVIDHunter is to quantify the spread of COVID-19 in a

geographical region by simulating the average number of new infections caused by

an infected person considering the effect of external factors, such as environmental

conditions (e.g., climate, temperature, humidity), different variants of concern, vaccination

rate, and mitigation measures. Using Switzerland as a case study, COVIDHunter

estimates that we are experiencing a deadly new wave that will peak on 26 January

2022, which is very similar in numbers to the wave we had in February 2020. The

policy-makers have only one choice that is to increase the strength of the currently

applied mitigation measures for 30 days. Unlike existing models, the COVIDHunter model

accurately monitors and predicts the daily number of cases, hospitalizations, and deaths

due to COVID-19. Our model is flexible to configure and simple to modify for modeling

different scenarios under different environmental conditions and mitigation measures.

We release the source code of the COVIDHunter implementation at https://github.

com/CMU-SAFARI/COVIDHunter and show how to flexibly configure our model for any

scenario and easily extend it for different measures and conditions than we account for.

Keywords: epidemiological modeling, COVID-19 outbreak simulation, seasonal epidemic, outbreak prevention and

control, vaccination

INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 virus, which has rapidly spread
to nearly every corner of the globe and has been declared a pandemic in March 2020 by the
World Health Organization (WHO) (1). As of November 2021, only about 40% of the entire
world population is fully vaccinated and their protection wanes after a few months (2). Until an
effective drug or vaccination is made widely available to everyone, early detection and isolation of
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COVID-19 patients remain essential for effectively curbing the
disease spread (3). Regardless of the availability and affordability
of COVID-19 testing, it is still extremely challenging to detect
and isolate COVID-19 infections at early stages (4, 5). Simulating
the spread of COVID-19 has the potential to mitigate such
challenges, help to better manage the healthcare system, and
provide guidance to policy-makers on the effectiveness of various
(current, planned, or discussed) mitigation measures. To this
end, many COVID-19 simulation models are proposed (6–10),
some of which are announced to assist in decision-making for
policy-makers in countries such as the United Kingdom [ICL
(9)], United States [IHME (10)], and Switzerland [IBZ (11)].

These models tend to follow one of two key approaches.
The first approach evaluates the current actual epidemiological
situation by accounting for reporting delays and under-reporting
(uncertainty) due to inefficiencies such as a low number of
COVID-19 tests. This approach is taken by the IBZ (11), LSHTM
(7), and (8) models and is not mainly used for prediction
purposes as it reflects the epidemiological situation with about 2
weeks of time delay (due to its dependence on observed COVID-
19 reports). The IBZ model (11) estimates the daily reproduction
number, R, of SARS-CoV-2 from observed COVID-19 incidence
time series data after accounting for reporting delays and under-
reporting using the numbers of confirmed hospitalizations and
deaths. The R number describes how a pathogen spreads in a
particular population by quantifying the average number of new
infections caused by each infected person at a given point in
time (12). The LSHTM model (7) adjusts the daily number of
observed COVID-19 cases by accounting for under-reporting
(uncertainty) using both deaths-to-cases ratio estimates and
correcting for delays between case confirmation (i.e., laboratory-
confirmed infection) to death.

The second approach evaluates the current epidemiological
situation and predicts the future epidemiological situation by
simulating the COVID-19 outbreak and considering the effects
of mitigation measures. This approach, taken by ICL (9) and
IHME (10) models, usually suffers from two main drawbacks.
The first drawback is that they require a large number of country-
specific assumptions and input parameters (e.g., mobility rates,
age- and country-specific data on demographics, patterns of
social contact, and hospital availability) as it does not rely on
the observed (laboratory-confirmed) number of cases for each
region in simulation. For example, ICL (9) model requires
input parameters such as the daily number of confirmed deaths,
IFR, mobility rates from Google, age- and country-specific
data on demographics, patterns of social contact, and hospital
availability. This model makes three key assumptions: (1)
age-specific IFRs observed in China and Europe are the same
across every country, (2) the number of confirmed deaths is
equal to the true number of COVID-19 deaths, and (3) the
change in transmission rates is a function of average mobility
trends. Another example is the IHME (10) model, which
requires input parameters such as testing rates, mobility, social
distancing policies, population density, altitude, smoking rates,
self-reported contacts, and mask use. This model makes two key
assumptions: (1) the infection fatality rate (IFR), which indicates
the rate of people that die from the infection is taken using data

from the Diamond Princess Cruise ship and New Zealand and
(2) the decreasing fatality rate is reflective of increased testing
rates (identifying higher rates of asymptomatic cases). The
second drawback is the lack of awareness about environmental
conditions of the subject region, they usually provide inaccurate
estimates especially during the winter months (13). Several
related viral infections, such as the Influenza virus, human
coronavirus, and human respiratory, already show notable
seasonality (showing peak incidences during only the winter (or
summer) months) (14, 15). There are currently several studies
that demonstrate the strong dependence of the transmission
of SARS-CoV-2 virus on one or more environmental
conditions, even after controlling (isolating) the impact of
mitigation measures and behavioral changes that reduce
contacts (16–21).

To our knowledge, there is currently no model capable
of accurately monitoring the current epidemiological situation
and predicting future scenarios while considering a reasonably
low number of parameters and accounting for the effects of
environmental conditions (Table 1).

Our goal in this work is to develop and validate such a
COVID-19 outbreak simulationmodel. To this end, we introduce
COVIDHunter, a simulation model that evaluates the current
mitigation measures (i.e., non-pharmaceutical intervention or
NPI) that are applied to a region and provides insight into what
strength the upcomingmitigationmeasure should be and for how
long it should be applied, while considering the potential effect
of environmental conditions. Our model accurately forecasts the
numbers of infected and hospitalized patients, and deaths for
a given day, as validated on historical COVID-19 data (after
accounting for under-reporting). The key idea of COVIDHunter
is to quantify the spread of COVID-19 in a geographical region
by calculating the daily reproduction number, R, of COVID-
19 and scaling the reproduction number based on changes
in mitigation measures, environmental conditions, different
variants of concern, and vaccination rate. The R number changes
during the course of the pandemic due to the change in the
ability of a pathogen to establish an infection during a season and
mitigation measures that lead to a lower number of susceptible
individuals. COVIDHunter simulates the entire population of
a region and assigns each individual in the population to a
stage of the COVID-19 infection (e.g., from being healthy to
being short-term immune to COVID-19) based on the scaled
R number. COVIDHunter requires only three input parameters,
two of which are time-varying parameters, to calculate the R
number, which provides four key advantages: (1) allowing flexible
(easy-to-adjust) configuration of the model input parameters
for different scenarios and different geographical regions; (2)
enabling short simulation execution time and simpler modeling;
(3) enabling easy validation/correction of the model prediction
outcomes by adjusting fewer variables, and (4) being extremely
useful and powerful especially during the early stages of a
pandemic as many of the parameters are unknown. Whenever
applicable, we compare the simulation output of our model
to that of four state-of-the-art models currently used to
inform policy-makers, IBZ (11), LSHTM (7), ICL (9), and
IHME (10).
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TABLE 1 | Comparison to other models used to inform government policymakers, as of January 2021.

Model Open source Well

documented#

Accounting for

seasonality

Low number of

parameters

Reported COVID-19 statistics

COVIDHunter (this work) ✓ ✓ ✓ ✓ ✓ (R, cases, hospitalizations, and deaths)

IBZ (11) ✓ χ χ ✓ χ (only R)

LSHTM (7) ✓ χ χ ✓ χ (only cases)

ICL (9) ✓ ✓ χ χ ✓ (R, cases, hospitalizations, and deaths)

IHME (10) ✓* χ χ χ χ (cases, hospitalizations, and deaths)

*The available packages are configured only for the IHME infrastructure. # Based on the documentation available on each model’s GitHub page (all models are available on GitHub).

MATERIALS AND METHODS

The COVIDHunter model employs a four-stage approach to
simulate the COVID-19 outbreak (Figure 1). (1) Predicting the
daily reproduction number, the average number of new daily
infections caused by each infected person. (2) COVIDHunter
simulates the entire population of a region and labels each
individual according to different stages of the COVID-19
infection timeline. Each stage has a different degree of
infectiousness and contagiousness. The model simulates these
stages for each individual to maintain accurate predictions. (3)
Predicting the number of daily cases based on our population
simulation. (4) Predicting the number of daily deaths and
hospitalizations based on both the predicted number of cases
and the R number. All input parameters to our model are fully
configured based on either existing research findings or user-
defined values.

Predicting the Reproduction Number
One of the most challenging factors in predicting the spread
of COVID-19 is to quantify the daily reproduction number
(R) due to the large number of factors affecting its value
and various viral genetic variations. The R number is directly
affected by a large number of factors (12), such as (1) the
transmissibility of the virus variant of concern; (2) the strength of
the mitigation measures; (3) weather factors (e.g., temperature);
(4) air pollutants; (5) population density, and many more. The
coronavirus genome can also exhibit rapid genetic changes in
its nucleotide sequence (22, 23). This genetic diversity affects
the virus virulence, infectivity, transmissibility, and evasion
of the host immune responses (23, 24). To provide accurate
predictions of the reproduction number, the COVIDHunter
model considers only three key factors for predicting the R
number: (1) different transmissibility rates of infection into
a susceptible host population for each SARS-CoV-2 variant,
(2) mitigation measures (e.g., lockdown, social distancing, and
isolating infected people), and (3) environmental conditions
(e.g., air temperature). We choose these three main factors for
two reasons: (1) they have a large impact on the R number
(3, 14, 15), (2) the mitigation measure and the environmental
conditions can represent almost any other factor that affects the
R number (e.g., high population density can be thought of as a
weaker mitigation measure). The COVIDHunter model allows
for directly leveraging existing models that study the effect of only

mitigation measures (or only environmental conditions) on the
spread of COVID-19. Our model calculates the time-varying R
number using Equation 1 as follows:

R (t) = R0∗ [1−M (t)]∗ Ce (t) (1)

where R0 is the base reproduction number for the virus variant
of concern, M(t) is the mitigation coefficient for the given day
t, and Ce(t) is the environmental coefficient for the given day t.
The R0 number quantifies the transmissibility of infection into a
susceptible host population by calculating the expected average
number of new infections caused by an infected person in a
population with no prior immunity to a specific virus or variant
(as a pandemic virus is by definition novel to all populations).
Hence, the R0 number represents the transmissibility of an
infection at only the beginning of the outbreak assuming the
population is not protected via vaccination. Unlike the R number,
the R0 number is a fixed value and it does not depend on
time. The R0 number for each SARS-CoV-2 variant can be
obtained from several existing studies [such as in (25–28)] that
estimate it by modeling contact patterns during the first wave of
the pandemic.

Themitigation coefficient [M(t)] applied to the population is a
time-dependent variable and it has a value between 0 and 1, where
1 represents the strongest mitigation measure and 0 represents
no mitigation measure applied. In different countries, mitigation
measures take different forms, such as social distancing, self-
isolation, school closure, banning public events, and complete
lockdown. These measures exhibit significant heterogeneity and
differ in timing and intensity across countries (9). The Oxford
Stringency Index (29) maintains a twice-weekly-updated index
that represents the severity of nine mitigation measures that are
applied bymore than 160 countries. Another study (30) estimates
the effect of only seven mitigation measures on the R number in
41 countries. We can directly leverage such studies for calculating
the mitigation coefficient on a given day.

The environmental coefficient [Ce(t)] is a time-dependent
variable representing the effect of external environmental factors
on the spread of COVID-19 and it has a value between 0 and
2. Several studies have demonstrated increased infectiousness
by a country-dependent fixed-rate with each 1 ◦C fall in
daytime temperature (16, 17). Another study supports the same
temperature-infectiousness relationship, but it also finds that
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FIGURE 1 | Proposed COVIDHunter model for simulating COVID-19 outbreak.

before applying any mitigation measures, a one-degree drop
in relative humidity shows increased infectiousness by a rate
lower (2.94× less) than that of temperature (19). Another study
follows a simple way of modeling the effect of seasonality on
COVID-19 transmission using a sinusoidal function with an
annual period (20). One of the most comprehensive studies that
spans more than 3,700 locations around the world is HARVARD
CRW (or CRW in short) (21). It finds the statistical correlation
between the relative changes in the R number and both weather
conditions and air pollution after controlling the impact of
mitigation measures. Our model enables applying any of these
studies as we experimentally demonstrate in Section Result. In
our experiments, we choose two main approaches for setting
the value of the time-varying environmental coefficient variable
[Ce(t)]. (1) The first approach is to perform statistical analysis for
the relationship between the daily number of COVID-19 cases
and average daytime temperature in Switzerland. (2) The second
approach is to apply the HARVARD CRW (21) (referred to as
CRW). Next, we explain the first approach in detail.

Statistical Relationship Between
Temperature and Number of COVID-19
Cases
To calculate the environmental coefficient, we explore the
relationship between the daily new confirmed COVID-19 case
counts or death counts and temperature in Switzerland. We
obtain the daily number of confirmed COVID-19 cases and
deaths in Switzerland from official reports of the Federal Office
of Public Health (FOPH) in Switzerland (31) starting from
March 2020 until January 2021. We obtain the air temperature
data from the Federal Office of Meteorology and Climatology
(MeteoSwiss) in Switzerland (32). We calculate the daily average
air temperature during the same time period (March 2020 to
December 2020) for all the 26 cantons in Switzerland. To evaluate
the correlation between the temperature data and the number of
daily confirmed COVID-19 cases or the daily counts of death,
we use a generalized additive model (GAM). GAM is usually
used to calculate the linear and non-linear regression models
between meteorological factors (e.g., temperature, humidity)
with COVID-19 infection and transmission (16, 17, 33).

Our analyses are performed with R software version 4.0.3,
where p–value <0.05 is considered statistically significant.
Our model attempts to represent the linear behavior of the

growth curve of the counts of the new confirmed cases or
deaths in Switzerland. Therefore, we can test the hypothesis
of whether there is a significant negative correlation between
the COVID-19 confirmed daily case or death counts and
temperature. The results demonstrate a significant negative
correlation between temperature and COVID-19 daily case
and death counts. Specifically, the relationship is linear for
the average temperature in the range from 1–26◦C. Based on
Figure 2, we make two key observations. (1) For each 1◦C
rise in temperature, there is a 3.67% (t-value = 3.244 and
p-value = 0.0013) decrease in the daily number of COVID-
19 confirmed cases (Figure 2A). (2) For each 1◦C rise in
temperature, there is a 23.8% decrease in the daily number
of COVID-19 deaths (t-value = 9.312 and p-value = 0.0), as
shown in Figure 2B. The statistical analysis can be reproduced
using the following script https://github.com/CMU-SAFARI/
COVIDHunter/tree/main/TemperatureSensitivityStudy.

Labeling Each Individual in the Subject
Population According to Different Stages
of the COVID-19 Infection Timeline
COVIDHunter tracks the number of infected and uninfected
persons over time by clustering the population into eight
main categories: HEALTHY, VACCINATED, INFECTED,
CONTAGIOUS, HOSPITALIZED, IMMUNE, DEAD, and
INFECTED TRAVELERS (Figure 3). The model initially
considers the entire population as uninfected (i.e., HEALTHY).
For each simulated day, the COVIDHunter model decides which
persons will have immunity to infection due to vaccination
(i.e., VACCINATED) based on input data. For the unvaccinated
persons, the model calculates the R value using Equation 1

(Section Predicting the reproduction number) and decides
how many persons can be infected (i.e., INFECTED) during
each simulated day. Our modeling approach considers multiple
virus strains/variants by calculating multiple R numbers, each
of which represents a different virus strain/variant. The day
when the first case of infection (caused by a variant of concern)
in a population introduced is defined by the user. For each
newly infected person (INFECTED), the model maintains a
counter that counts the number of days from being infected
to being contagious (CONTAGIOUS). Several COVID-19 case
studies show that presymptomatic transmission can occur 1–3
days before symptom onset (34, 35). COVID-19 patients can
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FIGURE 2 | Correlation between temperature and COVID-19 confirmed (A) case count and (B) death count in 26 cantons of Switzerland.

develop symptoms mostly after an incubation period of 1 to 14
days (the median incubation period is estimated to be 4.5 to 5.8
days) (4, 5). We calculate the number of days of being contagious
after being infected as a random number with a Gaussian
distribution that has user-defined lowest and highest values.
Each contagious person may infect N other persons depending
on mobility, population density, number of households, and
several other factors (36). We calculate the value of N to be
a random number with a Gaussian distribution that has the
lowest value of 0 and the highest value determined by the user.
If N is greater than the R number (i.e., the target number of
infections for that day has been reached), further infections
are curtailed preventing overestimation of N by infecting only
R persons.

Once the contagious person infects the desired number

of susceptible persons, the status of the contagious person
becomes IMMUNE or HOSPITALIZED. The IMMUNE status

indicates that the person has immunity to reinfection due
to either vaccination or being recently infected (37, 38). The

HOSPITALIZED person can be later on IMMUNE or DEAD.

There are currently two key approaches for calculating the
estimated number of both hospitalizations and deaths due to

COVID-19: (1) using historical statistical probabilities, each of

which is unique to each age group in a population (39, 40) and (2)
using historical COVID-19 hospitalizations-to-cases and deaths-

to-cases ratios (41). We choose to follow the second approach as

it does not require (1) clustering the population into age-groups

and (2) calculating the risk of each individual using the given
probability, which both affect the complexity of the model and

the simulation time. As the true number of cases is unknown

due to both lack of population-scale testing and asymptomatic
cases (42, 43), it is extremely difficult to make accurate estimates

of the true number of COVID-19 hospitalizations and deaths.
As such, we assume a fixed multiplicative relationship between
the number of laboratory-confirmed cases and the true number
of cases. We use user-defined correction coefficients (we refer to

them as certainty rate levels) to account for such a multiplicative
relationship. A certainty rate of, for example, 50% means that the
true number of COVID-19 cases is actually double that calculated
by COVIDHunter.

Our model also simulates the effect of infected travelers (i.e.,
INFECTED TRAVELERS) on the value of R. These travelers (e.g.,
daily cross-border commuters within the European Union) can
initiate the infection(s) at the beginning of the pandemic. If such
infected travelers are absent (due to, for example, emergency
lockdown) from the target population, the virus would die out
once the value of R decreases below one for a sufficient period
of time. The percentage of incoming infected travelers is not
affected by the changes in the local mitigation measures nor
the environmental conditions, as these travelers were already
infected abroad.

Predicting the Number of COVID-19 Cases
The COVIDHunter model assigns each individual in the entire
population of a region to a stage of the COVID-19 infection
timeline. Using this assignment, our model predicts the daily
number of COVID-19 cases for a given day t, as follows:

Daily_Cases (t) =

TINF(t)∑

n=0

N (n) +

UCON (t)∑

m=0

N (m) (2)

where TINF is the daily number of infected travelers that is a user-
defined variable, N () is a function that calculates the number of
persons to be infected by a given person as a random number
with a Gaussian distribution, and UCON is the daily number of
contagious persons calculated by our model.

Predicting the Number of COVID-19
Hospitalizations and Deaths
The number of COVID-19 hospitalizations for a given day, t, can
be calculated as follows:

Daily_Hospitalizations (t) = Daily_Cases (t)∗ X∗CX (3)
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FIGURE 3 | Proposed population clustering algorithm for assigning each individual in the population of concern to a stage of the COVID-19 infection timeline. The

COVIDHunter model makes eight main clusters: HEALTHY, VACCINATED, INFECTED, CONTAGIOUS, HOSPITALIZED, IMMUNE, DEAD, and INFECTED TRAVELERS.

whereDaily_Cases (t) is calculated using Equation 2 and X is the
hospitalizations-to-cases ratio that is calculated as the average of
daily ratios of the number of COVID-19 hospitalizations to the
laboratory-confirmed number of COVID-19 cases. As the true
number of cases is unknown due to both lack of population-scale
testing and asymptomatic cases (42, 43), it is extremely difficult
to make accurate estimates of the true number of COVID-
19 hospitalizations. As such, we assume a fixed multiplicative
relationship between the number of laboratory-confirmed cases
and the true number of cases. We use the user-defined correction
coefficient, CX , of the hospitalizations-to-cases ratio to account
for such a multiplicative relationship. The number of COVID-19
deaths for a given day t can be calculated as follows:

Daily_Deaths (t) = Daily_Cases (t)∗ Y∗CY (4)

where Daily_Cases (t) is calculated using Equation 2 and Y is
the deaths-to-cases ratio, which is calculated as the average of
daily ratios of the number of COVID-19 deaths to the number
of COVID-19 laboratory-confirmed cases. The observed number
of COVID-19 deaths can still be less than the true number of
COVID-19 deaths due to, for example, under-reporting. We use
the user-defined correction coefficient, CY , to account for the
under-reporting. One way to find the true number of COVID-19
deaths is to calculate the number of excess deaths. The number of
excess deaths is the difference between the observed number of
deaths during a time period and the expected (based on historical
data) number of deaths during the same time period. For this
reason, CY may not necessarily be equal to CX .

RESULTS

We evaluate the daily (1) R number, (2) mitigation measures,
and (3) numbers of COVID-19 cases, hospitalizations, and
deaths. We compare the predicted values to their corresponding
observed values and that of four state-of-the-art models,
ICL (9), IHME (10), IBZ (11), and LSHTM (7), whenever
possible. We provide a comprehensive treatment of all
datasets, models, and evaluation results with different model
configurations in the Supplementary Materials and on GitHub
page of COVIDHunter, https://github.com/CMU-SAFARI/
COVIDHunter. We also provide all parameter values used for
running COVIDHunter and different scripts for reproducing the
experimental evaluation performed in this work on our GitHub
page, https://github.com/CMU-SAFARI/COVIDHunter/tree/
main/Reproduce-Switzerland-Case-Study-Results. We provide
below our prediction run for the period of 20 November 2021
until February 2022, which was carried out on 20 November
2021. We provide another prediction run for the period from 19
April 2021 until 1 June 2021 in the Supplementary Materials,
which were carried out on 19 April 2021. We also provide a
comprehensive analysis of the COVID-19 statistics provided
by ICL (9), IHME (10), IBZ (11), and LSHTM (7) from the
beginning of the COVID-19 outbreak (February 2020) until
April 2021.

Determining the Value of Each Variable in
the Equations
We use Switzerland as a use-case for all the experiments.
However, our model is not limited to any specific region as
the parameters it uses are completely configurable. To predict
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the R number, we use Equation 1 that requires three key
variables. We set the base reproduction numbers, R0, for two
main variants, the Delta variant and its ancestral strain, of
SARS-CoV-2 in Switzerland as 5 and 2.7, respectively, as shown
in (25, 26, 44). The recent Omicron variant was not circulating
during the study. We set the first day for the Delta variant
to be injected into the population as 19 June 2021 based on
the governmental data (45). We set the first day of vaccination
availability in Switzerland as 28 February 2021, with a vaccination
rate of 0.28 per day based on governmental data (45). We
change the daily mitigation coefficient,M (t), value based on the
ratio of number of confirmed hospitalizations to the number of
confirmed cases with two certainty rate levels of 100 and 50%,
as we explain in detail in Section Model validation. This helps
us to take into account uncertainty in the observed number
of COVID-19 cases, hospitalizations, and deaths. We set the
minimum and maximum incubation time for SARS-CoV-2 as 1
and 5 days, respectively, as 5-day period represents the median
incubation period worldwide (4, 5). We set the population of
Switzerland to 8,654,622. We empirically choose the values of N,
the number of travelers, and the ratio of the number of infected
travelers to the total number of travelers to be 25, 100, and
15%, respectively.

Model Validation
We can validate our model using two key approaches. (1)
Comparing the daily R number predicted by our model (using
Equation 1) with the daily reported official R number for the
same region. (2) Comparing the daily number of COVID-19
cases predicted by our model (using Equation 2) with the daily
number of laboratory-confirmed COVID-19 cases. We decide to
use a combination of reported numbers of cases, hospitalizations,
and deaths to validate our model for three main reasons. (1)
The R number is calculated as, for example, the ratio of the
number of cases for a week (7-day rolling average) to the number
of cases for the preceding week. Adjusting the parameters of
our model to fit the curve of the number of confirmed cases is
likely to be highly uncertain. (2) The reported daily reproduction
number by authorities of Switzerland usually excludes the values
for the last 14 days, which makes the validation based on the
reproduction number more challenging. (3) As of 2022, we
have already witnessed more than two years of the pandemic,
which provide us with several observations and lessons. The
most obvious source of uncertainty, affecting all models, is
that the true number of persons that are previously infected
or currently infected is unknown (46). However, the publicly-
available number of COVID-19 hospitalizations and deaths can
provide more reliable data.

We validate our model using three key steps. (1) We leverage
the more reliable data of reported number of hospitalizations (or
deaths) to estimate the true number of COVID-19 cases using
the ratio of number of laboratory-confirmed hospitalizations (or
deaths) to the number of laboratory-confirmed cases during the
second wave of the COVID-19 pandemic. We assume that the
COVID-19 statistics during the second wave is more accurate
than that during the first wave because generally more testing is
performed in the second wave. (2) We consider a multiplicative

relationship between the true number of COVID-19 cases and
that estimated in step 1. In our experimental evaluation, we use
the true number of COVID-19 cases calculated using different
multiplicative factor values (we refer to them as certainty rate
levels) as a ground-truth for validating ourmodel. A certainty rate
of, for example, 50% means that the true number of COVID-19
cases is actually double that calculated in step 1. (3) We use our
model to calculate both the daily R number (Equation 1) and the
number of COVID-19 cases (Equation 2). We fix the two terms
of Equation 1, R0 andCe, using publicly-available data for a given
region and change the third term,M, until we fit the curve of the
number of cases predicted by our model to the ground-truth plot
calculated in step 2.

Evaluating the Expected Number of
COVID-19 Cases for Model Validation
As the exact true number of COVID-19 cases remains unknown
(due to, for example, lack of population-scale COVID-19 testing),
we expect the true number of COVID-19 cases in Switzerland to
be higher than the observed (laboratory-confirmed) number of
cases. We calculate the expected true number of cases based on
both numbers of deaths and hospitalizations, as we explain in
Section Model validation. To account for the possible missing
number of COVID-19 deaths, we consider the excess deaths
instead of observed deaths. We calculate the excess deaths as
the difference between the 5-year average of weekly deaths
and the observed weekly number of deaths in both 2020 and
2021. We find that X (hospitalizations-to-cases ratio) and Y
(deaths-to-cases ratio, using excess death data) to be 3.75 and
2.441%, respectively, during the second wave of the pandemic in
Switzerland. We choose the second wave to calculate the values
of X and Y as Switzerland has increased the daily number of
COVID-19 testing by 5.31× (21,641/4,074) on average compared
to the first wave. We calculate the expected number of cases on
a given day t with certainty rate levels of 100 and 50% based on
hospitalizations by dividing the number of hospitalizations at t
by X and X/2, respectively, as we show in Figure 4. We apply the
same approach to calculate the expected number of cases on a
given day t with certainty rate levels of 100% and 50% based on
deaths using Y and Y/2, respectively.

Based on Figure 4, we make three key observations. (1) The
plot for the expected number of cases calculated based on the
number of deaths is shifted forward by 10–20 days (15 days on
average) from that for the expected number of cases calculated
based on the number of hospitalizations. This is due to the
fact that each hospitalized patient usually spends some number
of days in the hospital before dying of COVID-19. We do
not observe a significant time shift between the plot of the
expected number of cases calculated based on the number of
hospitalizations and the plot of observed (laboratory-confirmed)
cases. (2) The expected number of cases calculated based on the
number of excess deaths is not reliable when the mass COVID-
19 vaccination is kicked-off (after February 2021) as the number
of deaths is quickly declined. (3) The expected number of cases
calculated based on the number of hospitalizations is on average
2.7× higher than the expected number of cases calculated based
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FIGURE 4 | Observed (officially reported) and expected number of COVID-19 cases in Switzerland during the years 2020 and 2021. We calculate the expected

number of cases based on both the hospitalizations-to-cases and deaths-to-cases ratios for the second wave. We assume two certainty rate levels of 50 and 100%.

on the number of excess deaths (after accounting for the 15-
day shift) for the same certainty rate. This is expected as not all
hospitalized patients die.

We conclude that the number of COVID-19 hospitalizations
can be used reliably for estimating the true number of COVID-
19 cases.

Evaluating the Predicted Number of
COVID-19 Cases
We evaluate COVIDHunter’s predicted daily number of COVID-
19 cases in Switzerland. We compare the predicted numbers
by our model to the observed numbers and those provided
by two state-of-the-art models (ICL and IHME), as shown
in Figures 5A,B. We calculate the observed number of cases
as the expected number of cases with a certainty rate
level of 100% (as we discuss in Section Evaluating the

expected number of COVID-19 cases for model validation).
We use three default configurations for the prediction of
the ICL model: (1) strengthening mitigation measures by
50%, (2) maintaining the same mitigation measures, and
(3) relaxing mitigation measures by 50% which we refer to
as ICL+50%, ICL, and ICL-50%, respectively, in Figure 5.
We use the mean numbers reported by the IHME model.
As we provide in Section Statistical relationship between

temperature and number of COVID-19 cases, our statistical
analysis shows that each 1◦C rise in daytime temperature is
associated with a 3.67% (t-value = −3.244 and p-value =

0.0013) decrease in the daily number of confirmed COVID-
19 cases. We refer to this approach as Cases-Temperature
Coefficient (CTC).

Based on Figures 5A,B we make three key observations.
(1) Our model predicts that the peak (the highest number of

COVID-19 cases) of the upcoming wave will be on 26 January
2022 (reaching up to 10,000 daily cases) and 31 December 2021
(reaching up to 44,800 daily cases and peaking up to 17 January
2022) for a certainty rate levels of 100% (Figure 5A) and 50%
(Figure 5B), respectively, while maintaining the same strength
of the current (20 November 2021) mitigation measures for 30
days. Both IHME and ICL models consider that the current
number of COVID-19 cases in Switzerland shows a certainty
rate level of 50% and the highest number of daily cases will
be 10,000, but IHME and ICL models predict the peak of the
upcoming wave to be on 26 January 2022 and 16 December 2021,
respectively. (2) The number of COVID-19 cases reduces from
10,000 to 200 daily cases and from 44,800 to 2,400 daily cases for
a certainty rate levels of 100% (Figure 5A) and 50% (Figure 5B),
respectively, within January 2021 if the mitigation measures that
are applied nationwide in Switzerland are tightened by 50% [M(t)
increases from 0.4 to 0.6 and from 0.3 to 0.5, respectively] for at
least 30 days starting from 20 November to 20 December 2021.
(3) Relaxing the mitigation measures before at least February
2022 can lead to a significant rise in the number of daily
COVID-19 cases, reaching up to 43,500 as predicted by ICL and
COVIDHunter (certainty rate levels of 100%) and up to 82,900
daily cases as predicted by COVIDHunter (certainty rate levels
of 50%).

Evaluating the Predicted Number of
COVID-19 Hospitalizations and Deaths
We evaluate COVIDHunter’s predicted daily number of COVID-
19 hospitalizations and deaths in Figures 6A,B. We use the
observed official number of hospitalizations as is. We calculate
the observed number of deaths as the number of excess deaths
to account for uncertainty in reporting COVID-19 deaths.
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FIGURE 5 | Observed and predicted number of COVID-19 cases by our model and other two state-of-the-art models, ICL and IHME. For COVIDHunter, we use CTC

environmental condition approaches with two certainty rate levels of (A) 100% and (B) 50%. We show the prediction of COVIDHunter using three mitigation

coefficient, M (t), values, each of which is applied from 20 November to 20 December 2021. The predicted plot in a bold black line represents the situation when the

mitigation measures applied before the prediction period remain the same.

Using the number of cases calculated with Equation 2 and the
observed number of hospitalizations and excess deaths (after
accounting for 15-day shift, as we discuss in Section Evaluating

the predicted number of COVID-19 cases and Figure 4) during
1 August 2021 to 15 November 2021, we find X (hospitalizations-
to-cases ratio) and Y (deaths-to-cases ratio, using excess death

data) to be 1.508 and 0.498%, respectively. We choose the period
from 1 August 2021 to 15 November 2021 for calculating the X
and Yratios to provide accurate predictions since the vaccination
rate in Switzerland exceeds 50%, most of the risk groups received
their second vaccination dose, and the Delta variant dominates
the causes for COVID-19 cases (47).
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FIGURE 6 | Observed and predicted number of COVID-19 hospitalization and deaths by our model and other two state-of-the-art models, ICL and IHME. For

COVIDHunter, we use a certainty rate level of 100% for the numbers of (A) hospitalizations and (B) deaths, as IHME and ICL models tend to follow such a certainty

rate. We show the prediction of COVIDHunter using three mitigation coefficient, M (t), values, each of which is applied from 20 November to 20 December 2021. The

predicted plot in a bold black line represents the situation when the mitigation measures applied before the prediction period remain the same.

Based on Figures 6A,B we make four key observations. (1)
IHME and ICL models consider that the current numbers of
COVID-19 hospitalizations and deaths in Switzerland show a
certainty rate level of 100%. (2) COVIDHunter and IHME show
that the highest number of hospitalizations and deaths will be on
26 January 2022 (reaching up to 160 and 44 daily hospitalizations
and deaths, respectively), which is a month and 2 weeks after that
predicted by ICL for the number of hospitalizations and deaths,

respectively. These predictions show that we will face a similar
situation to the first wave we had in February 2020 if we maintain
the same current mitigation measures. (3) COVIDHunter and
ICL models show that relaxing the current mitigation measures
by 50% for a month (20 November to 20 December 2021)
can increase the numbers of hospitalizations and deaths by up
to 5.5x. They also show that tightening the current mitigation
measures by 50% for a month (20 November to 20 December
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FIGURE 7 | Predicted number of COVID-19 cases by COVIDHunter model and other two state-of-the-art models, ICL and IHME, compared to the real number

(FOPH Cases) of COVID-19 cases released after performing the prediction.

2021) can reduce the numbers of hospitalizations and deaths by
up to 3.9x.

Evaluating the Prediction Accuracy
We evaluate the prediction accuracy of COVIDHunter, ICL,
and IHME models using the real COVID-19 statistics that
are published by the Federal Office of Public Health (FOPH)
of Switzerland three months after performing the prediction.
We evaluate the prediction accuracy for the number of cases,
hospitalizations, and deaths due to COVID-19 in Figures 7 and 8.

Figure 7 shows the number of COVID-19 cases predicted by
the three models and the real number (called “FOPH Cases”
in Figure 7) of COVID-19 cases released by FOPH. FOPH
usually does not report COVID-19 statistics during the weekends
and thus we also show the 7-day rolling average numbers
(called “Smoothed FOPH Cases” in Figure 7) of COVID-19
cases as provided by https://ourworldindata.org (referred to as
“Smoothed data” in the Supplementary Materials, Section S1).
We make four key observations. (1) COVIDHunter is the only
model that is able to accurately predict the number of COVID-19
cases. Although COVIDHuner predicts the mitigation measures
applied during November 2021 to be of strength 0.3 using a
certainty rate level of 50% (Figure 5B), the mitigation measures
have been already tightened during November and December
2021, as shown in (48, 49). This causes the real number
of COVID-19 cases to match the COVIDHunter’s predicted
number of cases using a mitigation measure strength of 0.4.
This informs us that the mitigation measures are further
strengthened from 0.3 to 0.4, which is in line with the actual
mitigation measures taken in Switzerland. (2) Even with the
increase in the strength of the mitigation measures during
November and December 2021, the number of COVID-19 cases

keeps increasing after January 2022. We believe this is mainly
because of the new variant, Omicron, that starts circulating in
the population of Switzerland around the start of December
2021 (50). (3) The IHME’s predicted number of cases also
matches that of the FOPH’s number of cases. However, this
indicates that the IHMEmodel provides an inaccurate prediction
(i.e., underestimation) as IHME provides the predicted number
of COVID-19 cases assuming the strength of the mitigation
measures during November and December 2021 to remain the
same as that applied before November 2021, which is incorrect
based on governmental information (48, 49). (4) The ICL model
provides a significantly underestimated number of cases even
when the ICL model is configured for increased strength of the
mitigation measures by 50% (ICL+50%).

Figure 8 shows the number of COVID-19 hospitalizations

and deaths predicted by the three models and the real numbers
released by FOPH, called “FOPH Hospitalizations” and “FOPH

Deaths”, respectively. We make four key observations. (1) The

FOPH’s numbers of COVID-19 hospitalizations and deaths show
a certainty rate level of 50%. (2) The COVIDHunter model with

a certainty rate level of 50% and an increase in the mitigation

measure strength from 0.3 to 0.4 provides an accurate prediction
of both the number of hospitalizations and the number of deaths,

which is in line with the real numbers provided by FOPH
until a new variant, Omicron, is introduced. (3) The Omicron
variant, subsequent increases in mitigation measure strength,
and increase in vaccination rate cause fewer hospitalizations
and deaths than that predicted by COVIDHunter after January
2022. We did not configure COVIDHunter to account for the
Omicron variant when we perform the prediction since the
Omicron variant was not a variant of concern in November 2021.
(4) Similar to the third and fourth observations we make for
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FIGURE 8 | Predicted number of COVID-19 (A) hospitalizations and (B) deaths by COVIDHunter, ICL, and IHME, compared to the real numbers (FOPH

Hospitalizations and FOPH Deaths) released after performing the prediction.

Figure 7, we observe that both ICL and IHME provide inaccurate
predictions. That is the ICL model still provides significantly
underestimated statistics and IHME provides predictions that
match the FOPH’s numbers, which we believe is implausible
as the circumstances of virus variant, mitigation measures, and
vaccination rates during January 2022 are very different from that
in November 2021.

We conclude that choosing the appropriate configurations
for COVIDHunter leads to accurate predictions of numbers

of cases, hospitalizations, and deaths. We demonstrate that
COVIDHunter is more accurate than state-of-the-art prediction
models, ICL and IHME.

CONCLUSION AND DISCUSSION

We conclude that COVIDHunter provides a more accurate
estimation of the number of COVID-19 cases, compared to
IHME (which provides inaccurate estimation during the first
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wave) and ICL (which provides over-estimation), with complete
control over the certainty rate level, mitigation measures, and
environmental conditions. Unlike LSHTM, COVIDHunter
also ensures no prediction delay. We demonstrate the
effectiveness of COVIDHunter through about 2 years
of monitoring COVID-19 and two prediction runs as we
provide in Section Result and the Supplementary Materials

(Supplemental Figures S1–S5). COVIDHunter gains these
unique advantages over existing models by considering
environmental conditions, transmissibility of different variants,
and vaccination statistics in our modeling.

Using COVIDHunter, we demonstrate that curbing the spread
of COVID-19 in Switzerland requires applying stricter mitigation
measures than that of the currently applied mitigation measures
for at least 30 days. If the authorities maintain the current
mitigationmeasures, we will face another wave that is very similar
to the first wave we had in February 2020. Relaxing the mitigation
measures should not be an option before at least February 2022.
We provide insights on the effect of each change in the strength
of the applied mitigation measure on the number of daily cases,
hospitalizations, and deaths. We make all the data, statistical
analyses, and a well-documented model implementation publicly
and freely available to enable full reproducibility and help society
and decision-makers.

We especially build COVIDHunter model to be flexible to
configure and easy to extend for representing any existing or
future scenario using different values of the three terms of
Equation 1, 1) R0, 2)M (t), 3) Ce (t), in addition to several other
parameters such as different variants of concern, vaccination rate,
population, number of travelers, percentage of expected infected
travelers to the total number of travelers, and hospitalizations- or
deaths-to-cases ratios. The COVIDHunter model considers each
location independently of other locations, but it also accounts
for potential movement between locations by adjusting the
corresponding parameters for travelers. By allowing most of the
parameters to vary in time, t, the COVIDHunter model is capable
of accounting for any change in transmission intensity due to
changes in environmental conditions and mitigation measures
over time. The flexibility of configuring the environmental
coefficient and mitigation coefficient allows our proposed model

to control for location-specific differences in population density,
cultural practices, age distribution, and time-variant mitigation
responses in each location.

COVIDHunter has three main limitations that can be
addressed in future work. (1) Our modeling approach acts
across the overall population without assuming any specific
age structure for transmission dynamics. It is still possible
to consider each age group separately using individual runs
of COVIDHunter model simulation, each of which has its
own parameter values adjusted for the target age group. (2)
The current implementation of COVIDHunter considers
only two variants of concerns at the time. (3) COVIDHunter
does not consider different types of vaccines nor different
immunity/protection periods after vaccination. Instead
COVIDHunter treats all types of vaccines equally and it
considers only the vaccination rate per day.
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