
Analysis	and	Modeling	of	Collaborative	Execution	
Strategies	for	Heterogeneous	CPU-FPGA	
Architectures	
Sitao	Huang1,	Li-Wen	Chang2,	Izzat	El	Hajj3,	Simon	Garcia	De	Gonzalo1,	Juan	Gómez-Luna4,	
Sai	Rahul	Chalamalasetti5,	Mohamed	El	Hadedy6,	Dejan	Milojicic5,	Onur	Mutlu4,		
Deming	Chen1,	Wen-mei	Hwu1	
	
1University	of	Illinois	at	Urbana-Champaign,	USA	
2Microsoft,	USA	
3American	University	of	Beirut,	Lebanon	
4ETH	Zürich,	Switzerland	
5Hewlett	Packard	Labs,	USA	
6California	State	Polytechnic	University,	Pomona,	USA	



2 

Outline	

•  Introduction	to	Collaborative	Computing	
• Analytical	Models	of	Collaborative	Computing	
•  Evaluation	

•  Evaluation	platform	
•  Data	partitioning	vs.	task	partitioning	
•  Impact	of	kernel	replication	

• Key	Insights	
• Chai	Benchmarks	for	CPU-FPGA	Systems	



3 

Collaborative	Computing	

•  Traditionally,	accelerators	(GPUs,	
FPGAs,	etc.)	have	been	used	as	
offload	engines	

Host	processor	offloads	
computation	tasks	to	accelerators	

Host	
Processor	

System	
Memory	

Accelerators	

PC
Ie
	



4 

Collaborative	Computing	

•  Traditionally,	accelerators	(GPUs,	
FPGAs,	etc.)	have	been	used	as	
offload	engines	

•  Heterogeneous	architectures	
moving	towards	tighter	
integration	

•  Unified	memory	
•  System-wide	atomics	

Xilinx	Zynq	UltraScale+	MPSoC	



5 

Collaborative	Computing	

•  Traditionally,	accelerators	(GPUs,	
FPGAs,	etc.)	have	been	used	as	
offload	engines	

•  Heterogeneous	architectures	
moving	towards	tighter	
integration	

•  Unified	memory	
•  System-wide	atomics	

•  Tighter	integration	allows	fine-
grained	collaboration	

Intel	Xeon	+	FPGA	Integrated	Platform	(MCP)	

HS
SI
	

Key	challenge:	identify	the	best	
CPU-FPGA	collaboration	strategy	



6 

Integrated	Heterogeneous	Systems	

CPU	
core	
0	

CPU	
core	
1	

CPU	
core	
N-1	

…	

L1	 L1	 L1	…	
L2	

FPGA	

DMA	Scratchpad	

Crossbar	/	Coherency	control	

LLC	

DRAM	controller	

DRAM	 DRAM	 DRAM	 DRAM	

Crossbar	

Coherent	bus	

Non-coherent	bus	

L2	

CU	

L1	

CU	

L1	

CU	

L1	

CU	

L1	

CU	

L1	

…	

…	
GPU	

Our	vision	of	an	integrated	heterogeneous	system:		



7 

Collaborative	Patterns	

…	

…	

data-parallel	tasks	

sequential	
sub-tasks	

coarse-grained	
synchronization	

Program	Structure	 Data	Partitioning	

…
	

…
	

Device	1	 Device	2	

…
	

…
	



8 

Collaborative	Patterns	

Fine-grained	Task	Partitioning	

Device	1	 Device	2	

…
	

…
	

…
	

…
	

…
	 …

	

…	

…	

data-parallel	tasks	

sequential	
sub-tasks	

coarse-grained	
synchronization	

Program	Structure	



9 

Collaborative	Patterns	

…
	

…
	

Device	1	 Device	2	

Coarse-grained	Task	Partitioning	

…	

…	

data-parallel	tasks	

sequential	
sub-tasks	

coarse-grained	
synchronization	

Program	Structure	



10 

Data	Partitioning	

Gaussian	Filter	

Sobel	Filter	

Non-maximum	
Suppression	

Hysteresis	
Thresholding	

CPU	

Input	images	

Output	images	

Using	Canny	Edge	Detection	(CED)	as	an	example	

CPU	Implementation	



11 

Data	Partitioning	

Gaussian	Filter	

Sobel	Filter	

Non-maximum	
Suppression	

Hysteresis	
Thresholding	

FPGA	

Input	images	

Output	images	

Using	Canny	Edge	Detection	(CED)	as	an	example	

CPU	

FPGA	Acceleration	



12 

Data	Partitioning	

Gaussian	Filter	

Sobel	Filter	

Non-maximum	
Suppression	

Hysteresis	
Thresholding	

Gaussian	Filter	

Sobel	Filter	

Non-maximum	
Suppression	

Hysteresis	
Thresholding	

CPU	 FPGA	

Input	images	

Output	images	
(CPU	part)	

Output	images	
(FPGA	part)	

Using	Canny	Edge	Detection	(CED)	as	an	example	

𝛼	 1−𝛼	

CPU-FPGA	Collaboration	



13 

Data	Partitioning	vs.	Task	Partitioning	

Gaussian	Filter	

Sobel	Filter	

Non-maximum	
Suppression	

Hysteresis	
Thresholding	

Gaussian	Filter	

Sobel	Filter	

Non-maximum	
Suppression	

Hysteresis	
Thresholding	

Gaussian	Filter	

Sobel	Filter	

Non-maximum	
Suppression	

Hysteresis	
Thresholding	

CPU	 FPGA	

Input	images	 Input	images	

FPGA	

CPU	

Output	images	

Using	Canny	Edge	Detection	(CED)	as	an	example	

𝛼	 1−𝛼	

Output	images	
(CPU	part)	

Output	images	
(FPGA	part)	



14 

Another	Data	Partitioning	Example:		
Image	Histogram	

FPGA	CPU	 FPGA	CPU	

Input	pixels	distributed	across	devices	 Output	bins	distributed	across	devices	



15 

Analytical	Models	

• 𝑁:	Number	of	data	parallel	tasks	in	the	application	
•  𝑡↓𝑖, 𝐶 :	Execution	time	of	sub-task	𝑖	by	a	CPU	worker	
•  𝑡↓𝑖, 𝐹 :	Execution	time	of	sub-task	𝑖	by	an	FPGA	worker	
•  𝑤↓𝐶 :	Number	of	available	CPU	workers	
•  𝑤↓𝐹 :	Number	of	available	FPGA	workers	
• 𝛽:	Distribution	and	aggregation	overhead	factor	
• 𝛼:	Fraction	of	data	parallel	tasks	assigned	to	CPU	:	Fraction	of	data	parallel	tasks	assigned	to	CPU	



16 

Analytical	Models	
• 𝑁:	Number	of	data	parallel	tasks	in	the	application	

•  𝑡↓𝑖, 𝐶 :	Execution	time	of	sub-task	𝑖	by	a	CPU	worker	
•  𝑡↓𝑖, 𝐹 :	Execution	time	of	sub-task	𝑖	by	an	FPGA	worker	
•  𝑤↓𝐶 :	Number	of	available	CPU	workers	

•  𝑤↓𝐹 :	Number	of	available	FPGA	workers	

• 𝛽:	Distribution	and	aggregation	overhead	factor	

• 𝛼:	Fraction	of	data	parallel	tasks	assigned	to	CPU	:	Fraction	of	data	parallel	tasks	assigned	to	CPU	

Data	partitioning	
	
The	total	execution	time	is	

𝑡↓data, total = 𝛽↓data ∙max(𝛼𝑁∑𝑖↑▒𝑡↓𝑖,𝐶  /𝑤↓𝐶  , 
(1−𝛼)𝑁∑𝑖↑▒𝑡↓𝑖,𝐹  /𝑤↓𝐹  )	

		

Total	CPU	execution	time	
(sequential	execution)	

Total	FPGA	execution	time	
(sequential	execution)	

…
	

…
	

CPU	 FPGA	
Data	partitioning	



17 

Analytical	Models	
• 𝑁:	Number	of	data	parallel	tasks	in	the	application	

•  𝑡↓𝑖, 𝐶 :	Execution	time	of	sub-task	𝑖	by	a	CPU	worker	
•  𝑡↓𝑖, 𝐹 :	Execution	time	of	sub-task	𝑖	by	an	FPGA	worker	
•  𝑤↓𝐶 :	Number	of	available	CPU	workers	

•  𝑤↓𝐹 :	Number	of	available	FPGA	workers	

• 𝛽:	Distribution	and	aggregation	overhead	factor	

• 𝛼:	Fraction	of	data	parallel	tasks	assigned	to	CPU	:	Fraction	of	data	parallel	tasks	assigned	to	CPU	

Data	partitioning	
	
The	total	execution	time	is	

𝑡↓data, total = 𝛽↓data ∙max(𝛼𝑁∑𝑖↑▒𝑡↓𝑖,𝐶  /𝑤↓𝐶  , 
(1−𝛼)𝑁∑𝑖↑▒𝑡↓𝑖,𝐹  /𝑤↓𝐹  )	

		

Fixing	all	the	variables	except	𝛼,	the	optimal	𝛼	(global	minimum	point)	is	

𝛼↑∗ = ∑𝑖↑▒𝑡↓𝑖,𝐹  /𝑤↓𝐹  ∕(∑𝑖↑▒𝑡↓𝑖,𝐶  /𝑤↓𝐶  + ∑𝑖↑▒
𝑡↓𝑖,𝐹  /𝑤↓𝐹  ) 	

Workloads	of	CPU	and	FPGA	workers	are	balanced	

…
	

…
	

CPU	 FPGA	
Data	partitioning	



18 

Analytical	Models	

Fine-grained	task	partitioning	
The	total	execution	time	is	

𝑡↓task, total = 𝛽↓task 𝑁∙max(∑𝑖∈ 𝑆↓𝐶 ↑▒𝑡↓𝑖,𝐶  /𝑤↓𝐶  , 
∑𝑖∈ 𝑆↓𝐹 ↑▒𝑡↓𝑖,𝐹  /𝑤↓𝐹  )	

		
Coarse-grained	task	partitioning	
The	total	execution	time	is	

𝑡↓task, total = 𝛽↓task 𝑁∙(∑𝑖∈ 𝑆↓𝐶 ↑▒𝑡↓𝑖,𝐶  /𝑤↓𝐶  + ∑𝑖∈ 
𝑆↓𝐹 ↑▒𝑡↓𝑖,𝐹  /𝑤↓𝐹  )	

• 𝑁:	Number	of	data	parallel	tasks	in	the	application	

•  𝑡↓𝑖, 𝐶 :	Execution	time	of	sub-task	𝑖	by	a	CPU	worker	
•  𝑡↓𝑖, 𝐹 :	Execution	time	of	sub-task	𝑖	by	an	FPGA	worker	
•  𝑤↓𝐶 :	Number	of	available	CPU	workers	

•  𝑤↓𝐹 :	Number	of	available	FPGA	workers	

• 𝛽:	Distribution	and	aggregation	overhead	factor	

CPU	 FPGA	

…
	

…
	

…
	

…
	

…
	

CPU	 FPGA	

Fine-grained		
task	partitioning	

Coarse-grained		
task	partitioning	

(Assume	sub-tasks	are	very	fine-grained)	



19 

Chai	Benchmark	Suite	

•  Chai	benchmark	suite:		

 chai-benchmarks.github.io	
•  14	benchmarks	covers	data	partitioning,	fine-grain	task	
partitioning,	and	coarse-grain	task	partitioning	patterns	

•  OpenCL,	C++	AMP,	and	CUDA	versions	

•  Unified	memory	and	system-wide	atomic	versions	and	
traditional	discrete	architecture	versions	

Chai:	Collaborative	Heterogeneous	Applications	for	Integrated-architectures	



20 

Evaluated	Chai	Benchmarks	
Benchmark	 Description	 Strategy	

CED-D	 Canny	Edge	Detection	 Data	Partitioning	

CED-T	 Canny	Edge	Detection	 Task	Partitioning	

RSC-D	 Random	Sample	Consensus	 Data	Partitioning	

RSC-T	 Random	Sample	Consensus	 Task	Partitioning	

BS	 Bézier	Surface	 Data	Partitioning	

HSTO	 Image	Histogram	 Data	Partitioning	

SSSP	 Single-Source	Shortest	Path	 Task	Partitioning	

TQ	 Task	Queue	System	(Synthetic)	 Task	Partitioning	

TQH	 Task	Queue	System	(Histogram)	 Task	Partitioning	

OpenCL-D	(OpenCL	discrete	architecture)	versions	of	these	benchmarks	are	used.		



21 

Evaluation	Platforms	

Platform	A	 Platform	B	

FPGA	Board	 Terasic	DE5-Net	 Nallatech	510T	

FPGA	Chip	 Intel	Stratix	V	GX	 Intel	Arria	10	GX	

On-Board	Memory	 4	GB	(DDR3)	 8	GB	(DDR4)	

Host	CPU	 Intel	Xeon	E3-1240	v3	 Intel	Xeon	E5-2650	v3	

Host	Memory	 8	GB	(DDR3)	 96	GB	(DDR4)	

Interface	 PCIe	gen3.0	x8	 PCIe	gen3.0	x8	



22 

Intel	OpenCL	SDK	for	FPGA	
•  Intel	OpenCL	SDK	for	FPGA	is	used	to	compile	and	synthesize	
host	executable	and	FPGA	design		



23 

Compute	Unit	Replication	
•  OpenCL	kernels	are	synthesized	to	
compute	units	on	FPGA	

•  The	compute	units	on	FPGA	can	be	
replicated	by	adding	
num_compute_units	attribute	in	the	
OpenCL	kernel	code	

•  num_compute_units	attribute	
modifies	the	number	of	compute	
units	to	which	work-groups	can	be	
scheduled,	which	also	modifies	the	
number	of	times	a	kernel	accesses	
global	memory	

• We	evaluate	the	impact	of	compute	
unit	replication	

Intel®	FPGA	SDK	for	OpenCL™	Best	Practices	Guide		



24 

Evaluation:	Canny	Edge	Detection	
(Data	Partitioning)	

0	

0,2	

0,4	

0,6	

0,8	

1	

1,2	

C	 F	 C	 F	 C	 F	 C	 F	 C	 F	 C	 F	 C	 F	 C	 F	 C	 F	 C	 F	 C	 F	 C	 F	

0.0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1.0	 Dyn.	

Ex
ec
ut
io
n	
Ti
m
e	
(s
)	

Compute	 Copy	 Idle	

•  C:	CPU;	F:	FPGA	
•  𝛼:	Fraction	of	data	parallel	tasks	assigned	to	CPU	

𝛼	

Dynamic	data	partitioning:	
assigning	batch	of	data	parallel	
tasks	to	idle	devices,	achieving	
dynamic	workload	balance	

optimal	



25 

Evaluation:	Canny	Edge	Detection		
(Data	Partitioning	and	Task	Partitioning)	

0,0	

0,2	

0,4	

0,6	

0,8	

1,0	

1,2	

C	 F	 C	 F	 C	 F	 C	 F	 C	 F	 C	 F	 C	 F	 C	 F	

CPU	 FPGA	 Data	 Task	 CPU	 FPGA	 Data	 Task	

Single	device	 Collaborative	 Single	device	 Collaborative	

Stratix	V	 Arria	10	

Ex
ec
ut
io
n	
Ti
m
e	
(s
)	 Idle	

Copy	
Compute	



26 

Evaluation:	Random	Sample	Consensus	
(Data	Partitioning	and	Task	Partitioning)	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

0,0	 0,1	 0,2	 0,3	 0,4	 0,5	 0,6	 0,7	 0,8	 0,9	 1,0	

Ex
ec
ut
io
n	
Ti
m
e	
(m

s)
	

Data	Partitioning	(Stratix	V)	
Task	Partitioning	(Stratix	V)	
Data	Partitioning	(Arria	10)	
Task	Partitioning	(Arria	10)	



27 

Bézier	Surface	(BS,	Data	Partitioning)	

0	

10	

20	

30	

40	

50	

60	

0	 0,1	 0,2	 0,3	 0,4	 0,5	 0,6	 0,7	 0,8	 0,9	 1	

Ex
ec
ut
io
n	
Ti
m
e	
(m

s)
	

alpha	

Deallocation	

Copy	Back	and	Merge	

Kernel	

Copy	To	Device	

Allocation	



28 

Histogram	(HSTO,	Output	Data	Partitioning)	

0	

50	

100	

150	

200	

250	

300	

350	

0	 0,1	 0,2	 0,3	 0,4	 0,5	 0,6	 0,7	 0,8	 0,9	 1	

Ex
ec
ut
io
n	
Ti
m
e	
(m

s)
	

alpha	

Deallocation	

Copy	Back	and	Merge	

Kernel	

Copy	To	Device	

Initialization	

Allocation	



29 

Kernel	Replication	–	Data	Partitioning	
We	evaluated	the	performance	under	different	kernel	replication	factors.		



30 

Kernel	Replication	–	Task	Partitioning	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

1	 2	 4	

Ex
ec
ut
io
n	
Ti
m
e	
(m

s)
	

Kernel	Replication	Factor	

Deallocation	
Copy	Back	and	Merge	
Kernel	
Copy	To	Device	
Allocation	

0	

10	

20	

30	

40	

50	

60	

70	

1	 4	 8	

Ex
ec
ut
io
n	
Ti
m
e	
(m

s)
	

Kernel	Replication	Factor	

Deallocation	

Copy	Back	and	Merge	

Kernel	

Copy	To	Device	

Allocation	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

1	 4	 8	

Ex
ec
ut
io
n	
Ti
m
e	
(m

s)
	

Kernel	Replication	Factor	

Deallocation	

Copy	Back	and	Merge	

Kernel	

Copy	To	Device	

Allocation	

SSSP	 TQ	 TQH	

We	evaluated	the	performance	under	different	kernel	replication	factors.		



31 

Impact	of	Replication	
Canny	Edge	Detection	

•  Replication	factor	for	this	application	has	little	impact	on	performance	
•  Further	profiling	reveals	the	reason	of	performance	saturation	is	the	saturation	of	the	

memory	bandwidth	
•  Task	partitioning	can	afford	a	larger	replication	factor	

Kernel	Replication	Factor	



32 

Impact	of	Replication	

•  Replication	improves	performance	of	this	application	
•  Bounding	resource:	DSP	blocks	
•  Task	partitioning	releases	the	pressure	on	DSP	block	and	thus	can	afford	a	larger	replication	

factor	

Random	Sample	Consensus	

Kernel	Replication	Factor	



33 

Key	Insights	

•  Collaborative	execution	is	beneficial	
•  Data	partitioning	requires	careful	choice	of	partitions	to	
provide	the	highest	performance	

•  Task	partitioning	generally	enables	more	kernel	replication	
on	the	FPGA	than	data	partitioning	

•  Data	partitioning	inflicts	less	burden	on	programmers	and	
has	less	communication	overhead	than	task	partitioning	

•  OpenCL	stack	provides	a	convenient	programming	model	
while	there	is	still	room	for	better	programmability	and	
higher	performance	



34 

Chai	Project	

• Papers:	
•  Analysis	and	Modeling	of	Collaborative	Execution	Strategies	for	
Heterogeneous	CPU-FPGA	Architectures.	ICPE’19.	(this	work)	

•  Collaborative	Computing	for	Heterogeneous	Integrated	Systems.	
ICPE’17	Vision	Track.	

•  Chai:	Collaborative	Heterogeneous	Applications	for	Integrated-
architectures.	ISPASS’17.	

•  Chai	Benchmark	Suite:	
•  Website:	chai-benchmarks.github.io	
•  Code:	github.com/chai-benchmarks/chai	
•  Online	Forum:	groups.google.com/d/forum/chai-dev	



Analysis	and	Modeling	of	Collaborative	Execution	
Strategies	for	Heterogeneous	CPU-FPGA	
Architectures	
Sitao	Huang1,	Li-Wen	Chang2,	Izzat	El	Hajj3,	Simon	Garcia	De	Gonzalo1,	Juan	Gómez-Luna4,	
Sai	Rahul	Chalamalasetti5,	Mohamed	El	Hadedy6,	Dejan	Milojicic5,	Onur	Mutlu4,		
Deming	Chen1,	Wen-mei	Hwu1	
	
1University	of	Illinois	at	Urbana-Champaign,	USA	
2Microsoft,	USA	
3American	University	of	Beirut,	Lebanon	
4ETH	Zürich,	Switzerland	
5Hewlett	Packard	Labs,	USA	
6California	State	Polytechnic	University,	Pomona,	USA	

Thanks!		


