
DAMOV:	A	New	Methodology	
and	Benchmark	Suite	for	Evaluating	

Data	Movement	Bottlenecks

Geraldo	F.	Oliveira
Juan	Gómez-Luna Lois	Orosa Saugata Ghose	

Nandita	Vijaykumar					Ivan	Fernandez					Mohammad	Sadrosadati
Onur Mutlu

• Problem:	Data	movement	is	a	major bottleneck	is	modern	systems.	
However,	it	is	unclear how	to	identify:	
−		different	sources	of	data	movement	bottlenecks	
−		themost	suitable	mitigation	technique	(e.g.,	caching,	prefetching,	near-data	processing)	
for	a	given	data	movement	bottleneck

• Goals:	
1.	Design	a	methodology	to	identify sources	of	data	movement bottlenecks
2.	Compare compute- and	memory-centric	data	movement	mitigation	techniques

• Key	Approach:	Perform	a	large-scale	application	characterization to	identify	
key	metrics that	reveal	the	sources	to	data	movement	bottlenecks

• Key	Contributions:
−		Experimental	characterization	of	77K	functions	across	345	applications
−		A	methodology	to	characterize	applications	based	on	data	movement	bottlenecks and			
their	relation	with	different	data	movement	mitigation	techniques

−		DAMOV:	a	benchmark	suite	with	144	functions	for	data	movement	studies
−		Four	case-studies	to	highlight	DAMOV’s	applicability	to	open	research	problems	

2

Executive	Summary	

DAMOV:	https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV

Outline

3

1.	Data	Movement	Bottlenecks

2.	Methodology	Overview

4.	Locality-Based	Clustering

5.	Memory	Bottleneck Analysis

3.	Application	Profiling

6.	Case	Studies

Outline

3

1.	Data	Movement	Bottlenecks

2.	Methodology	Overview

4.	Locality-Based	Clustering

5.	Memory	Bottleneck Analysis

3.	Application	Profiling

6.	Case	Studies

Data	Movement	Bottlenecks	(1/2)

DRAM
CPUCPUCPU

L2L1
L3L2L1 L2L1 L2L1CPU

Data Movement

Data	movement	bottlenecks	happen	because	of:
- Not	enough	data	locality	→	ineffective	use	of	the	cache	hierarchy
- Not	enough	memory	bandwidth
- High	average	memory	access	time	

4

Off-Chip Link

Data	Movement	Bottlenecks	(2/2)

5

DRAM
CPUCPUCPU

L2L1
L3L2L1 L2L1 L2L1CPU

Compute-Centric Architecture

Off-Chip Link

DRAM
CPUCPUCPU

L1L1L1L1CPU

Off-Chip Link

Memory-Centric Architecture

Near-Data Processing (NDP)

- Abundant DRAM bandwidth

- Shorter average memory
access time

…

DRAM
CPUCPUCPU

L2L1
L3L2L1 L2L1 L2L1CPU

Compute-Centric Architecture

Off-Chip Link

Near-Data	Processing	(1/2)	

6

DRAM
CPUCPUCPU

L1L1L1L1CPU

Off-Chip Link

Memory-Centric Architecture

Near-Data Processing (NDP)

- Abundant DRAM bandwidth

- Shorter average memory
access time

…

The	goal	of	Near-Data	Processing	(NDP)	is
to	mitigate	data	movement	

Near-Data	Processing	(2/2)	
Samsung	FIMDRAM	(2021)

The	goal	of	Near-Data	Processing	(NDP)	is
to	mitigate	data	movement	

UPMEM	(2019)

Near-DRAM-banks	processing	
for	neural	networks	

1.2	TFLOPS	compute	throughput2

Near-DRAM-banks	processing	
for	general-purpose	computing

0.9	TOPS	compute	throughput1

7[1]	Devaux,	"The	True	Processing	In	Memory	Accelerator,”	HCS,	2019
[2]	Kwon+,	“A	20nm	6GB	Function-In-Memory	DRAM,	Based	on	HBM2	with	a	1.2TFLOPS	Programmable	Computing	Unit	Using	
Bank-Level	Parallelism,	for	Machine	Learning	Applications,"	ISSCC,	2021

When	to	Employ	Near-Data	Processing?	

Near-Data	
Processing

Mobile	consumer	workloads
(GoogleWL2)

Neural	networks
(GoogleWL2)

Graph	processing
(Tesseract1)

Time	series	analysis
(NATSA6)

DNA	
sequence	mapping
(GenASM3; GRIM-Filter4)...

[1]	Ahn+,	“A	Scalable	Processing-in-Memory	Accelerator	for	Parallel	Graph	Processing,"	ISCA,	2015
[2]	Boroumand+,	"Google	Workloads	for	Consumer	Devices:	Mitigating	Data	Movement	Bottlenecks,”	ASPLOS,	2018
[3]	Cali+,	"GenASM:	A	High-Performance,	Low-Power	Approximate	String	Matching	Acceleration	Framework	for	Genome	Sequence	Analysis,”	MICRO,	2020	
[4]	Kim+,	"GRIM-Filter:	Fast	Seed	Location	Filtering	in	DNA	Read	Mapping	Using	Processing-in-Memory	Technologies,”	BMC	Genomics, 2018
[5]	Boroumand+,	"Polynesia:	Enabling	Effective	Hybrid	Transactional/Analytical	Databases	with	Specialized	Hardware/Software	Co-Design,”	
arXiv:2103.00798	[cs.AR],	2021
[6]	Fernandez+,	“NATSA:	A	Near-Data	Processing	Accelerator	for	Time	Series	Analysis,”	ICCD,	2020

8

Databases
(Polynesia5)

Identifying	Memory	Bottlenecks
• Multiple	approaches to	identify applications	that:

- suffer	from	data	movement	bottlenecks	
- take	advantage	of	NDP

• Existing	approaches	are	not	comprehensive	enough

9

Arithmetic	Intensity	(OPS/byte)

Pe
rf
or
m
an
ce
	(G
O
PS
/s
)

Roofline	model	

Last-Level	Cache	MPKIN
D
P	
Sp
ee
du
p	
ov
er
	C
PU

High	LLC	MPKI	

Limitations	of	Prior	Approaches	(1/2)	
• Roofline	model	→	identifies	when	an	application	is	
bounded by	compute or	memory units	

Compute	Roof	
y	=	Peak	System	Throughput

Memory	Roof	
y	=	BW	x	AI

Compute Bound →
Not suitable for NDPMemory

Bound →
Suitable for

NDP

10

Limitations	of	Prior	Approaches	(1/2)	
• Roofline	model	→	identifies	when	an	application	is	
bounded by	compute or	memory units	

11

Limitations	of	Prior	Approaches	(1/2)	
• Roofline	model	→	identifies	when	an	application	is	
bounded by	compute or	memory units	

Memory	Bound	
applications	are
faster	on	NDP

Compute	Bound	
applications	

are faster	on	CPU

Memory	Bound	
applications	
are	faster	on	

CPU,	
or	performance	
depends❌

Compute	Bound	applications	
have	similar	performance	

on	CPU/NDP	or
performance depends❌

12

✓

✓

Limitations	of	Prior	Approaches	(1/2)	
• Roofline	model	→	identifies	when	an	application	is	
bounded by	compute or	memory units	

Memory	Bound	
applications	are
faster	on	NDP

Compute	Bound	
applications	

are faster	on	CPU

Memory	Bound	
applications	
are	faster	on	

CPU,	
or	performance	
depends❌

Compute	Bound	applications	
have	similar	performance	

on	CPU/NDP	or
performance depends❌

13

✓

✓Roofline model	does	not	accurately	account	
for	the	NDP	suitability	of	memory-bound	applications

Limitations	of	Prior	Approaches	(2/2)	
• Application	with	a	last-level	cache	MPKI	>	10	
→	memory	intensive	and	benefits	from	NDP		

14LLC MPKI

N
D

P
Sp

ee
du

p
ov

er
 C

PU

Limitations	of	Prior	Approaches	(2/2)	
• Application	with	a	last-level	cache	MPKI	>	10	
→	memory	intensive	and	benefits	from	NDP		

Applications	with
high	MPKI	are
faster	on	NDP

Applications	with	
low	MPKI	are	
faster	on	CPU

Applications	with	low	
MPKI can	be
faster	on	NDP;	
have	similar	

performance	on	
CPU/NDP	or;
performance	
can depends

❌

15

✓

✓

LLC MPKI

N
D

P
Sp

ee
du

p
ov

er
 C

PU

Limitations	of	Prior	Approaches	(2/2)	
• Application	with	a	last-level	cache	MPKI	>	10	
→	memory	intensive	and	benefits	from	NDP		

Applications	with
high	MPKI	are
faster	on	NDP

Applications	with	
low	MPKI	are	
faster	on	CPU

Applications	with	low	
MPKI can	be
faster	on	NDP;	
have	similar	

performance	on	
CPU/NDP	or;
performance	
can depends

❌

16

✓

✓

LLC MPKI

N
D

P
Sp

ee
du

p
ov

er
 C

PU

LLC	MPKI	does	not	accurately	account	
for	the	NDP	suitability	of	memory-bound	applications

Identifying	Memory	Bottlenecks
• Multiple	approaches to	identify applications	that:

- suffer	from	data	movement	bottlenecks	
- take	advantage	of	NDP

• Existing	approaches	are	not	comprehensive	enough

17

Arithmetic	Intensity	(OPS/byte)

Pe
rf
or
m
an
ce
	(G
O
PS
/s
)

Roofline	model	

Last-Level	Cache	MPKIN
D
P	
Sp
ee
du
p	
ov
er
	C
PU

High	LLC	MPKI	

The	Problem
• Multiple	approaches to	identify applications	that:

- suffer	from	data	movement	bottlenecks	
- take	advantage	of	NDP

• Existing	approaches	are	not	comprehensive	enough

18

Arithmetic	Intensity	(OPS/byte)

Pe
rf
or
m
an
ce
	(G
O
PS
/s
)

Roofline	model	

Last-Level	Cache	MPKIN
D
P	
Sp
ee
du
p	
ov
er
	C
PU

High	LLC	MPKI	

No	available	methodology	can	comprehensively:

−		identify data	movement	bottlenecks

− correlate	them	with	the	most	suitable	
data	movement	mitigation	mechanism

Our	Goal
• Our	Goal:	develop	a	methodology	to:

− methodically	identify	sources	of	data	movement	
bottlenecks

− comprehensively	compare	compute- and	memory-
centric	data	movement	mitigation	techniques

19

Outline

1.	Data	Movement	Bottlenecks

2.	Methodology	Overview

4.	Locality-Based	Clustering

5.	Memory	Bottleneck Analysis

3.	Application	Profiling

6.	Case	Studies
20

Key	Approach
• New	workload	characterization	methodology	to	analyze:

- data	movement	bottlenecks
- suitability	of	different	data	movement	mitigation	mechanisms

• Two	main	profiling	strategies:	

Architecture-independent	profiling:

characterizes	the	memory	behavior	independently
of	the	underlying	hardware

Architecture-dependent	profiling:

evaluates	the	impact	of	the	system	configuration	
on	the	memory	behavior

21

DAMOV-SIM	Simulator

Methodology	Overview

#	Cores

Scalability	Analysis

ld 0xFF
st 0xAF
ld 0xFF
st 0xAF
ld 0xFF

Memory	Traces

Temp.	
Locality

LFMR

LFMR Low

High

High

Low

…

roi_begin

roi_end

Profiler

Step	1
Application	ProfilingTarget	Application

So
ur
ce
	C
od
e

User	Input

Temporal	Locality

Spatial	Locality

Step	2
Locality-based	Clustering

DRAM	Bandwidth

DRAM	Latency

L1/L2	Cache	Capacity

L3	Cache	Contention

L1	Cache	Capacity

Compute-Bound

M
em

or
y	
Bo
tt
le
ne
ck
	C
la
ss
es

Methodology	Output

LLC	MPKI

Last-to-First	
Miss	Ratio	(LFMR)

Arithmetic	Intensity

Step	3
Memory	Bottleneck	Class.

22

DAMOV-SIM	Simulator

Methodology	Overview

#	Cores

Scalability	Analysis

ld 0xFF
st 0xAF
ld 0xFF
st 0xAF
ld 0xFF

Memory	Traces

Temp.	
Locality

LFMR

LFMR Low

High

High

Low

…

roi_begin

roi_end

Profiler

Step	1
Application	ProfilingTarget	Application

So
ur
ce
	C
od
e

User	Input

Temporal	Locality

Spatial	Locality

Step	2
Locality-based	Clustering

DRAM	Bandwidth

DRAM	Latency

L1/L2	Cache	Capacity

L3	Cache	Contention

L1	Cache	Capacity

Compute-Bound

M
em

or
y	
Bo
tt
le
ne
ck
	C
la
ss
es

Methodology	Output

LLC	MPKI

Last-to-First	
Miss	Ratio	(LFMR)

Arithmetic	Intensity

Step	3
Memory	Bottleneck	Class.

23

Step	1:	Application	Profiling
Goal:	Identify	application functions that	suffer	from	data	
movement	bottlenecks

24

Physics

Security

Machine	
learning

DatabaseGraph	
processing

Data	
analytics

Data	
reorganization

Genomics

Deep	
Neural	

Networks

Image	
processing

Linear	
algebra

Signal	
processing

Data	
mining

Hardware	Profiling Tool:	
Intel	VTune

MemoryBound:	
CPU	is	stalled	due	to	load/store

DAMOV-SIM	Simulator

Methodology	Overview

#	Cores

Scalability	Analysis

ld 0xFF
st 0xAF
ld 0xFF
st 0xAF
ld 0xFF

Memory	Traces

Temp.	
Locality

LFMR

LFMR Low

High

High

Low

…

roi_begin

roi_end

Profiler

Step	1
Application	ProfilingTarget	Application

So
ur
ce
	C
od
e

User	Input

Temporal	Locality

Spatial	Locality

Step	2
Locality-based	Clustering

DRAM	Bandwidth

DRAM	Latency

L1/L2	Cache	Capacity

L3	Cache	Contention

L1	Cache	Capacity

Compute-Bound

M
em

or
y	
Bo
tt
le
ne
ck
	C
la
ss
es

Methodology	Output

LLC	MPKI

Last-to-First	
Miss	Ratio	(LFMR)

Arithmetic	Intensity

Step	3
Memory	Bottleneck	Class.

25

Low	spatial	locality	

Step	2:	Locality-Based	Clustering	
• Goal:	analyze	application’s	memory	characteristics

Stride	Profile	(bin)

…1 2 4 8 16 32 2N

Fr
eq
ue
nc
y	
(c
ou
nt
)

Stride	Profile	Histogram

High	spatial	locality	

…1 2 4 8 16 32 2N

Stride	Profile	(bin)

Fr
eq
ue
nc
y	
(c
ou
nt
)

Stride	Profile	Histogram

stride	profile(1)+=	1
0 1 2 3 4 5

Memory	Trace

Spatial	Locality7

[7]	Weinberg+,	“Quantifying	Locality	in	the	Memory	Access	Patterns	of	HPC	Applications,”	SC,	2005 26

Low	spatial	locality	

Step	2:	Locality-Based	Clustering	
• Goal:	analyze	application’s	memory	characteristics

…1 2 4 8 16 32 2N

Reuse	Profile	(bin)

Fr
eq
ue
nc
y	
(c
ou
nt
)

Reuse	Profile	Histogram

High	temporal	locality	

…1 2 4 8 16 32 2N

Reuse	Profile	(bin)

Fr
eq
ue
nc
y	
(c
ou
nt
)

Reuse	Profile	Histogram

…1 2 4 8 16 32 2N

Stride	Profile	(bin)
Fr
eq
ue
nc
y	
(c
ou
nt
)

Stride	Profile	Histogram

High	spatial	locality	

…1 2 4 8 16 32 2N

Stride	Profile	(bin)

Fr
eq
ue
nc
y	
(c
ou
nt
)

Stride	Profile	Histogram

stride	profile(1)+=	1
0 1 2 3 4 5

Memory	Trace

reuse	profile(4)+=	1
A A A A

Memory	Trace

Spatial	Locality7

Temporal	Locality7

[7]	Weinberg+,	“Quantifying	Locality	in	the	Memory	Access	Patterns	of	HPC	Applications,”	SC,	2005 27
Low	temporal	locality	

DAMOV-SIM	Simulator

Methodology	Overview

#	Cores

Scalability	Analysis

ld 0xFF
st 0xAF
ld 0xFF
st 0xAF
ld 0xFF

Memory	Traces

Temp.	
Locality

LFMR

LFMR Low

High

High

Low

…

roi_begin

roi_end

Profiler

Step	1
Application	ProfilingTarget	Application

So
ur
ce
	C
od
e

User	Input

Temporal	Locality

Spatial	Locality

Step	2
Locality-based	Clustering

DRAM	Bandwidth

DRAM	Latency

L1/L2	Cache	Capacity

L3	Cache	Contention

L1	Cache	Capacity

Compute-Bound

M
em

or
y	
Bo
tt
le
ne
ck
	C
la
ss
es

Methodology	Output

LLC	MPKI

Last-to-First	
Miss	Ratio	(LFMR)

Arithmetic	Intensity

Step	3
Memory	Bottleneck	Class.

28

Step	3:	Memory	Bottleneck	Classification	(1/2)

Arithmetic	Intensity	(AI)
- floating-point/arithmetic	operations	per	L1	cache	lines	accessed

→	shows	computational	intensity	per	memory	request

LLC	Misses-per-Kilo-Instructions	(MPKI)
- LLC	misses	per	one	thousand	instructions

→	shows	memory	intensity

Last-to-First	Miss	Ratio	(LFMR)
- LLC	misses	per	L1	misses

→	shows	if	an	application	benefits	from	L2/L3	caches

29

Step	3:	Memory	Bottleneck	Classification	(2/2)

• Goal:	identify the	specific	sources	of	data	movement	
bottlenecks

DAMOV-SIM Simulator

#	Cores
Scalability	Analysis

Integrated	ZSim and	Ramulator

• Scalability	Analysis:	
− 1,	4,	16,	64,	and	256	out-of-order/in-order	host	and	NDP	CPU	cores
− 3D-stacked	memory	as	main	memory

Configuration	2:	NDP	System

Off-chip	link

DRAMCPUCPUCPU

L
2

L
1 L3

L
2

L
1 L

2
L
1 L2L1CPU

Configuration	1:	Host	CPU	System	

Off-chip	link

30DAMOV-SIM:	https://github.com/CMU-SAFARI/DAMOV

…

Logic	Layer

CPUCPUCPU

L
1L1L1L1CPU

DRAMDRAMDRAMDRAM

DRAMDRAMDRAM

https://github.com/CMU-SAFARI/DAMOV

Outline

31

1.	Data	Movement	Bottlenecks

2.	Methodology	Overview

4.	Locality-Based	Clustering

5.	Memory	Bottleneck Analysis

3.	Application	Profiling

6.	Case	Studies

Step	1:	Application	Profiling	
• We	analyze	345	applications from	distinct	domains:

32

- Graph	Processing
- Deep	Neural	Networks
- Physics
- High-Performance	Computing
- Genomics	
- Machine	Learning	
- Databases	
- Data	Reorganization
- Image	Processing
- Map-Reduce
- Benchmarking	
- Linear	Algebra		
…

Physics

Security

Machine	
learning

Database
Graph	

processing

Data	
analytics

Data	reorganization

Genomics

Deep	Neural	
Networks

Image	
processing

Linear	
algebra

Signal	
processing

Data	
mining

Memory	Bound	Functions
• We	analyze	345	applications from	distinct	domains
• Selection	criteria:		clock	cycles	>	3%	and	Memory	Bound	>	30%

• We	find	144	functions	from	a	total	of	77K	functions	and	select:
- 44	functions	→	apply	steps	2	and	3
- 100	functions	→	validation

33

Memory Bound (%)

Outline

34

1.	Data	Movement	Bottlenecks

2.	Methodology	Overview

4.	Locality-Based	Clustering

5.	Memory	Bottleneck Analysis

3.	Application	Profiling

6.	Case	Studies

Step	2:	Locality-Based	Clustering	

35

We	use	K-means	to	cluster	
the	applications	across	both	
spatial	and	temporal	
locality,	forming	two	
groups
1. Low	locality	

applications	(in	orange)
2. High	locality	

applications	(in	blue)	

Step	2:	Locality-Based	Clustering	

36

We	use	K-means	to	cluster	
the	applications	across	both	
spatial	and	temporal	
locality,	forming	two	
groups
1. Low	locality	

applications	(in	orange)
2. High	locality	

applications	(in	blue)	

The	closer	a	function	is	to	the	bottom-left	corner
→	less	likely	it	is	to	take	advantage of

a	deep	cache	hierarchy

Outline

37

1.	Data	Movement	Bottlenecks

2.	Methodology	Overview

4.	Locality-Based	Clustering

5.	Memory	Bottleneck	Analysis

3.	Application	Profiling

6.	Case	Studies

Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

LFMR

MPKI
AI

AI

MPKI AI

LFMR

MPKI

MPKI

AI

AI

Decreasing

High

Increasing

Low

Low

High

High

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory	Bottleneck	Class

38

Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

LFMR

MPKI
AI

AI

MPKI AI

LFMR

MPKI

MPKI

AI

AI

Decreasing

High

Increasing

Low

Low

High

High

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Memory	Bottleneck	Class

39

Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

Low

High

LFMR

Decreasing

High
MPKI

High
AI

AI

MPKI AI

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Memory	Bottleneck	Class

Six	classes	of	
data	movement	bottlenecks:

each	class	↔ data	movement
mitigation	mechanism	

40

Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

Low

High

LFMR

Decreasing	

High
MPKI

High
AI

AI

MPKI AI

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory	Bottleneck	Class

41

42

− High	MPKI	→ high	memory	pressure

− Host	scales	well	until	bandwidth	saturates

− NDP scales	without	saturating alongside attained	bandwidth		

DRAM	bandwidth	bound	applications:
NDP does	better	because	of	the	higher	internal	DRAM	bandwidth

Class	1a:	DRAM	Bandwidth	Bound	(1/2)	

0

100

200

300

400

500

0
20
40
60
80
100
120
140

1 4 16 64 256
Bandw

idth	(GB/s)

N
or
m
al
iz
ed
	P
er
fo
rm
an
ce

Number	of	Cores

Performance Bandwidth	(GB/s)

0

100

200

300

400

500

0
20
40
60
80
100
120
140

1 4 16 64 256

Bandw
idth	(GB/s)

N
or
m
al
iz
ed
	P
er
fo
rm
an
ce

Number	of	Cores

Performance Bandwidth	(GB/s)
Host NDP

Temp.	Loc:	low
LFMR:	high
MPKI:	high
AI:	low

0
0.02
0.04
0.06
0.08
0.1
0.12

Host NDP Host NDP Host NDP Host NDP Host NDP

1 4 16 64 256

En
er
gy
	(J
)	

Number	of	Cores

L1 L2 L3 Link DRAM

43

− High	LFMR	→ L2	and	L3	caches	are	inefficient	

− Host’s	energy consumption	is	dominated	by	
cache	look-ups	and	off-chip	data	transfers

− NDP provides	large	system	energy	reduction	since	it	does	not	
access	L2,	L3,	and	off-chip	links	

DRAM	bandwidth	bound	applications:
NDP does	better	because	it	eliminates	off-chip	I/O	traffic

Class	1a:	DRAM	Bandwidth	Bound	(2/2)	
Temp.	Loc:	low
LFMR:	high
MPKI:	high
AI:	low

Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

Low

High

LFMR

Decreasing	

High
MPKI

High
AI

AI

MPKI AI

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory	Bottleneck	Class

44

45

- High	LFMR	→	L2	and	L3	caches	are	inefficient	

- Host	scales	well	but	NDP	performance	is	always	
higher

- NDP	performs	better	than	host	because of	its	lower	memory	
access	latency

DRAM	latency	bound	applications:
host performance	is	hurt	by	the	cache	hierarchy	and	off-chip	link

Class	1b:	DRAM	Latency	Bound	

0

20

40

60

80

1 4 16 64 256

N
or
m
al
iz
ed
	P
er
fo
rm
an
ce

Number	of	Cores

Host NDP

0
5
10
15
20
25

Host NDP Host NDP Host NDP Host NDP Host NDP

1 4 16 64 256

AM
AT
	(c
yc
le
s)

Number	of	Cores

L1 L2 L3 DRAM

Temp.	Loc:	low
LFMR:	high
MPKI:	low
AI:	low

Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

Low

High

LFMR

Decreasing	

High
MPKI

High
AI

AI

MPKI AI

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory	Bottleneck	Class

46

47

- Decreasing	LFMR	→	L2/L3	caches	turn	efficient
- NDP	scales	better	than	the	host	at	low	core	counts
- Host	scales	better	than	NDP	at	high	core	counts
- Host	performs	better	than	NDP	at	high	core	counts	since	it	
reduces memory	access	latency	via	data	caching

L1/L2	cache	capacity	bottlenecked	applications:
NDP	is	higher	performance	when	the	aggregated	cache	size	is	small

Class	1c:	L1/L2	Cache	Capacity

0

20

40

60

80

100

1 4 16 64 256

N
or
m
al
iz
ed
	P
er
fo
rm
an
ce

Number	of	Cores

Host NDP

0

2

4

6

8

Host NDP Host NDP Host NDP Host NDP Host NDP

1 4 16 64 256

AM
AT
	(c
yc
le
s)

Number	of	Cores

L1 L2 L3 DRAM

Temp.	Loc:	low
LFMR:	decreasing

MPKI:	low
AI:	low

Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

Low

High

LFMR

Decreasing	

High
MPKI

High
AI

AI

MPKI AI

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory	Bottleneck	Class

48

49

− Increasing	LFMR	→ L2/L3	caches	turn	inefficient
− Host	scales	better	than	the	NDP	at	low	core	counts
− NDP	scales	better	than	host	at	high	core	counts	
- NDP	performs	better	than	host	at	high	core	counts	since	it
reduces	memory	access	latency

L3	cache	contention	bottlenecked	applications:
at	high	core	counts,	applications	turn	into	DRAM	latency-bound

Class	2a:	L3	Cache	Contention	

0

20

40

60

80

100

120

1 4 16 64 256

N
or
m
al
iz
ed
	P
er
fo
rm
an
ce

Number	of	Cores

Host NDP

0%

20%

40%

60%

80%

100%

1 4 16 64 256

M
em

or
y	
Re
qu
es
ts

Number	of	Cores

L1 L2 L3 DRAM

Temp.	Loc:	high
LFMR:	increasing

MPKI:	low
AI:	low

Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

Low

High

LFMR

Decreasing	

High
MPKI

High
AI

AI

MPKI AI

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory	Bottleneck	Class

50

51

- Low	LFMR,	MPKI;	high	temporal	locality	
→	efficient	L2/L3	caches,	low	memory	intensity	

- Low	AI	→	few	operations	per	byte	
- Host	and	NDP	performance	are	similar	

L1	cache	capacity	bottlenecked	applications:	
NDP	can	be	used	to	reduce the	host	overall	SRAM	area

Class	2b:	L1	Cache	Capacity	

0

40

80

120

160

200

240

1 4 16 64 256

N
or
m
al
iz
ed
	P
er
fo
rm
an
ce

Number	of	Cores

Host NDP

0
2
4
6
8
10
12

Host NDP Host NDP Host NDP Host NDP Host NDP

1 4 16 64 256

AM
AT
	(c
yc
le
s)

Number	of	Cores

L1 L2 L3 DRAM

→	L1	dominates	average	memory	access	time	

Temp.	Loc:	high
LFMR:	low
MPKI:	low
AI:	low

Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

Low

High

LFMR

Decreasing	

High
MPKI

High
AI

AI

MPKI AI

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory	Bottleneck	Class

52

53

Compute-bound	applications:
benefit highly from	cache	hierarchy;	NDP	is	not a	good	fit

Class	2c:	Compute-Bound	
- Low	LFMR,	MPKI;	high	temporal	locality	
→	efficient	L2/L3	caches,	low	memory	intensity	

- High	AI	→	many	operations	per	byte	

- Host	performs	better	than	NDP	because	computation dominates	
execution	time	

0

2

4

6

8

1 4 16 64 256

N
or
m
al
iz
ed
	P
er
fo
rm
an
ce

Number	of	Cores

Host NDP

Temp.	Loc:	high
LFMR:	low
MPKI:	low
AI:	high

Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

Low

High

LFMR

Decreasing

High
MPKI

High
AI

AI

MPKI AI

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory	Bottleneck	Class

54

Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

Low

High

LFMR

Decreasing

High
MPKI

High
AI

AI

MPKI AI

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory	Bottleneck	Class

55

Methodology	Validation	
• Goal:	evaluate	the	accuracy	of	our	workload	
characterization	methodically	on	a	large	set	of	functions

• Two-phase	validation:

Classify Accuracy
100

functions

Phase	2:	
calculate	accuracy

High accuracy:	
our	methodology	accurately classifies	97%	of	functions	

into	one	of	the	six	memory	bottleneck	classes	

Phase	1:	
calculate	thresholds	(T)

Temporal
Locality

LLC	MPKI
Last-to-
First	

Miss	Ratio

Arithmetic	
Intensity

TTemporal
Locality

TLLC	MPKI
TLast-to-

First	
Miss	Ratio

TArithmetic
Intensity

Calculate
44

functions

56

More	in	the	Paper	
• Effect	of	the	last-level	cache	size

- Large	L3	cache	size	(e.g.,	512	MB)	can	mitigate some	cache	
contention	issues	

• Summary	of	our	workload	characterization	methodology
- Including	workload	characterization	using	in-order	host/NDP	
cores

• Limitations	of	our	methodology

• Benchmark	diversity

57

More	in	the	Paper	
• Effect	of	the	last-level	cache	size

- Large	L3	cache	size	(e.g.,	512	MB)	can	mitigate some	cache	
contention	issues	

• Summary	of	our	workload	characterization	methodology
- Including	workload	characterization	using	in-order	host/NDP	
cores

• Limitations	of	our	methodology

• Benchmark	diversity

58

Outline

59

1.	Data	Movement	Bottlenecks

2.	Methodology	Overview

4.	Locality-Based	Clustering

5.	Memory	Bottleneck Analysis

3.	Application	Profiling

6.	Case	Studies

Case	Studies	
• Many	open	questions	related	to	NDP	system	designs8:

- Interconnects
- Data	mapping	and	allocation
- NDP	core	design	(accelerators,	general-purpose	cores)
- Offloading	granularity		
- Programmability	
- Coherence	
- System	integration	
- …	

• Goal:	demonstrate	how	DAMOV	is	useful	to	study	NDP	
system	designs	

[8]	Mutlu+,	“A	Modern	Primer	on	Processing	in	Memory,"	Emerging	Computing:	From	Devices	to	Systems	- Looking	Beyond	Moore	and	
Von	Neumann,	2021

60

Case	Studies	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
61

Case	Studies	(1/4)	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
62

Case	Studies	(2/4)
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
63

→	key	observations	hold	for	other	NDP	architectures

Case	Studies	(3/4)	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
64

Case	Studies	(4/4)	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
65

Case	Studies	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
66

Case	Studies
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
67

→	key	observations	hold	for	other	NDP	architectures

NDP	Accelerators	and	Our	Methodology
• Goal: evaluate	compute-centric	versus	NDP	accelerators

Compute-Centric	Accelerator

Off-chip	linkCustom	
Accelerator9 DRAMDRAMDRAMDRAM

NDP	Accelerator

Logic	Layer

Custom	
Accelerator9 DRAMDRAMDRAMDRAMOff-chip	link

[9]	Shao+,	“Aladdin:	A	Pre-RTL,	Power-Performance	Accelerator	Simulator	Enabling	Large	Design	Space	Exploration	of	Customized	
Architectures,”	in	ISCA,	2014

0

0.5

1

1.5

2

1a:	DRKYolo 1b:	PLYalu 2c:	PLY3mm

Sp
ee
du
p	
Ov
er
	

Cc
om

pu
te
−C
en
tr
ic
	A
cc
el
er
at
or

Compute-Centric	Accelerator NDP	Accelerators

68

NDP	Accelerators	and	Our	Methodology
• Goal: evaluate	compute-centric	versus	NDP	accelerators

Compute-Centric	Accelerator

Off-chip	linkCustom	
Accelerator9 DRAMDRAMDRAMDRAM

NDP	Accelerator

Logic	Layer

Custom	
Accelerator9 DRAMDRAMDRAMDRAMOff-chip	link

[9]	Shao+,	“Aladdin:	A	Pre-RTL,	Power-Performance	Accelerator	Simulator	Enabling	Large	Design	Space	Exploration	of	Customized	
Architectures,”	in	ISCA,	2014

0

0.5

1

1.5

2

1a:	DRKYolo 1b:	PLYalu 2c:	PLY3mm

Sp
ee
du
p	
Ov
er
	

Cc
om

pu
te
−C
en
tr
ic
	A
cc
el
er
at
or

Compute-Centric	Accelerator NDP	Accelerators

The	performance	of	NDP	accelerators	
are	in	line	with	the	characteristics	of	the

memory	bottleneck	classes:	

our	memory	bottleneck	classification	can	be	applied	to	
study	other	types	of	system	configurations

69

Case	Studies	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
70

Case	Studies	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
71

DAMOV	is	Open-Source
• We	open-source	our	benchmark	suite	and	our	toolchain

DAMOV-SIM

DAMOV	
Benchmark

72

DAMOV	is	Open-Source
• We	open-source	our	benchmark	suite	and	our	toolchain

DAMOV-SIM

DAMOV	
Benchmark

73

Get	DAMOV	at:
https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV

• Problem:	Data	movement	is	a	major bottleneck	is	modern	systems.	
However,	it	is	unclear how	to	identify:	
−		different	sources	of	data	movement	bottlenecks	
−		themost	suitable	mitigation	technique	(e.g.,	caching,	prefetching,	near-data	processing)	
for	a	given	data	movement	bottleneck

• Goals:	
1.	Design	a	methodology	to	identify sources	of	data	movement bottlenecks
2.	Compare compute- and	memory-centric	data	movement	mitigation	techniques

• Key	Approach:	Perform	a	large-scale	application	characterization to	identify	
key	metrics that	reveal	the	sources	to	data	movement	bottlenecks

• Key	Contributions:
−		Experimental	characterization	of	77K	functions	across	345	applications
−		A	methodology	to	characterize	applications	based	on	data	movement	bottlenecks and			
their	relation	with	different	data	movement	mitigation	techniques

−		DAMOV:	a	benchmark	suite	with	144	functions	for	data	movement	studies
−		Four	case-studies	to	highlight	DAMOV’s	applicability	to	open	research	problems	

74

Conclusion

DAMOV:	https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV

DAMOV:	A	New	Methodology	
and	Benchmark	Suite	for	Evaluating	

Data	Movement	Bottlenecks

Geraldo	F.	Oliveira
Juan	Gómez-Luna Lois	Orosa Saugata Ghose	

Nandita	Vijaykumar					Ivan	Fernandez					Mohammad	Sadrosadati
Onur Mutlu

DAMOV:	A	New	Methodology	
and	Benchmark	Suite	for	Evaluating	

Data	Movement	Bottlenecks

DAMOV	Benchmark	Suite	and	DAMOV-SIM	Tutorial

Outline	
• Downloading	and	Installing	

• Compiling	the	Workloads	

• Installing	DAMOV-SIM	

• Generating	Configuration	Files

• Executing	Simulations	and	Collecting	Statistics	

2

Outline	
• Downloading	and	Installing	

• Compiling	the	Workloads	

• Installing	DAMOV-SIM	

• Generating	Configuration	Files

• Executing	Simulations	and	Collecting	Statistics	

3

Downloading	and	Installing	
• Step	1:	Clone	DAMOV’s	GitHub	repository	

• Step	2:	Download	the	workloads	

$ git clone https://github.com/CMU-SAFARI/DAMOV.git
$ cd DAMOV/
$ ls
get_workloads.sh LICENSE README.md simulator

$./get_workloads.sh
Downloading DAMOV workloads -- Part 1
Cloning into 'damovworkloadspart1’...
…

bwa chai-cpu Darknet GASE-master hardware-effects hpcc hpcg
ligra multicore-hashjoins-0.1 parboil parsec-3.0 phoenix
PolyBench-ACC rodinia_3.1 STREAM zsim_hooks.h

4

https://github.com/CMU-SAFARI/DAMOV.git

Outline	
• Downloading	and	Installing	

• Compiling	the	Workloads	

• Installing	DAMOV-SIM	

• Generating	Configuration	Files

• Executing	Simulations	and	Collecting	Statistics	

5

Compiling	the	Workloads
• Note	1:	Each	workload	might	have	its	own	set	of	
dependencies

• Step	3:	Compile	applications	with	compile.py

• Note	2:	compile.py generates	a	single	binary	per	
memory-bound	function	

$ cd workloads/STREAM/
$ python compile.py
$ ls

stream_add stream.c stream_copy stream_scale stream_triad
compile.py

6

Outline	
• Downloading	and	Installing	

• Compiling	the	Workloads	

• Installing	DAMOV-SIM	

• Generating	Configuration	Files

• Executing	Simulations	and	Collecting	Statistics	

7

Installing	DAMOV-SIM
• Step	4:	Install	DAMOV-SIM

• To	execute	a	simulation:

$ cd simulator/
$ sudo ./scripts/setup.sh
$./scripts/compile.sh
…
scons: done building targets.

…

$./build/opt/zsim configuration_file
…

8

Outline	
• Downloading	and	Installing	

• Compiling	the	Workloads	

• Installing	DAMOV-SIM	

• Generating	Configuration	Files

• Executing	Simulations	and	Collecting	Statistics	

9

Generating	Configuration	Files	(1/4)	
• DAMOV-SIM	simulates	different	system	configurations	

- Host:	a	host	CPU	with	private	L1/L2	and	shared	L3	caches	→		fixed	LLC	size
- Host	with	prefetcher:	same	as	Hostwith	a	stream	prefetcher	
- Host	NUCA:	a	host	CPU	with	private	L1/L2	and	shared	L3	caches	organized	in	
a	2D	mesh	network	→	LLC	size	increases	as	a	factor	of	the	core	count

- NDP:	an	NDP	system	with	private	L1	cache	

• We	provide	template	configuration	files	under	
simulator/templates

in-order	 out-out-order	 accelerator
Host	 template_host_inorder.cfg template_host_ooo.cfg template_host_accelera

tor.cfg

Host	with	
prefetcher

template_host_prefetch_inorder.cfg template_host_prefetch_ooo.cfg template_host_prefetch
_accelerator.cfg

Host	with	
NUCA

template_host_nuca_inorder.cfg template_host_nuca.cfg N/A

NDP	 template_pim_inorder.cfg template_pim_ooo.cfg template_pim_accelerat
or.cfg

10

Generating	Configuration	Files	(2/4)	
• Step	5.1:	Create	a	command	file

- Command	file	format	=	{benchmark,	application,	function,	
binary	path,	inputs}

$ cd simulator/
$ cat command_files/stream_cf

stream,Add,Add,PIM_ROOT/STREAM/stream_add THREADS
stream,Copy,Copy,PIM_ROOT/STREAM/stream_copy THREADS
stream,Scale,Scale,PIM_ROOT/STREAM/stream_scale THREADS
stream,Triad,Triad,PIM_ROOT/STREAM/stream_triad THREADS

11

Generating	Configuration	Files	(3/4)	
• Step	5.2:	Generate	configuration	files	using	
generate_config_files.py
$ python scripts/generate_config_files.py command_files/stream_cfg
$ ls config_files/
host_accelerator host_inorder host_ooo pim_accelerator
pim_inorder pim_ooo

$ ls config_files/host_ooo/
no_prefetch prefetch

$ ls config_files/host_ooo/no_prefetch/
stream

$ ls config_files/host_ooo/no_prefetch/stream
1 16 256 4 64

$ ls config_files/host_ooo/no_prefetch/stream/4/
Add_Add.cfg Copy_Copy.cfg Scale_Scale.cfg Triad_Triad.cfg

12

Generating	Configuration	Files	(4/4)	
• Step	5.3:	Verify	the	configuration	file	

$ cat config_files/host_ooo/no_prefetch/stream/4/Add_Add.cfg

// This system is similar to a 6-core, 2.4GHz Westmere with 10
Niagara-like cores attached to the L3
sys = {

lineSize = 64;
frequency = 2400;

cores = {
core = {

type = "OOO";
cores = 4;
icache = "l1i";
dcache = "l1d";

};
};

…

13

type	=	{OOO,	Timing,	Accelerator}

Generating	Configuration	Files	(4/4)	
• Step	5.3:	Verify	the	configuration	file	

$ cat config_files/host_ooo/no_prefetch/stream/4/Add_Add.cfg
…

caches = {
l1d = {

caches = 4;
size = 32768;
array = {

type = "SetAssoc";
ways = 8;

};
latency = 4;

};

l1i = { … };
l2 = { … };
l3 = { … };
mem = {

type = "Ramulator";
ramulatorConfig = "ramulator-configs/HMC-config.cfg";
latency = 1;

};};
…

14

Define	cache	size	and	organization

Use	Ramulator as	the	memory	controller,	
and	HMC	as	the	main	memory

Generating	Configuration	Files	(4/4)	
• Step	5.3:	Verify	the	configuration	file	

$ cat config_files/host_ooo/no_prefetch/stream/4/Add_Add.cfg
…
sim = {

pimMode = false;
stats = "zsim_stats/host_ooo/no_prefetch/4/stream_Add_Add";
phaseLength = 1000;
maxOffloadInstrs = 1000000000L;
maxTotalInstrs = 1000000000L;
…

};

process0 = {
command = "/home/safari/DAMOV/workloads//STREAM/stream_add 4";
startFastForwarded = True;

};

15

pimMode enables	host	(pimMode =	false)		
or	NDP	(pimMode =	true)	execution

Simulation	termination	
condition	

Command	that	will	be	simulated

Outline	
• Downloading	and	Installing	

• Compiling	the	Workloads	

• Installing	DAMOV-SIM	

• Generating	Configuration	Files

• Executing	Simulations	and	Collecting	Statistics	

16

Executing	a	Simulation
• Step	6:	Run	STREAM	Add	in	a	host	CPU	with	4	cores

• Step	7:	Run	STREAM	Add	in	an	NDP	system	with	4	cores

• Current	DAMOV-SIM	limitation: no	support	for	
concurrent	execution	on	host	and	NDP	cores

$./build/opt/zsim config_files/host_ooo/no_prefetch/stream/4/Add_Add.cfg

$./build/opt/zsim config_files/pim_ooo/stream/4/Add_Add.cfg

17

Collecting	Statistics	(1/2)
• Step	8.1:	Check	the	statistics	stored	under	
zsim_stats/
$ ls zsim_stats/host_ooo/no_prefetch/4/
stream_Add_Add.dramRequestsPerPhase stream_Add_Add.out.cfg
stream_Add_Add.ramulator.stats stream_Add_Add.zsim.out

$ ls zsim_stats/pim_ooo/4/
stream_Add_Add.dramRequestsPerPhase stream_Add_Add.out.cfg
stream_Add_Add.ramulator.stats stream_Add_Add.zsim.out

18

Collecting	Statistics	(2/2)
• Step	8.2:	Filter	key	metrics	to	compare	host	and	NDP	
execution	using	get_stats_per_app.py
$ python scripts/get_stats_per_app.py
zsim_stats/host_ooo/no_prefetch/4/stream_Add_Add.zsim.out
------------------ Summary ------------------------

Instructions: 1000000939
Cycles: 450320568
IPC: 2.22064238247
L3 Miss Rate (%): 99.9992276064
L2 Miss Rate (%): 100.0
L1 Miss Rate (%): 73.5630799769
L3 MPKI: 23.433444996
LFMR: 0.999993129532

$ python scripts/get_stats_per_app.py
zsim_stats/pim_ooo/4/stream_Add_Add.zsim.out

------------------ Summary ------------------------
Instructions: 1000005774
Cycles: 280045288
IPC: 3.57087162988
…

19

NDP	speedup	over	CPU	
=	3.57/2.22	=	1.6x	

DAMOV:	A	New	Methodology	
and	Benchmark	Suite	for	Evaluating	

Data	Movement	Bottlenecks

DAMOV	Benchmark	Suite	and	DAMOV-SIM	Tutorial

