Revisiting DRAM Read Disturbance Identifying Inconsistencies Between Experimental Characterization and Device-Level Studies

Haocong Luoİsmail Emir YükselAtaberk OlgunA. Giray YağlıkçıOnur Mutlu

ETH Zurich

VTS' 25 28 April 2025

Executive Summary

- Goal: Align and cross-validate the experimental characterization of DRAM read disturbance (RowHammer and RowPress) with the error mechanisms modeled by device-level simulation
 - Challenge: Gap between real-chip characterization and device-level mechanisms due to low-level DRAM array layout (i.e., true- and anti-cells)

Key Methodology:

- Extract key device-level read disturbance mechanisms from prior works
- Reverse-engineer the true- and anti-cells layout of real DRAM chips
- Perform real-chip characterization that directly match the access and data patterns studied in device-level works

Key Inconsistencies:

- □ For Double-Sided RowHammer, experimental characterization shows bitflips in both directions while device-level mechanisms suggest only 1→0 bitflips will happen
- □ For Single-Sided RowPress, experimental characterization shows overwhelmingly 1→0 bitflips while device-level mechanisms suggest both kinds of bitflips will happen

Background

- Key DRAM Organization & Operation
- DRAM Read Disturbance Phenomena: RowHammer & RowPress
- Device-Level DRAM Read Disturbance Mechanisms

Real-Chip Characterization Methodology

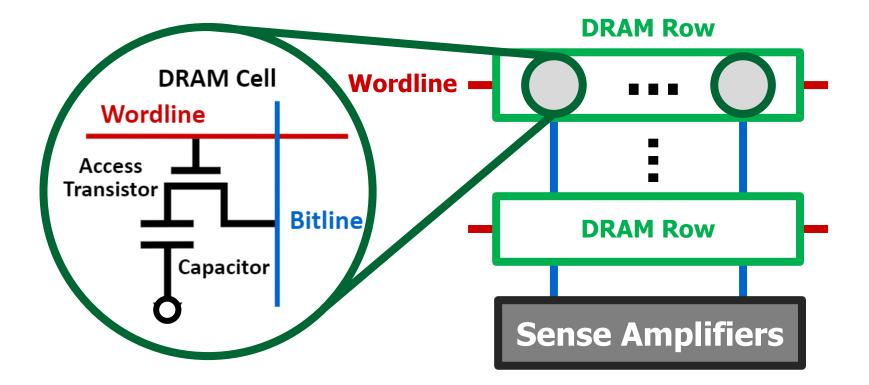
Reverse Engineering of True- and Anti-Cell Layout

Real-Chip Characterization Results

- Inconsistency I: Initial Bitflip Direction of Double-Sided RowHammer
- Inconsistency II: Bitflip Count of Double-Sided RowHammer
- □ Inconsistency III: Bitflip Direction of Single-Sided RowPress

Hypotheses

Conclusion

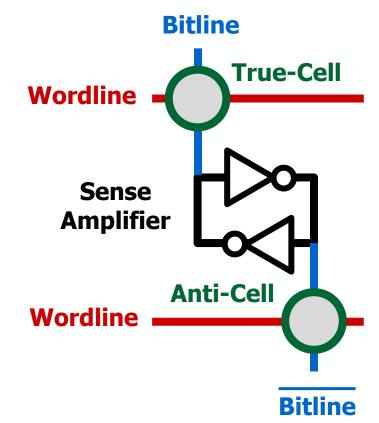

Background

- Key DRAM Organization & Operation
- DRAM Read Disturbance Phenomena: RowHammer & RowPress
- Device-Level DRAM Read Disturbance Mechanisms
- Real-Chip Characterization Methodology
 - Reverse Engineering of True- and Anti-Cell Layout
- Real-Chip Characterization Results
 - Inconsistency I: Initial Bitflip Direction of Double-Sided RowHammer
 - □ Inconsistency II: Bitflip Count of Double-Sided RowHammer
 - □ Inconsistency III: Bitflip Direction of Single-Sided RowPress
- Hypotheses
- Conclusion

Background – DRAM Organization I

DRAM is the prevalent technology for main memory

- □ A **DRAM cell** stores one bit of information in a leaky capacitor
- DRAM cells are organized into DRAM rows
- Data are read from DRAM cells at **row-granularity** using **Sense Amplifiers**

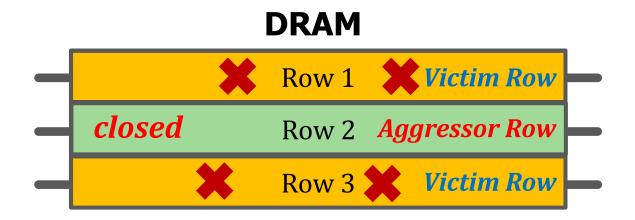


Background – DRAM Organization II

True-Cell and Anti-Cell

- □ The sense amplifier is a differential amplifier
- A DRAM cell can represent a logical 1 by storing either positive or negative charge depending on if it is connected to Bitline or Bitline
- True-cell: Represents a logical 1 by storing positive charge (i.e., V_{Capacitor} = V_{Core})

 Anti-cell: Represents a logical 1 by storing negative charge (i.e., V_{Capacitor} = V_{SS})

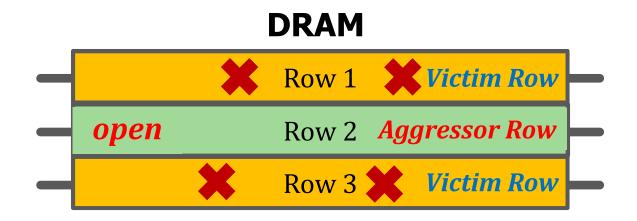


Background – DRAM Read Disturbance I

Read disturbance in DRAM breaks memory isolation

 Accessing a DRAM row (aggressor row) disturbs the integrity of data stored in DRAM cells of other **unaccessed** rows (victim rows), causing bitflips

Prominent Example I: RowHammer


Repeatedly **opening (activating)** and **closing** a DRAM row **many times** causes **RowHammer bitflips** in adjacent rows

Background – DRAM Read Disturbance II

Read disturbance in DRAM breaks memory isolation

 Accessing a DRAM row (aggressor row) disturbs the integrity of data stored in DRAM cells of other **unaccessed** rows (victim rows), causing bitflips

Prominent Example II: RowPress

Keeping a DRAM row **open for a long time** causes bitflips in adjacent rows **without** requiring as many row activations as RowHammer

Background

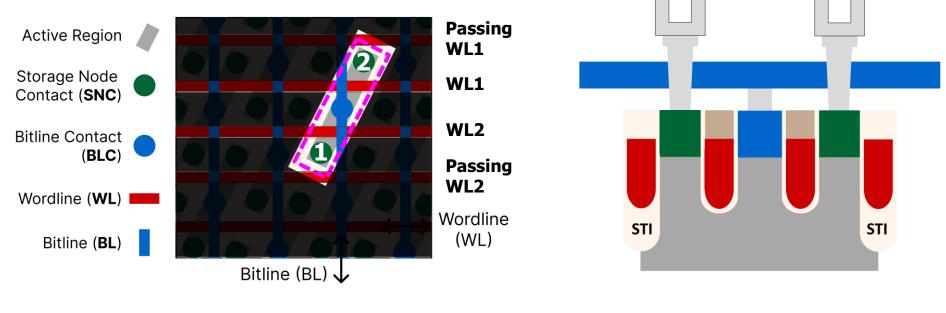
- Key DRAM Organization
- DRAM Read Disturbance Phenomena: RowHammer & RowPress

Device-Level DRAM Read Disturbance Mechanisms

Real-Chip Characterization Methodology

Reverse Engineering of True- and Anti-Cell Layout

Real-Chip Characterization Results

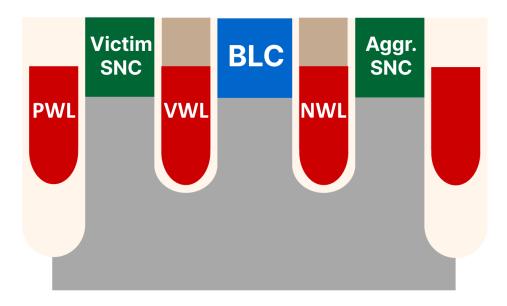

- □ Inconsistency I: Initial Bitflip Direction of Double-Sided RowHammer
- □ Inconsistency II: Bitflip Count of Double-Sided RowHammer
- □ Inconsistency III: Bitflip Direction of Single-Sided RowPress
- Hypotheses
- Conclusion

Key Device-Level Characteristic 1: Double-Sided RowHammer should only induce $1 \rightarrow 0$ bitflips

Key Device-Level Characteristic 2: Single-Sided RowPress should induce both $1 \rightarrow 0$ and $0 \rightarrow 1$ bitflips

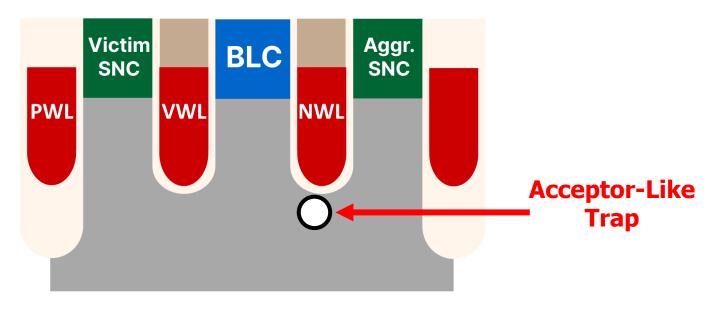
Device-Level Mechanisms – Physical Layout

Modern 6F² DRAM cell array layout

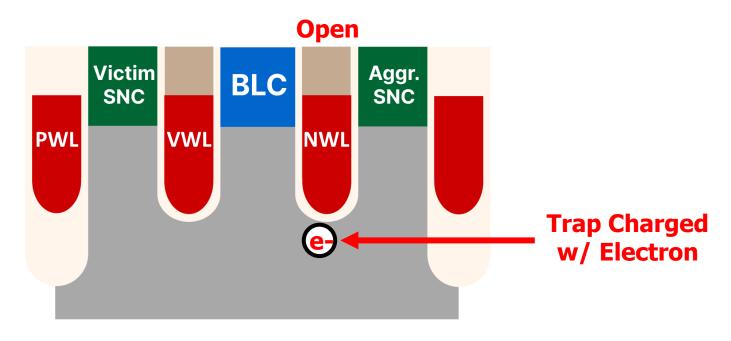


a) Physical Layout of 6F² DRAM (Top View)

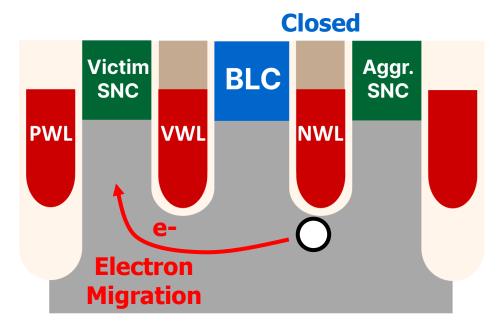
b) Cross-section of an Active Region (Side View, 2 Cells)


Key Error Mechanisms of RowHammer

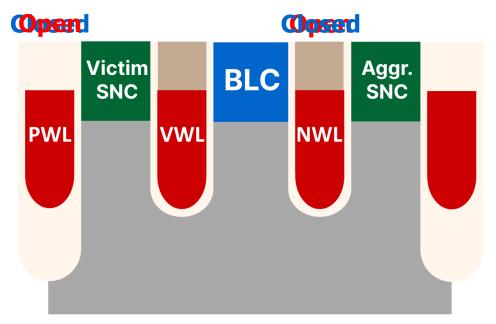
□ Trap-assisted Electron Migration [Yang+, EDL'19] [Walker+, TED'21] [Zhou+, IRPS'23]


Key Error Mechanisms of RowHammer

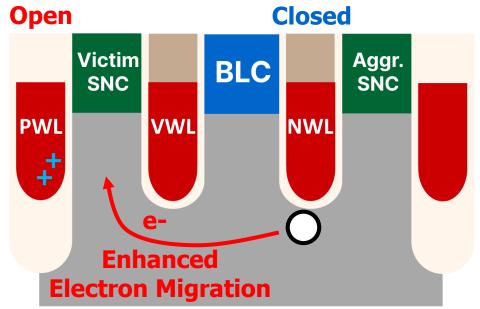
□ Trap-assisted Electron Migration [Yang+, EDL'19] [Walker+, TED'21] [Zhou+, IRPS'23]


Key Error Mechanisms of RowHammer

- Trap-assisted Electron Migration [Yang+, EDL'19] [Walker+, TED'21] [Zhou+, IRPS'23]
 - 1. When NWL (aggressor) is open, acceptor-like traps are charged with electrons


Key Error Mechanisms of RowHammer

- Trap-assisted Electron Migration [Yang+, EDL'19] [Walker+, TED'21] [Zhou+, IRPS'23]
 - 1. When NWL (aggressor) is open, acceptor-like traps are charged with electrons
 - 2. When NWL (aggressor) is closed, electrons are emitted from traps and migrate towards the victim cell

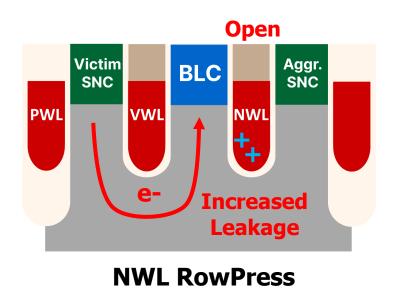

Key Error Mechanisms of RowHammer (Cont'd)

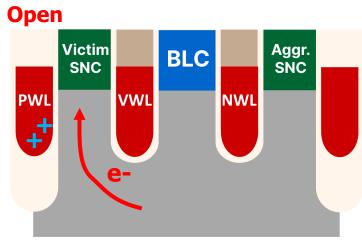
- Double-Sided RowHammer is much more effective than Single-Sided at inducing bitflips (i.e., require much fewer aggressor row activations)
- Both NWL and PWL are aggressors, being opened and closed in an alternating manner, "sandwiching" the victim

Key Error Mechanisms of RowHammer (Cont'd)

- Double-Sided RowHammer is much more effective than Single-Sided at inducing bitflips (i.e., require much fewer aggressor row activations)
- > When NWL is closed, PWL is open: Enhancing electron migration
- > NWL is closed for a longer period: More time for electron emission from traps

Key Error Mechanisms of RowHammer (Cont'd)


- Double-Sided RowHammer is much more effective than Single-Sided at inducing bitflips (i.e., require much fewer aggressor row activations)
- Electron migration is significantly enhanced by the alternating opening-closing of the NWL and the PWL -> Enhances 1→0 bitflips
 - State-of-the-art device-level study claim 0→1 bitflips are "eliminated completely" [Zhou+, IRPS'23]


Key Device-Level Characteristic 1: Double-Sided RowHammer should only induce $1 \rightarrow 0$ bitflips

Device-Level Mechanism – RowPress I

Key Error Mechanisms of RowPress

- NWL RowPress: When NWL is kept open for a long period, its strong electric field increases the leakage from the victim to the BLC, causing 0→1 bitflips [Zhou+, TED'24] [Zhou+, IRPS'24]
- PWL RowPress: When PWL is kept open for a long period, its strong electric field draws electrons towards the victim, causing 1→0 bitflips [Zhou+, TED'24] [Zhou+, IRPS'24]

PWL RowPress

Device-Level Mechanism – RowPress II

Key Error Mechanisms of RowPress

- NWL RowPress: When NWL is kept open for a long period, its strong electric field increases the leakage from the victim to the BLC, causing 0→1 bitflips [Zhou+, TED'24] [Zhou+, IRPS'24]
- PWL RowPress: When PWL is kept open for a long period, its strong electric field draws electrons towards the victim, causing 1→0 bitflips [Zhou+, TED'24] [Zhou+, IRPS'24]

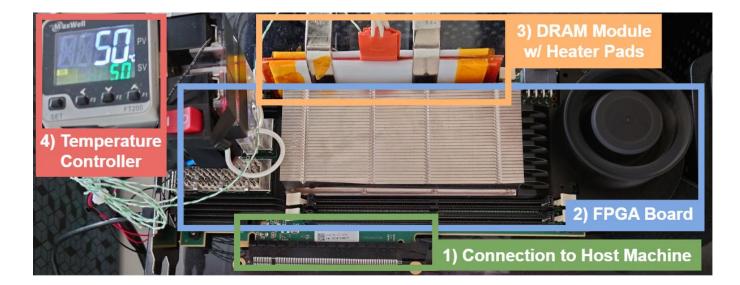
Key Device-Level Characteristic 2: Single-Sided RowPress should induce both $1 \rightarrow 0$ and $0 \rightarrow 1$ bitflips

Background

- Key DRAM Organization
- DRAM Read Disturbance Phenomena: RowHammer & RowPress
- Device-Level DRAM Read Disturbance Mechanisms

Real-Chip Characterization Methodology

Reverse Engineering of True- and Anti-Cell Layout


Real-Chip Characterization Results

- Inconsistency I: Initial Bitflip Direction of Double-Sided RowHammer
- □ Inconsistency II: Bitflip Count of Double-Sided RowHammer
- □ Inconsistency III: Bitflip Direction of Single-Sided RowPress
- Hypotheses
- Conclusion

Real-Chip Characterization Methodology I

DRAM Bender

Commodity-off-the-shelf (COTS) DDR4 DRAM testing infrastructure

Fine-grained control over DRAM commands and timings (1.5ns granularity)

https://github.com/CMU-SAFARI/DRAM-Bender

Olgun et al., "<u>DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure</u> to Easily Test State-of-the-art DRAM Chips," in TCAD, 2023.

Real-Chip Characterization Methodology II

DRAM Chips Tested

- COTS DDR4 from all three major DRAM manufacturers
- 12 different modules with different DRAM die revisions and densities
- 96 DRAM chips in total
- We test 2048 randomly chosen victim rows from each module

Mfr.	Module Type	Die Density	Die Revision	DQ Num. Chips		Date Code (YYWW)
S	UDIMM	8 Gb	В	$\times 8$	8	1639
S	UDIMM	8 Gb	D	$\times 8$	8	2110
S	UDIMM	8 Gb	Е	$\times 8$	8	2341
S	UDIMM	16 Gb	М	$\times 8$	8	2118
S	UDIMM	16 Gb	А	$\times 8$	8	2319
S	UDIMM	16 Gb	В	$\times 8$	8	2315
S	UDIMM	16 Gb	С	$\times 8$	8	2408
Н	UDIMM	8 Gb	С	$\times 8$	8	2120
Н	UDIMM	8 Gb	D	$\times 8$	8	1938
Н	UDIMM	16 Gb	А	$\times 8$	8	2003
Н	UDIMM	16 Gb	С	$\times 8$	8	2136
М	UDIMM	8 Gb	Е	$\times 8$	8	2402

Table 1: DRAM Chips Tested

Background

- Key DRAM Organization
- DRAM Read Disturbance Phenomena: RowHammer & RowPress
- Device-Level DRAM Read Disturbance Mechanisms

Real-Chip Characterization Methodology

Reverse Engineering of True- and Anti-Cell Layout

Real-Chip Characterization Results

- □ Inconsistency I: Initial Bitflip Direction of Double-Sided RowHammer
- □ Inconsistency II: Bitflip Count of Double-Sided RowHammer
- □ Inconsistency III: Bitflip Direction of Single-Sided RowPress
- Hypotheses
- Conclusion

True- and Anti-Cell Layout Reverse Engineering

Motivation

- DRAM internal architecture and layout is opaque to the memory controller
- The observed bitflip direction in real-chip characterization results does not always correspond to the real bitflip direction that happens in the DRAM cells (i.e., due to true- and anti-cells)

Retention Failure Based Reverse Engineering

- Major DRAM retention leakage paths (junction leakage and GIDL) are towards the access transistor substrate, which are usually negatively biased [Saino+, IEDM'00] [Yang+, EDL'13] [Park+, IMW'15] [Lee+, JSSC'11]
- □ Prior works on experimental characterization of DRAM retention failures assume DRAM retention failure only contain 1→0 bitflips, and leverages this to reverse engineer the true- and anti-cell layout of DRAM chips [Liu+, ISCA'13] [Nam+, ISCA'24]

We find consistent true- and anti-cell layouts as in prior works

Background

- Key DRAM Organization
- DRAM Read Disturbance Phenomena: RowHammer & RowPress
- Device-Level DRAM Read Disturbance Mechanisms
- Real-Chip Characterization Methodology
 - Reverse Engineering of True- and Anti-Cell Layout

Real-Chip Characterization Results

- Inconsistency I: Initial Bitflip Direction of Double-Sided RowHammer
- □ Inconsistency II: Bitflip Count of Double-Sided RowHammer
- □ Inconsistency III: Bitflip Direction of Single-Sided RowPress
- Hypotheses
- Conclusion

Summary of Inconsistencies Found

Inconsistency I – Double-Sided RowHammer Bitflip Direction

- Real-Chip Characterization: Observed both $0 \rightarrow 1$ and $1 \rightarrow 0$ bitflips; $0 \rightarrow 1$ bitflips are initially easier to induce than $1 \rightarrow 0$ bitflips
- Device-Level Mechanism: Double-Sided RowHammer significantly enhances $1 \rightarrow 0$ leakage that it should only induce $1 \rightarrow 0$ bitflips

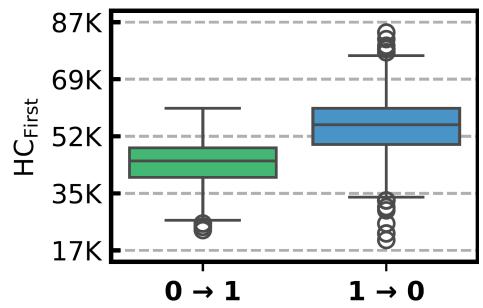
Inconsistency II – Double-Sided RowHammer Bitflip Count

- Real-Chip Characterization: Only with a sufficiently large hammer count does the number of $1 \rightarrow 0$ bitflips exceed that of $0 \rightarrow 1$ bitflips
- Device-Level Mechanism: Double-Sided RowHammer significantly enhances $1 \rightarrow 0$ leakage that it should only induce $1 \rightarrow 0$ bitflips

Inconsistency III – Single-Sided RowPress Bitflip Direction

- □ Real-Chip Characterization: Observed overwhelmingly $1 \rightarrow 0$ bitflips
- Device-Level Mechanism: Single-Sided RowPress should induce both 0→1 and 1→0 bitflips

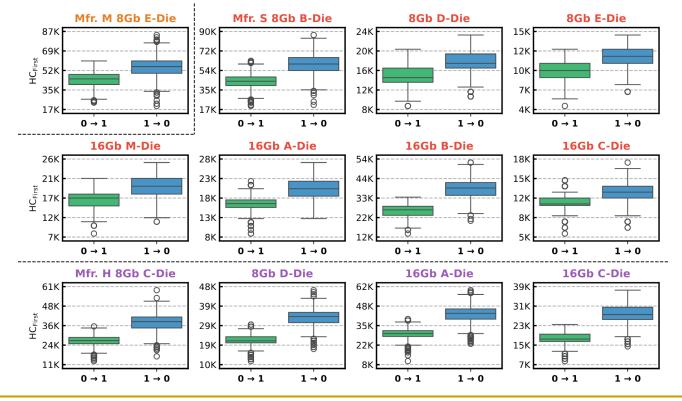
Background


- Key DRAM Organization
- DRAM Read Disturbance Phenomena: RowHammer & RowPress
- Device-Level DRAM Read Disturbance Mechanisms
- Real-Chip Characterization Methodology
 - Reverse Engineering of True- and Anti-Cell Layout

Real-Chip Characterization Results

- □ Inconsistency I: Initial Bitflip Direction of Double-Sided RowHammer
- Inconsistency II: Bitflip Count of Double-Sided RowHammer
- □ Inconsistency III: Bitflip Direction of Single-Sided RowPress
- Hypotheses
- Conclusion

Initial Bitflip Direction of Double-Sided RowHammer I


- Access Pattern: Double-Sided RowHammer
- Data Pattern: All physical 1 (or 0) in the victim rows, All physical 0 (or 1) in the aggressor rows
- Key Metric: HC_{First}, the minimum aggressor row activation (hammer) count to induce at least one bitflip in the victim row

Mfr. M 8Gb E-Die

Initial Bitflip Direction of Double-Sided RowHammer I

- Access Pattern: Double-Sided RowHammer
- Data Pattern: All physical 1 (or 0) in the victim rows, All physical 0 (or 1) in the aggressor rows
- Key Metric: HC_{First}, the minimum aggressor row activation (hammer) count to induce at least one bitflip in the victim row

Initial Bitflip Direction of Double-Sided RowHammer II

Average HC_{First} of 0→1 and 1→0 bitflips (Double-Sided RowHammer)

Mfr.	Die Density	Die Revision	Averag	ge HC _{First} 1 to 0	Difference	Avg. Difference (Geo. Mean)
S	8 Gb	В	43840	59368	26.2%	
S	8 Gb	D	15398	18041	14.7%	
S	8 Gb	E	9684	11623	16.7%	
S	16 Gb	M	16732	19946	16.1%	
S	16 Gb	A	16981	20942	18.9%	
S	16 Gb	В	26415	38774	31.9%	04.70
S	16 Gb	C	11355	13346	14.9%	24.7%
Н	8 Gb	C	26500	38440	31.1%	
Н	8 Gb	D	22069	33489	34.1%	
Н	16 Gb	А	29825	43326	31.2%	
Н	16 Gb	C	18042	28041	35.7%	
М	8 Gb	E	44468	55605	20.0%	

Real-Chip Obsv. 1: Double-Sided RowHammer induces both $0 \rightarrow 1$ and $1 \rightarrow 0$ bitflips

Real-Chip Obsv. 2: For Double-Sided RowHammer, it is easier to induce $0 \rightarrow 1$ bitflips than $1 \rightarrow 0$ bitflips

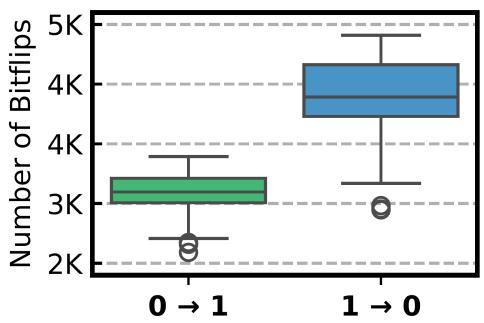
Takeaways from Real-Chip Characterization Results

- □ Double-Sided RowHammer involves error mechanisms for inducing both 0→1 and 1→0 bitflips
- For Double-Sided RowHammer, the observed error mechanism for 0→1 bitflips is initially stronger than that of 1→0 bitflips in the most vulnerable DRAM cells (i.e., those requiring the least number of aggressor row activations to experience bitflips)

Characteristics from Device-Level Mechanisms

□ Double-Sided RowHammer significantly enhances leakage that causes $1 \rightarrow 0$ bitflips that it should only induce $1 \rightarrow 0$ bitflips

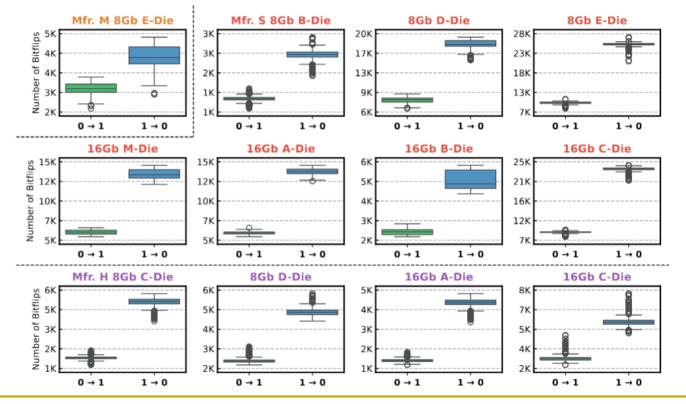
Background


- Key DRAM Organization
- DRAM Read Disturbance Phenomena: RowHammer & RowPress
- Device-Level DRAM Read Disturbance Mechanisms
- Real-Chip Characterization Methodology
 - Reverse Engineering of True- and Anti-Cell Layout

Real-Chip Characterization Results

- Inconsistency I: Initial Bitflip Direction of Double-Sided RowHammer
- Inconsistency II: Bitflip Count of Double-Sided RowHammer
- Inconsistency III: Bitflip Direction of Single-Sided RowPress
- Hypotheses
- Conclusion

Bitflip Count of Double-Sided RowHammer I


- Access Pattern: Double-Sided RowHammer
- Data Pattern: All physical 1 (or 0) in the victim rows, All physical 0 (or 1) in the aggressor rows
- Key Metric: Per-Row Bitflip Count, after hammering each aggressor row for a sufficiently high number of times (500K)

Mfr. M 8Gb E-Die

Bitflip Count of Double-Sided RowHammer I

- Access Pattern: Double-Sided RowHammer
- Data Pattern: All physical 1 (or 0) in the victim rows, All physical 0 (or 1) in the aggressor rows
- Key Metric: Per-Row Bitflip Count, after hammering each aggressor row for a sufficiently high number of times (500K)

Bitflip Count of Double-Sided RowHammer II

Average bitflip count (across all victim rows) of 0→1 and 1→0 bitflips (Double-Sided RowHammer)

Mfr.	Die Density	Die Revision	Average Bitflip Count (Across All Rows)		Difference	Avg. Difference
			0 to 1	1 to 0		(Geo. Mean)
S	8Gb	B	1769	3162	78.7%	
S	8Gb	D	8617	18803	118.2%	
S	8Gb	E	10414	25722	147.0%	
S	16Gb	M	6235	13631	118.6%	
S	16Gb	A	6070	13833	127.9%	
S	16Gb	В	2496	5564	122.8%	105 107
S	16Gb	С	9621	23849	147.9%	105.1%
Н	8Gb	C	2461	5417	120.1%	
Н	8Gb	D	2619	5226	99.5%	
Н	16Gb	A	2295	4807	109.4%	
Η	16Gb	С	3586	6320	76.2%	
М	8Gb	E	3555	4593	29.2%	

Real-Chip Obsv. 3: With sufficiently many hammers, Double-Sided RowHammer induces more $1 \rightarrow 0$ than $0 \rightarrow 1$ bitflips

Bitflip Count of Double-Sided RowHammer III

When does the number of 1→0 bitflips start to exceed the number of 0→1 bitflips?

□ $HC_{1 \rightarrow 0Exceeds0 \rightarrow 1}$: The minimum hammer count that the number of $1 \rightarrow 0$ bitflips exceed the number of $0 \rightarrow 1$ bitflips

Mfr.	Die Density	Die Revision	Aggr. Ro HC _{First0→1}	bw Act. Count $HC_{1 \rightarrow 0 Exceeds 0 \rightarrow 1}$	Difference	Avg. Difference (Geo. Mean)
S	8 Gb	B	43840	241740	451.4%	
S	8 Gb	D	15398	63198	310.4%	
S	8 Gb	E	9684	31927	229.7%	
S	16 Gb	M	16732	72188	331.4%	
S	16 Gb	Α	16981	78820	364.2%	
S	16 Gb	В	26415	153826	482.3%	406.5%
S	16 Gb	С	11355	36751	223.6%	
Н	8 Gb	C	26500	156087	489.0%	
Η	8 Gb	D	22069	141656	541.9%	
Н	16 Gb	А	29825	175674	489.0%	
Η	16 Gb	С	18042	154951	758.8%	
M	8 Gb	E	44468	235454	429.5%	

Takeaways from Real-Chip Characterization Results

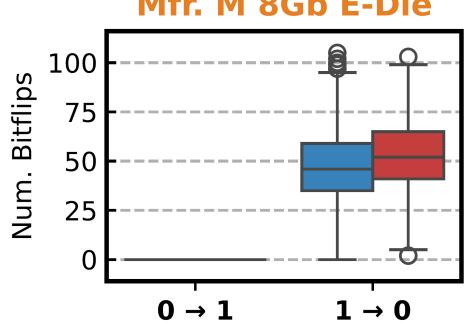
□ For Double-Sided RowHammer, the observed error mechanism for 1→0 bitflips are only stronger than that of 0→1 bitflips with a sufficiently high hammer count

Characteristics from Device-Level Mechanisms

□ Double-Sided RowHammer significantly enhances leakage that causes $1 \rightarrow 0$ bitflips that it should only induce $1 \rightarrow 0$ bitflips

Outline

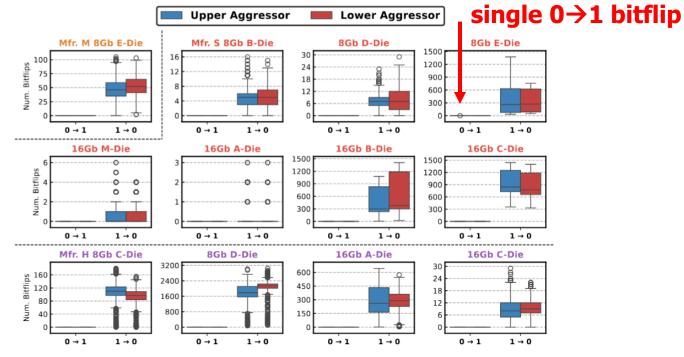
Background


- Key DRAM Organization
- DRAM Read Disturbance Phenomena: RowHammer & RowPress
- Device-Level DRAM Read Disturbance Mechanisms
- Real-Chip Characterization Methodology
 - Reverse Engineering of True- and Anti-Cell Layout

Real-Chip Characterization Results

- Inconsistency I: Initial Bitflip Direction of Double-Sided RowHammer
- Inconsistency II: Bitflip Count of Double-Sided RowHammer
- Inconsistency III: Bitflip Direction of Single-Sided RowPress
- Hypotheses
- Conclusion

Bitflip Direction of Single-Sided RowPress


- **Access Pattern:** Single-Sided RowPress at both the upper and lower aggressor row; kept open for 7.8µs per activation
- **Data Pattern:** All physical 1 (or 0) in the victim rows, All physical 0 (or 1) in the aggressor rows
- Key Metric: Per-Row Bitflip Count, after activating each aggressor row for a sufficiently high number of times (7500)

Mfr. M 8Gb E-Die

Bitflip Direction of Single-Sided RowPress

- Access Pattern: Single-Sided RowPress at both the upper and lower aggressor row; kept open for 7.8µs per activation
- Data Pattern: All physical 1 (or 0) in the victim rows, All physical 0 (or 1) in the aggressor rows
- Key Metric: Per-Row Bitflip Count, after activating each aggressor row for a sufficiently high number of times (7500) Only observed a

Takeaways from Real-Chip Characterization Results

□ For Single-sided RowPress, for both NWL and PWL, the observed error mechanism for inducing 1→0 bitflips is much stronger than that of 0→1 bitflips that we observe overwhelmingly 1→0 bitflips within the refresh window

Characteristics from Device-Level Mechanisms

- □ NWL Single-Sided RowPress should induce $0 \rightarrow 1$ bitflips
- □ PWL Single-Sided RowPress should induce $1 \rightarrow 0$ bitflips

Summary of Inconsistencies Found

Inconsistency I – Double-Sided RowHammer Bitflip Direction

- Real-Chip Characterization: Observed both $0 \rightarrow 1$ and $1 \rightarrow 0$ bitflips; $0 \rightarrow 1$ bitflips are initially easier to induce than $1 \rightarrow 0$ bitflips
- Device-Level Mechanism: Double-Sided RowHammer significantly enhances $1 \rightarrow 0$ leakage that it should only induce $1 \rightarrow 0$ bitflips

Inconsistency II – Double-Sided RowHammer Bitflip Count

- Real-Chip Characterization: Only with a sufficiently large hammer count does the number of $1 \rightarrow 0$ bitflips exceed that of $0 \rightarrow 1$ bitflips
- Device-Level Mechanism: Double-Sided RowHammer significantly enhances $1 \rightarrow 0$ leakage that it should only induce $1 \rightarrow 0$ bitflips

Inconsistency III – Single-Sided RowPress Bitflip Direction

- □ Real-Chip Characterization: Observed overwhelmingly $1 \rightarrow 0$ bitflips
- □ Device-Level Mechanism: Single-Sided RowPress should induce both $0 \rightarrow 1$ and $1 \rightarrow 0$ bitflips

Outline

Background

- Key DRAM Organization
- DRAM Read Disturbance Phenomena: RowHammer & RowPress
- Device-Level DRAM Read Disturbance Mechanisms
- Real-Chip Characterization Methodology
 - Reverse Engineering of True- and Anti-Cell Layout
- Real-Chip Characterization Results
 - Inconsistency I: Initial Bitflip Direction of Double-Sided RowHammer
 - Inconsistency II: Bitflip Count of Double-Sided RowHammer
 - Inconsistency III: Bitflip Direction of Single-Sided RowPress

Hypotheses

Conclusion

Hypotheses I

Two Possibilities

- The retention failure based true- and anti-cell reverse engineering methodology is not always applicable in modern DRAM chips
- Current device-level explanations of DRAM read disturbance is not comprehensive enough
- Other major retention leakage paths that does NOT leak towards the substrate
 - Dielectric leakage that leaks towards BLC?
 - More pronounced in modern DRAM as process keeps shrinking [Yu+, ICET'22]

Hypotheses II

 Existing device-level works make oversimplified assumptions during simulation

 Prior works that study the trap-assisted electron migration leakage mechanism only focus on acceptor-like trap [Yang+, EDL'19] [Walker+, TED'21] [Zhou+, IRPS'23] [Zhou+, TED'24]

□ Are donor-like traps really not causing any read disturbance leakage?

Device-level simulations focus on a few isolated structures and components

- Maybe the modeled read disturbance mechanisms are no longer first-order when put in the context of a full DRAM array
- Other coupling mechanisms between multiple devices and/or process variation might dominate real-chip characterization results

Real-chip characterization results are heavily skewed

There could be asymmetry between the signal margins of reading a 1 and a 0, as a result of sense amplifier design and operation

Hypotheses III

- There could be two different sets of read disturbance leakage mechanisms that affects different sets of DRAM cells
 - □ For example, the error mechanism of 1→0 bitflips could be the major mechanism of Double-Sided RowHammer as prior works study for the majority of the cells
 - □ However, the error mechanism behind the $0 \rightarrow 1$ bitflips determines the tail distribution of the HC_{First} (i.e., it affects the most vulnerable DRAM cells)

Outline

Background

- Key DRAM Organization & Operation
- DRAM Read Disturbance Phenomena: RowHammer & RowPress
- Device-Level DRAM Read Disturbance Mechanisms
- Real-Chip Characterization Methodology
 - Reverse Engineering of True- and Anti-Cell Layout
- Real-Chip Characterization Results
 - Inconsistency I: Initial Bitflip Direction of Double-Sided RowHammer
 - Inconsistency II: Bitflip Count of Double-Sided RowHammer
 - Inconsistency III: Bitflip Direction of Single-Sided RowPress

Hypotheses

Conclusion

Conclusion

- Goal: Align and cross-validate the experimental characterization of read disturbance (RowHammer and RowPress) with the error mechanisms modeled by device-level simulation
 - Challenge: Gap between real-chip characterization and device-level mechanisms due to low-level DRAM array layout (i.e., true- and anti-cells)

Key Methodology:

- Extract key device-level read disturbance mechanisms from prior works
- Reverse-engineer the true- and anti-cells layout of real DRAM chips
- Perform real-chip characterization that directly match the access and data patterns studied in device-level works

Key Inconsistencies:

- □ For Double-Sided RowHammer, experimental characterization shows bitflips in both directions while device-level mechanisms suggest only 1→0 bitflips will happen
- □ For Single-Sided RowPress, experimental characterization shows overwhelmingly 1→0 bitflips while device-level mechanisms suggest both kinds of bitflips will happen

Revisiting DRAM Read Disturbance Identifying Inconsistencies Between Experimental Characterization and **Device-Level Studies**

Haocong Luo

İsmail Emir Yüksel Ataberk Olgun A. Giray Yağlıkçı

Onur Mutlu

arXiv

VTS' 25 28 April 2025

Data & Code

