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DR-STRaNGe Summary

Motivation:
- Random numbers are important for many applications
- DRAM-based True Random Number Generators (TRNGs) can provide true random
numbers at low cost on a wide range of systems
Problem: There is no end-to-end system design for DRAM-based TRNGs

1. Interference between regular memory requests and RNG requests significantly slows
down concurrently running applications

2. Unfair prioritization of RNG applications degrades system fairness
3. High latency of DRAM-based TRNGs degrades the RNG applications’ performance

Goal: A low-cost and high-performance end-to-end system design for DRAM-based TRNGs

DR-STRaNGe: An end-to-end system design for DRAM-based TRNGs that

- Reduces the interference between regular memory requests and RNG requests by
separating them in the memory controller

- Improves fairness across applications with an RNG-aware memory request scheduler
- Hides the large TRNG latencies using a random number buffering mechanism combined
with a new DRAM idleness predictor
Results: DR-STRaNGe
- Improves the average performance of non-RNG (17.9%) and RNG (25.1%) applications

- Improves the average system fairness (32.1%) when generating random numbers
ata 5 Gb/s throughput

- Reduces the average energy consumption (21%)
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Memory Request Scheduling

Commonly used memory request schedulers aim to maximize
throughput by leveraging the row buffer locality

(1) Requests to open rows over all requests
(2) Older requests over the younger ones
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True Random Numbers (TRN)

* True random numbers are widely used in real world

Security Applications:

* Cryptographic key generation,
authentication, countermeasures
against hardware attacks, ...

* Emerging protocols require a very
high TRNG throughput (~ Gb/s)

Other:
 Randomized algorithms,
scientific simulation,
statistical sampling,
blockchain applications,
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True Random Numbers (TRN)

* True random numbers are generated by harnessing
entropy resulting from random physical processes
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True Random Number Generators

* Systems can generate true random numbers
with dedicated hardware true random
number generators (TRNGs)

* Sample non-deterministic various physical
phenomena

* Not suitable for all systems
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Why DRAM-based TRNGs?
DRAM is everywhere

DRAM-based TRNGs enable true random number
generation within widely available DRAM chips
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DRAM-based TRNGs

Retention Failures
Fundamentally Slow: cells leak charge slowly

Start-up Values

Fundamentally Slow: requires power-cycle

Timing Failures
Fast: enabled by reducing DRAM command latencies
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DRAM-based TRNGs

Timing Failures
Fast: enabled by reducing DRAM command latencies
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Integration of DRAM-based TRNGs
into Real Systems

No prior work provides
an end-to-end system design
to enable DRAM-based TRNGs

in real systems
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Three Key Challenges

significantly slows down concurrently-running
applications

1 RNG Interference
|

2 Unfair Prioritization
B degrades overall system fairness

3 High TRNG Latency

degrades RNG applications’ performance

SAFARI (>kasirga

15




Three Key Challenges

significantly slows down concurrently-running
applications

1 RNG Interference
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RNG Interference

 TRNG in DRAM can be intrusive in current systems that use
DRAM as main memory and stall memory requests
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Three Key Challenges

2.

Unfair Prioritization
degrades overall system fairness
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Unfair Prioritization

 Memory request schedulers can prioritize RNG applications to
achieve high throughput

« Stalls the non-RNG applications more and creates unfairness
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Three Key Challenges

3.

High TRNG Latency

degrades RNG applications’ performance
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High TRNG Latency

* DRAM-based true random number generation has high latency
and can degrade the performance of applications that use TRNGs

RNG application

n : getRandom ()

{
/* code block

* depending on the
* random number n
*/

}

Memory
Controller
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Our Goal

To develop a low-cost and high-performance
end-to-end system design for DRAM-based TRNGs
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DR-STRaNGe: Overview

Random Number Buffering Mechanism
Predicts and utilizes idle DRAM channels to generate random numbers
Stores the generated random numbers in a buffer to be served to upcoming RNG requests

Serves RNG requests with low latency

RNG-Aware Memory Request Scheduler
Accumulates RNG and regular memory requests in separate queues
Schedules requests based on the priority levels set by the OS

Reduces the RNG interference and improves system fairness

Application Interface
Exposes a secure interface to applications that use random numbers

Completes the end-to-end system design and ensures security
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DR-STRaNGe

Random Number Buffering Mechanism

SAFARI (kasirga .



Random Number Buffering Mechanism

* Generates and stores random numbers before they are requested,
to be served in the future with low latency

* Predicts DRAM idleness to generate random numbers with low
overhead and stores them in a secure buffer

Random Number Buffering

Mechanism
Memory
Request DRAM Idleness Predictor DRAM
Scheduler

Random Number Buffer
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When to Generate Random Numbers

* Before they are requested by an application

* Two key metrics to determine when to generate random
numbers:

1. Low DRAM Utilization

Low channel utilization due to the low rate of memory accesses

2. DRAM Idle Period Length

Number of idle DRAM cycles due to no memory accesses
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Metric 1: Low DRAM Utilization

* Determine if a channel has low utilization based on the
number of queued memory requests in the memory

request scheduler

Memory Random Number Buffering
Request Mechanism
Scheduler n Channel has low utilization?
DRAM Idleness Predictor

Low Util

Threshola

Random Number Buffer

DRAM
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Metric 2: DRAM Idle Period Length

* Applications often do not fully utilize the DRAM bandwidth and
this creates idle periods

* Idle period lengths differ across applications based on the

memory access pattern
Long Idle Period
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DRAM Idleness Predictor

* Key Idea: Use the last accessed memory address to
predict the length of the idle period
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DRAM Idleness Predictor

* Key Idea: Use the last accessed memory address to
predict the length of the idle period

DRAM Idleness Predictor

Channel
is idle check the a
predictor table
Idle Period
Length (CTR)

increment the
idle period length

o 3 Last Accessed
Memory Address ‘

Predictor Table
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DRAM Idleness Predictor

* Key Idea: Use the last accessed memory address to
predict the length of the idle period

update DRAM Idleness Predictor

/l

2-bit saturating

o 3 Last Accessed counter
Memory Address ‘

new

memory Elnzels thﬁ eUpdate the
request period lengt predictor table
Idle Period
> Length (CTR)
reset
Predictor Table
Evaluation:
CTR < PeriodThreshold : short

CTR = PeriodThreshold :long
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Random Number Buffering Mechanism

DRAM Idleness Predictor

Low Util.

Memory Random Number Buffering
Request Mechanism
Scheduler n Channel has low utilization? [e

Threshold

Random Number Buffer

get prediction -|

Long Idle Period

—

DRAM

Nl

Low utilization

®

Generates random numbers only if DRAM is not fully utilized
and the idle period is predicted to be a long idle period
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DR-STRaNGe

RNG-Aware Scheduler
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RNG-Aware Scheduler

* Goal: To schedule RNG requests without significantly

stalling regular memory requests

* Two main issues with prior RNG-oblivious schedulers:

p
1 RNG requests block regular memory requests due to
» the shared scheduler queue space

.

N

J

-
Memory controller frequently switches between
2 « RNG and regular memory requests due to
the RNG-oblivious scheduling decisions

.

~\
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RNG-Aware Scheduler

* Two Kkey ideas:

( )
1 Accumulate RNG requests in a separate scheduler
* queue to reduce contention for queue space
. J
4 )
2 Use application priority levels to schedule RNG and
* regular memory requests
. J
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RNG-Aware Scheduler: Key Idea 1

= queue to reduce contention for queue space

-
1 Accumulate RNG requests in a separate scheduler
.

Memory Request
Scheduler

tenti W
contention DRAM

X~ |<—

RNG
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RNG-Aware Scheduler: Key Idea 1

= queue to reduce contention for queue space

-
1 Accumulate RNG requests in a separate scheduler
.

Memory Request
Scheduler

w

DRAM

R |€—>

RNG
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RNG-Aware Scheduler: Key Idea 2

-
2 Use application priority levels to schedule RNG and
* regular memory requests

.

\

* The operating system manages hardware resources
based on priority levels of applications

e RNG-Aware scheduler

* Can use these priority levels
e Can identify applications that use TRNGs
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RNG-Aware Scheduler: Key Idea 2

Three possible cases:

2 — w
|_| R RNG Prioritized.
RNG queue is prioritized to minimize the
@' RNG  memory stall time of RNG application
\ J
é I - g )
—I@ R Non-RNG Prioritized.
Regular read queue is prioritized to
RNG minimize non-RNG application’s memory
g stall time )
g @ - Equal Priorities. h
RNG queue is prioritized to quickly serve
@ RNG the RNG requests and minimize the RNG
8 interference B
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Application Interface

* Applications use a system call to request a random number

 DR-STRaNGe serves the request from the random number buffer
with low latency if enough random bits are present

* DR-STRaNGe generates random numbers with low RNG
interference and serve the request otherwise

\ SR
§ DR-STRaNGe
= Random Number =
S <€ > Buffer —> §
& getrandom() Generate Random =
= system call Number
2/ —
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Evaluation

* Performance, fairness, energy efficiency, and area overhead

* Cycle-level simulations using Ramulator [Kim+, CAL'16| and
DRAMPower |Chandrasekar+]|

* System configuration:

Processor 1-,2-,4-,8-,16-core, 4 GHz clock frequency,
3-wide issue, 128-entry instruction window

DRAM DDR3-1600, 800Mhz bus frequency, 4 channels,
1 rank/channel, 8 banks/rank, 64K rows/bank

Memory 32-entry read /write queues,

Controller FR-FCFS with a column cap of 16

- D-RaNGe [Kim+, HPCA'19], and QUAC-TRNG [Olgun+, ISCA’21]
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Evaluation

* 43 single-core applications from four benchmark suites:
« SPEC CPU2006, TPC, MediaBench, YCSB

* Synthetic RNG benchmarks with varying required TRNG
throughputs

* 640 Mb/s, 1280 Mb/s, 2560 Mb/s, 5120 Mb/s

e Multi-core workloads

Number of Cores

Non-RNG Applications/Workloads

RNG Applications

2-core

43 non-RNG applications

x1 RNG application with 5120 Mb/s RNG throughput requirement
x1 RNG application with 640 Mb/s RNG throughput requirement

4-core

40 workloads consisting of non-RNG applications
(4 memory-intensity groups, 10 workloads each.)

x1 RNG application with 5120 Mb/s RNG throughput requirement

8-core

30 workloads consisting of non-RNG applications
(3 memory-intensity groups, 10 workloads each.)

x1 RNG application with 5120 Mb/s RNG throughput requirement

16-core

30 workloads consisting of non-RNG applications
(3 memory-intensity groups, 10 workloads each.)

x1 RNG application with 5120 Mb/s RNG throughput requirement
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Comparison Points

* System-level Comparison Points:
* RNG-Oblivious Baseline Design
* Greedy Idle Design

* Perfect Idleness Predictor: predicts idle period lengths
with 100% accuracy

* Generates random numbers for the random number buffer
without any overhead

* Uses RNG-Aware scheduling

* Memory Request Scheduler Comparison Points:
* FR-FCFS + Column cap of 16 [Mutlu+, MICRO’07]
* BLISS [Subramanian+, I[CCD’14]
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System Performance (Dual-Core)
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DR-STRaNGe improves the performance of both non-RNG and RNG applications

DR-STRaNGe outperforms both baseline designs by leveraging the idle
and low utilization periods to generate random numbers
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System Performance (Multi-Core)

*4- 8-, 16-core evaluation of system performance

DR-STRaNGe outperforms both
baseline designs significantly

DR-STRaNGe's performance improvement
increases with the number of memory-intensive
applications in the workload mix
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System Fairness
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Unfairness

DR-STRaNGe outperforms both designs
by employing an RNG-aware scheduling policy
and effectively reducing and controlling the RNG interference
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Impact of Memory Request Scheduling

B FR-FCFS+Cap B BLISS [ RNG-Aware Scheduler

Non-RNG

Slowaown

G
=
o

Unfairness

RNG-Aware Scheduler outperforms both
FR-FCFS+Cap [Mutlu+, MICRO’07] and BLISS [Subramanian+, ICCD’14]

RNG-Aware Scheduler improves average fairness by 16.1%
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Area and Energy Analysis

 Area:
* CACTI [Muralimanohar+, HPL Tech. Report’09]
e DR-STRaNGe incurs minor area overhead:

* 0.0022mm? (0.00048% of an Intel Cascade Lake
CPU Core)

* Energy:
* DRAMPower |Chandrasekar+]

* DR-STRaNGe reduces average energy consumption
by 21%
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More in the Paper

* Security Analysis of DR-STRaNGe

 Security of Random Numbers
* Timing Side-Channel Attacks
* Covert Channel Attacks

* Denial of Service Attacks

SAFARI (> kasirga

52



More in the Paper

* More Results
* Impact of DRAM Idleness Predictor

e Comparison to a Q-learning-based RL agent
Impact of the Random Number Buffer
Impact of Priority-based Scheduling
Impact of the Low Utilization Prediction
* Experiments using QUAC-TRNG [Olgun+, [SCA'21]
Results of RNG Applications with Low RNG Demand
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More in the Paper

DR-STRaNGe: End-to-End System Design
for DRAM-based True Random Number Generators

F. Nisa Bostanci '3 Ataberk Olgun'3 Lois Orosa® A. Giray YaghkeiS
Jeremie S. Kim?® Hasan Hassan® Oguz Ergin’ Onur Mutlu®

"TOBB University of Economics and Technology SETH Ziirich

https://arxiv.org/abs/2201.01385

SAFARI (kasirga .


https://arxiv.org/abs/2201.01385

Outline

Conclusion

SAFARI (kasirga -



DR-STRaNGe Summary

Motivation:
- Random numbers are important for many applications
- DRAM-based True Random Number Generators (TRNGs) can provide true random
numbers at low cost on a wide range of systems
Problem: There is no end-to-end system design for DRAM-based TRNGs

1. Interference between regular memory requests and RNG requests significantly slows
down concurrently running applications

2. Unfair prioritization of RNG applications degrades system fairness
3. High latency of DRAM-based TRNGs degrades the RNG applications’ performance

Goal: A low-cost and high-performance end-to-end system design for DRAM-based TRNGs

DR-STRaNGe: An end-to-end system design for DRAM-based TRNGs that

- Reduces the interference between regular memory requests and RNG requests by
separating them in the memory controller

- Improves fairness across applications with an RNG-aware memory request scheduler
- Hides the large TRNG latencies using a random number buffering mechanism combined
with a new DRAM idleness predictor
Results: DR-STRaNGe
- Improves the average performance of non-RNG (17.9%) and RNG (25.1%) applications

- Improves the average system fairness (32.1%) when generating random numbers
ata 5 Gb/s throughput

- Reduces the average energy consumption (21%)

SAFARI (kasirga ,



DR-STRaNGe:

End-to-End System Design
for DRAM-based True Random Number Generators

F. Nisa Bostanci
Ataberk Olgun Lois Orosa A. Giray Yaglikc¢i
Jeremie S. Kim Hasan Hassan Oguz Ergin Onur Mutlu

SAFARI (> kaslirga
ETH:zurich TOBB ETU



