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Random number generation is an important task in a wide va-
riety of critical applications including cryptographic algorithms,
scientific simulations, and industrial testing tools. True Ran-
dom Number Generators (TRNGs) produce cryptographically-
secure truly random data by sampling a physical entropy source
that typically requires custom hardware and suffers from long
latency. To enable high-bandwidth and low-latency TRNGs
on widely-available commodity devices, recent works propose
hardware TRNGs that generate random numbers using com-
modity DRAM as an entropy source. Although prior works
demonstrate promising TRNG mechanisms using DRAM, prac-
tical integration of such mechanisms into real systems poses
various challenges.

We identify three key challenges for using DRAM-based
TRNGs in current systems: (1) generating random numbers
with DRAM-based TRNGs can degrade overall system perfor-
mance by slowing down concurrently-running applications due
to the interference between RNG and regular memory opera-
tions in the memory controller (i.e., RNG interference), (2) this
RNG interference can degrade system fairness by causing un-
fair prioritization of applications that intensively use random
numbers (i.e., RNG applications), and (3) RNG applications
can experience significant slowdown due to the high latency of
DRAM-based TRNGs.

To address these challenges, we propose DR-STRaNGe, an
end-to-end system design for DRAM-based TRNGs that (1) re-
duces the RNG interference by separating RNG requests from
regular memory requests in the memory controller, (2) improves
fairness across applications with an RNG-aware memory re-
quest scheduler, and (3) hides the large TRNG latencies using
a random number buffering mechanism combined with a new
DRAM idleness predictor that accurately identifies idle DRAM
periods.

We evaluate DR-STRaNGe using a comprehensive set of 186
multi-programmed workloads. Compared to an RNG-oblivious
baseline system, DR-STRaNGe improves the performance of
non-RNG and RNG applications on average by 17.9% and
25.1%, respectively. DR-STRaNGe improves system fairness by
32.1% on average when generating random numbers at a 5 Gb/s
throughput. DR-STRaNGe reduces energy consumption by 21%
compared to the RNG-oblivious baseline design by reducing the
time spent for RNG and non-RNG memory accesses by 15.8%.

1. Introduction
Random numbers are used in a wide range of applications,

such as cryptographic key generation, authentication, scientific
simulations, Monte Carlo methods, and industrial testing [10,
12, 30, 42, 57, 83, 97, 99, 141, 178, 194]. These applications
often require a high-throughput random number generator to
achieve high performance [82, 138, 182].

Random number generators are categorized into two classes
[31, 94, 170, 173]. First, true random number generators
(TRNGs) [7, 14, 21–23, 33, 41, 57, 60, 65–67, 78, 93, 100, 118,
122, 141, 146, 149, 166–168, 171, 174, 176, 181, 186, 191]
harness the entropy resulting from inherently random physical
processes (e.g., electrical noise, clock jitter, Brownian motion,
and atmospheric noise) to generate random numbers. Second,
pseudo-random number generators (PRNGs) [16, 119, 121, 123,
161] use a seed value to produce a deterministic stream of num-
bers that appears to be random without the knowledge of the
seed.

Random number quality is critical for security applications
such as authentication and key generation [20, 30, 34, 38, 42,
57, 71, 83, 95, 97, 99, 116, 117, 178, 194]. Since PRNGs output
a deterministic stream of numbers, they are not preferable for
security-critical applications [30, 36, 178]. Instead, these ap-
plications use TRNGs, because unlike PRNGs, TRNGs do not
rely on predictable seed values that can compromise application
security.

DRAM is widely available in almost all computer systems
and can be easily integrated into mobile and IoT devices as main
memory. To enable low-cost and high-throughput true random
number generation in almost all commodity systems and emerg-
ing processing-in-memory (PIM) architectures, prior works [11,
44, 60, 78, 82, 138, 166, 168] propose various DRAM-based
TRNGs that exploit manufacturing process variations in DRAM
and the resulting entropy to generate true random numbers.
However, no prior work provides an end-to-end system design
to enable DRAM-based true random number generation in real
systems.

We identify three key challenges these proposals face in an
end-to-end system design that integrates a DRAM-based TRNG.
First, performing random number generation in DRAM can be
intrusive in current systems that use DRAM as main memory.
It can cause a significant slowdown on concurrently-running ap-
plications due to the interference between RNG and non-RNG
memory requests in the memory request scheduler (i.e., RNG
interference). Second, existing memory schedulers schedule
memory requests to achieve high system fairness and perfor-
mance. However, they are RNG-oblivious and ignore different
characteristics of RNG and non-RNG memory requests. RNG
requests are received in bursts and served together because
interleaving RNG and non-RNG requests induce additional
overhead from frequently modifying timing parameters. Exist-
ing memory schedulers can prioritize RNG requests to achieve
high throughput to serve the high RNG demand. This can in-
crease the memory stall time of non-RNG applications more
than RNG applications and degrade system fairness. Third,
random number generation in DRAM has a high latency and
can cause applications that use random numbers intensively
(i.e., RNG applications) to experience long memory stall times.
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DRAM-based TRNG mechanisms need to perform multiple
DRAM reads to gather enough random bits from DRAM. Ran-
dom number generation can stall the processor’s instruction
window if later instructions depend on the generated random
number. Therefore, RNG applications can suffer from long
memory stall times even when they are the only application
running on the system.

Our goal is to design an end-to-end system for DRAM-
based TRNGs with low cost and high performance that (1)
minimizes the slowdown of both RNG and non-RNG appli-
cations by reducing and controlling the interference between
them , (2) improves system fairness by reducing the memory
stall time experienced by non-RNG applications due to random
number generation, and (3) mitigates the performance degra-
dation of RNG applications due to the high latency of DRAM
TRNG mechanisms. To this end, we propose DR-STRaNGe, a
new end-to-end System design for DRAM-based True Random
Number Generators. DR-STRaNGe has three major compo-
nents. First, DR-STRaNGe implements a buffering mechanism
to reduce both the interference between RNG and non-RNG
applications and the high latency of a DRAM-based TRNG. Our
buffering mechanism comprises (1) a DRAM idleness predictor
that leverages a DRAM channel’s idle time to generate random
numbers with low interference to the system, and (2) a random
number buffer in the memory controller to store the generated
values in advance to mitigate the TRNG latency. Second, DR-
STRaNGe implements an RNG-aware scheduler that improves
system fairness and reduces memory stall time by reducing the
RNG interference. Our RNG-aware scheduler uses an RNG re-
quest queue to separate RNG requests from non-RNG requests,
and prioritizes requests based on the priority of the applica-
tions set by the operating system (OS). Third, DR-STRaNGe
provides an interface to applications that enables them to use
the system’s DRAM-based TRNG with low latency and high
throughput. DR-STRaNGe is independent of the DRAM-based
TRNG mechanism used in the system, and is compatible with
all previously proposed DRAM-based TRNGs.

Summary of Results. Our experimental evaluations across a
variety of real workloads show that DR-STRaNGe improves (1)
performance of both non-RNG and RNG applications by 17.9%
and 25.1% on average, respectively, compared to the RNG-
oblivious baseline design and (2) system fairness by 32.1%
on average when an RNG application with a 5 Gb/s random
number generation throughput requirement runs concurrently
with non-RNG applications. DR-STRaNGe provides 21%
energy reduction over the RNG-oblivious baseline design by
reducing the total time spent for RNG and non-RNG memory
accesses by 15.8%. DR-STRaNGe incurs a minor area overhead
of 0.0022mm2 at 22nm technology node (0.00048% of an Intel
Cascade Lake CPU Core [187]). This paper makes the following
key contributions:
• DR-STRaNGe is the first work that overcomes three key

challenges of DRAM-based TRNGs and proposes a viable
end-to-end system design for DRAM-based TRNGs.

• We show that an efficient random number buffering mech-
anism can hide the high TRNG latency and reduce RNG
interference on the system. We propose the first random
number buffering mechanism with a lightweight DRAM idle-
ness predictor that can predict idle periods with high accuracy
(80%). DR-STRaNGe generates random bits during predicted
idle periods and fills the buffer, such that, random numbers,

when requested, are served with low latency from the random
number buffer.

• We propose the RNG-Aware memory request scheduler, a
priority-based scheduler design that improves system fair-
ness and reduces memory stall time by reducing the RNG
interference. The scheduler achieves this by differentiating
RNG requests from regular requests and employing different
scheduling techniques for them to minimize the slowdown of
high-priority applications.

• We evaluate the performance, fairness, and energy consump-
tion of DR-STRaNGe, across a variety of real workload mixes,
showing significant performance, fairness and energy ben-
efits over the baseline RNG-oblivious system design. DR-
STRaNGe improves performance of non-RNG applications,
system fairness, and energy by 17.9%, 32.1%, and 21%, re-
spectively, compared to the commonly-used baseline memory
request scheduler design.

• We evaluate DR-STRaNGe using two state-of-the-art DRAM-
based TRNG mechanisms: D-RaNGe [82] and QUAC-TRNG
[138]. We show that DR-STRaNGe is compatible with these
mechanisms and improves system performance, fairness and
energy with both TRNG mechanisms.

2. Background
We provide a brief background on DRAM organization,

memory schedulers, and DRAM-based TRNGs.
DRAM Organization. DRAM-based main memories are

accessed via a memory channel which is internally connected to
multiple banks. Each bank contains a two dimensional array of
DRAM cells, organized as rows and columns. Upon a request,
DRAM cells are fetched at row granularity and the fetched
row is temporarily stored in a buffer (row buffer). A request is
serviced faster if the requested data is already in the row buffer
(i.e., row buffer hit) [77]. For more information on DRAM, we
refer the reader to extensive prior work [15, 25–29, 55, 62, 63,
79–81, 85, 86, 88, 91, 92, 103, 104, 106–108, 113, 114, 130,
142, 147, 152, 154, 155, 193].

Memory Request Scheduling. The First Ready First Come
First Serve (FR-FCFS) [151, 197] scheduling policy prioritizes
1) row hits over all other requests, 2) then older requests over the
younger ones. FR-FCFS policy aims to maximize throughput
by leveraging the row buffer. However, it unfairly prioritizes
the applications that have high row locality and high memory
intensity [128, 135].

Previous works [8, 43, 54, 89, 90, 135–137, 148, 163, 164,
175] propose application-aware memory request schedulers,
which improve both performance and fairness across applica-
tions. These schedulers monitor different characteristics and
schedule based on a maintained ranking [43, 54, 89, 90, 135,
136] or use blacklisting [163, 164] based on application be-
havior. Ranking based schedulers can unfairly slow down low-
ranked applications, and have significant hardware complexity.
The blacklisting scheduler (BLISS) [163, 164] is a simple mem-
ory scheduler design that categorizes applications into only two
groups based on sensitivity to inter-application interference. No
prior work considers the high latency of random number gen-
eration or requests with different latencies due to non-standard
timing parameters.

DRAM-based True Random Number Generators. Prior
research proposes various DRAM-based TRNGs that leverage
the randomness in DRAM timing failures [11, 82, 138], reten-
tion failures [60, 78, 166] and start-up values [44, 168].
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Retention failure- and start-up value-based TRNGs are lim-
ited in the throughput they can provide [82] because random
retention failures can take minutes to accumulate at room tem-
perature [58, 113, 114, 142, 147, 177] and random start-up val-
ues are formed following expensive DRAM power-cycles [75].
As such, these mechanisms cannot be used in a streaming man-
ner to generate true random numbers.

DRAM TRNG mechanisms based on timing failures can be
used in a streaming manner, and they provide random numbers
at high throughput (> 100 Mb/s). These TRNGs operate by
deliberately violating DRAM timing parameters that are defined
by the DRAM manufacturers to guarantee correct operation in
DRAM arrays when obeyed by the memory controller. Random
DRAM timing failures can be induced quickly using carefully
engineered and timed valid sequences of DRAM commands on
commodity DRAM devices [11, 82, 138].

To generate random numbers in DRAM, prior work [82]
reserves rows that contain RNG cells, which can be used to
extract random numbers by reading with reduced timing param-
eters. The throughput of the TRNG depends on the number
of RNG cells per row. The latency of the TRNG depends on
the latency of the DRAM command sequence used to induce
random errors. Random number generation can be an intrusive
procedure to system operation, especially when the required
random number throughput is high, due to two reasons. First,
random number generation requires multiple reads to multiple
reserved rows. Second, due to non-standard timing parameters,
DRAM becomes unavailable for regular memory requests to
ensure reliability of data residing in other rows.

3. Motivation and Goal
TRNGs are used in a wide range of security applications

such as cryptographic key generation, authentication, genera-
tion of initial and data padding values, and countermeasures
against hardware attacks [30, 42, 57, 83, 88, 97, 99, 178, 194].
The quality of random numbers is important to ensure system
security in presence of attacks that aim to obtain confidential
user data [30, 178]. Emerging security protocols (e.g., quantum
key distribution protocols [34, 116]) provide stronger security
guarantees in the presence of attacks targeting weak random
numbers. These protocols require very high true random num-
ber throughput, in the order of several Gb/s [182].

High throughput DRAM-based TRNGs have the main ad-
vantage of availability over other TRNGs that typically require
dedicated hardware. DRAM devices are widely available in
most computer systems and in emerging processing-in-memory
architectures [3–6, 9, 17–19, 27, 32, 39, 46, 47, 50–53, 53, 56,
61, 64, 68, 69, 84, 98, 105, 110, 115, 127, 133, 133, 134, 139,
140, 143, 152–159, 165, 180, 192]. DRAM-based TRNGs can
provide true random numbers to security-critical applications
that run on these systems at high throughput. The impact of
integrating DRAM-based TRNGs to these systems is twofold.
First, DRAM-based TRNGs can enable security applications
on mobile and IoT devices, which becomes more critical with
increasing demand for user data privacy. Second, for PIM
architectures, DRAM-based TRNGs can improve (1) system
efficiency by enabling large contiguous code segments to be ex-
ecuted in memory, and (2) system security by enabling security
tasks to run completely in memory.

Previous research proposes a set of high-throughput DRAM-
based TRNGs. However, no prior work provides an end-to-
end system design for integrating DRAM-based TRNGs into

real systems. We identify three key challenges for integrating
DRAM-based TRNGs into a baseline RNG-oblivious real sys-
tem: (1) the interference of RNG and non-RNG applications
in the memory controller causes unnecessary slowdowns for
both types of applications, (2) the unfair prioritization of RNG
applications that require high TRNG throughput degrades sys-
tem fairness, and (3) the high latency of DRAM-based TRNGs
degrades the RNG applications’ performance.

To demonstrate the impact of using DRAM-based TRNGs
in an RNG-oblivious system, we simulate a realistic two-core
system with a DRAM-based TRNG mechanism. The RNG-
oblivious system generates 64-bit random numbers by chang-
ing DRAM timing parameters to induce errors in the reserved
rows [82] as applications request random values. During ran-
dom number generation, the system stalls regular memory re-
quests because changed timing parameters can induce errors
on real data residing in other rows. The system uses all mem-
ory channels in parallel to achieve the minimum RNG latency,
and minimizes the time that regular requests are stalled. It is
possible to use only one channel at a time. However, since the
system does not know which channels will be idle at any given
time, this can cause further slowdowns by blocking one busy
channel for a longer time period. Using all channels and all
banks is important to minimize the interference of RNG while
serving the random number requests as quickly as possible.

For our tests, we create 172 two-core workloads, each con-
sisting of one RNG and one non-RNG application. For RNG
applications, we use four different synthetic benchmarks that re-
quest random numbers with required RNG throughput values of
640Mb/s, 1280Mb/s, 2560Mb/s, and 5120Mb/s. For non-RNG
applications, we use 43 single-core applications from the fol-
lowing benchmark suites: SPEC CPU2006 [2], TPC [172],
STREAM [125], MediaBench [48], and YCSB benchmark
suite [35].

Figure 1 (top and middle) shows the execution time of non-
RNG and RNG applications running concurrently, normalized
to each application running alone. Figure 1 (bottom) shows
the unfairness index of the overall system for the same two-
core workloads. Unfairness index is calculated as the ratio of
the maximum memory-related slowdown experienced by an
application in the workload to the minimum memory-related
slowdown [49, 128, 135], explained in detail in Section 7. An
unfairness index of 1 means all applications experience the same
memory-related slowdown. Higher unfairness index values
indicate that one or more applications are unfairly prioritized
by the memory scheduler.
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Figure 1: Slowdown of non-RNG (top) and RNG (middle) ap-
plications running concurrently and the unfairness index of the
two-core system (bottom) for various RNG throughput require-
ments. AVG is across 172 workloads.
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Impact of the Interference. Figure 1 (top and middle) shows
that both non-RNG and RNG applications experience signifi-
cant slowdowns due to the interference of both types of applica-
tions in the memory scheduler.

The slowdown of non-RNG applications increases as the
required RNG throughput increases. On average, non-RNG
applications experience 93.1% slowdown when the required
RNG throughput is 5 Gb/s. Figure 1 (middle) shows that RNG
applications experience slowdowns due to sharing the main
memory with another application. We show that the least and
the most RNG intensive applications experience 21.4% and
6.2% average slowdown, respectively, compared to when they
run alone.

Unfair Prioritization. Figure 1 (bottom) shows the unfair-
ness index. We show that the unfairness indices of applications
grow significantly with increasing RNG throughput require-
ment. On average, workloads have an unfairness index of 1.32
at an RNG throughput requirement of 640Mb/s and it gradually
increases to 2.61 when the required RNG throughput increases
to 5120Mb/s.

Impact of the RNG Latency. We observe that the RNG ap-
plications spend up to 58.8% of their execution time in random
number generation when they require high RNG throughput,
due to the high RNG latency.

Impact of the TRNG Throughput. We simulate 6 differ-
ent DRAM-based TRNG mechanisms with different TRNG
throughput values ranging from 200 Mb/s to 6.4 Gb/s. Note that
two state-of-the-art DRAM-based TRNGs, D-RaNGe [82] and
QUAC-TRNG [138], can provide ∼563Mb/s and ∼3.44Gb/s
average random number throughput, respectively, given a state-
of-the-art system configuration [138].1 We evaluate 43 two-core
multi-programmed workloads, each consisting of one RNG and
one non-RNG application. Figure 2 plots the distribution of
(1) the slowdown of non-RNG applications (left), and (2) the
system fairness (right) across all 43 workloads.
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Figure 2: The effect of DRAM TRNG throughput on non-RNG
application performance (left) and system fairness (right).

Each box in the figure represents the interquartile range of the
observed slowdown ratios and unfairness indices of a dual-core
baseline system when the system is provided with the TRNG
throughput displayed on the x-axis. The midlines of the boxes
indicate the median value of the corresponding interquartile
ranges. Cross (×) marks represent the outlier values that fall
outside the interquartile range (by more than 1.5× the length of

1All designs assume low latency values based on D-RaNGe’s latency [82]
to show only the effect of TRNG throughput. Note that QUAC-TRNG’s latency
is higher than what is assumed in this figure. Therefore, the real slowdown and
unfairness indices of a system with QUAC-TRNG [138] would be higher.

the box away from the upper quartile). We label the maximum
observed slowdown and the unfairness index above each box in
the figure.

We make two observations. First, workloads experience sig-
nificant performance degradation and high system unfairness
when executed on systems with state-of-the-art DRAM-based
TRNGs. Even the highest-throughput existing TRNG causes
a 39.9% average slowdown and degrades average fairness by
28.5%. Second, performance and system fairness do not im-
prove significantly even with future DRAM-based TRNGs that
can potentially provide higher throughput. The maximum slow-
down and unfairness we observe across all workloads begin to
saturate as TRNG throughput reaches 3.2 Gb/s.

Our goal in this paper is to develop a low-cost and
high-performance end-to-end system design for DRAM-based
TRNGs that (1) reduces the interference between RNG and non-
RNG applications, (2) improves system fairness across RNG
and non-RNG applications, and (3) hides the high latency of
DRAM TRNGs that RNG applications suffer from.
4. Design Opportunities

In this section, we discuss the design opportunities of an
end-to-end system for DRAM-based TRNGs.

Random Number Buffering. Previous work [82, 138] as-
sumes the memory controller can generate random numbers
when DRAM utilization is low and uses extra bandwidth to fill
a buffer of random numbers. This assumption is not complete
without a DRAM idleness predictor since the controller does not
know for how many cycles memory channels will be available
to generate random numbers with low or no overhead. A buffer-
ing mechanism combined with a DRAM idleness predictor is
needed to accurately identify the idle periods where the sys-
tem can generate random numbers with minimal performance
impact.

Memory Request Scheduling. The latency of RNG is an
important factor in system slowdown because it increases the
memory stall time of non-RNG requests of both RNG and
non-RNG applications. An RNG-aware scheduler is needed
to control both types of applications’ memory stall times by
managing when to generate random numbers.

Application Interface. The system needs to expose an
interface so that applications can communicate with the
DRAM-based TRNG. The interface can be designed in many
ways, including memory-mapped configuration status registers
(CSRs) [188], other existing I/O interfaces (e.g., x86 IN and
OUT instructions) or new specialized ISA instructions. The
interface needs to be exposed to user applications via system
calls or static/dynamic library API functions.
5. DR-STRaNGe

DR-STRaNGe is a high performance and low cost end-to-end
DRAM-based TRNG system, which (1) reduces the RNG inter-
ference that degrades overall system performance, (2) improves
the system fairness across RNG and non-RNG applications, and
(3) hides TRNG latency to improve the performance of RNG
applications. DR-STRaNGe consists of three components. First,
its Random Number Buffering Mechanism (Section 5.1) aims
to hide the high TRNG latency by utilizing idle DRAM cycles
to generate random numbers with low interference on other
running applications. The buffering mechanism achieves this
by predicting and utilizing the idle periods in DRAM channels
where it can generate random numbers in small batches. The
buffering mechanism then stores the generated random numbers
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in a small buffer in the memory controller and serves incoming
random number requests from this buffer. Second, the RNG-
aware Scheduler (Section 5.2) aims to reduce the memory stall
time of regular memory requests by scheduling RNG requests
in an order that reduces the RNG interference and improves
system performance. The scheduler accumulates RNG and
non-RNG memory requests in separate memory request queues
and chooses from which queue to schedule a request based on
the priority levels of concurrently-running applications. Third,
applications use DR-STRaNGe’s Application Interface (Section
5.3) to utilize DRAM-based TRNGs. DR-STRaNGe achieves
its design goals by combining these three components.

DR-STRaNGe overview. Figure 3 shows an overview of
DR-STRaNGe, where (1) the black track shows the flow of
a random number request, and (2) the blue track shows how
DR-STRaNGe fills the random number buffer. Figure 4 shows
the flowcharts of these two tracks.
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Figure 3: DR-STRaNGe Overview.
The mechanism works as follows. There are two different

execution modes in the memory controller: 1) Regular Execu-
tion Mode processes only regular memory requests, and 2) RNG
Mode handles RNG read requests and gathers random numbers.
The memory controller is initially in Regular Execution Mode.

When the memory controller receives an RNG request, DR-
STRaNGe checks the random number buffer ( 1 ). If the random
number buffer has enough random bits, DR-STRaNGe serves
the request from the buffer with low latency ( 2a ). Otherwise,
if the buffer does not have a sufficient number of random bits,
DR-STRaNGe enqueues an RNG request to the memory request
queue ( 2b ). The RNG-aware scheduler determines the memory
request scheduling order by checking the concurrently running
applications’ priorities ( 3 ). Before DR-STRaNGe schedules
RNG requests, it first schedules the older regular read requests
that belong to high-priority non-RNG applications. After these
requests are scheduled, the memory controller switches to the
RNG mode, schedules RNG requests and generates random
bits in DRAM ( 4 ). When enough random bits are gathered,
DR-STRaNGe serves the random number request ( 5 ) and
the memory controller switches back to the Regular Execution
Mode.

Every cycle, DR-STRaNGe determines the idleness of each
DRAM channel by checking the number of requests in memory
request queues ( a ). If a channel’s memory request queues
are empty, DR-STRaNGe predicts the idle period length ( b ).
When the DRAM idleness predictor finds a sufficiently long
idle period to generate random bits with no or low overhead,
DR-STRaNGe enqueues and schedules RNG requests ( c ).
DR-STRaNGe switches to the RNG Mode and generates ran-
dom bits by utilizing all banks of the selected channel ( d ).
If the channel remains idle after random number generation,
DR-STRaNGe continues to fill the random number buffer. Ran-
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Figure 4: DR-STRaNGe Flowchart.
dom number generation stops when there is a new regular read
request to the selected channel or when the buffer is full. DR-
STRaNGe switches to the Regular Execution Mode and updates
the predictor table corresponding to the selected channel ( e ).
When the random number buffer is full, DR-STRaNGe stops
generating random numbers for the random number buffer until
a random number is served from the buffer.
5.1. Random Number Buffering Mechanism

The goal of the random number buffering mechanism is to
hide the high RNG latency by generating random numbers be-
fore they are requested. This improves system performance
by (1) reducing the memory stall time experienced by RNG
applications due to RNG latency and (2) mitigating the RNG
interference in the memory controller. The key idea is to use
idle DRAM cycles to generate random numbers and store them
in a small buffer in the memory controller. When the random
number buffer is not empty, DR-STRaNGe quickly serves ran-
dom number requests from the buffer with low overhead. Many
applications often do not fully utilize the DRAM bandwidth [37,
102, 109, 162], and thus DR-STRaNGe can use the idle DRAM
bus cycles for RNG. We refer to multiple consecutive idle cy-
cles as idle periods. Lengths of idle periods differ between
applications based on the observed memory access pattern.

The main challenge of the buffering mechanism is determin-
ing the length of an upcoming idle period because the future
memory accesses of an application are unknown. However, sev-
eral heuristics can be employed to predict the idle period length.
DR-STRaNGe uses two different approaches: (1) assuming
every idle period is sufficiently long to generate 8 random bits,
and (2) predicting the length of the next idle period based on
idle period length history.

Figure 5 plots the distribution of the idle DRAM period
lengths of medium and high memory intensity applications
that we evaluate. The distribution is represented as a box-and-
whiskers plot where the y-axis shows the length of the observed
idle DRAM periods in DRAM cycles. The straight horizontal
line represents the time needed to generate a 64-bit random
number, which is 198 memory cycles (990 ns) on average in our
test setup that we describe in Section 7.

Each box represents the interquartile range of the observed
DRAM idle periods and the middle line shows the median. We
observe that, for many applications, a significant part of the idle
periods do not pass the threshold of 198 cycles. This means
that the idle periods are not sufficiently long to generate 64-bit
random numbers. Therefore, generating random numbers in
smaller batches is preferable to achieve low interference with
applications’ memory accesses.

5



ycsb
3

ycsb
4

ycsb
2

ycsb
1

sphinx3
ycsb

0jp2d
tpcc6

4jp2e
wcount0

cactus
astar

tpch17
soplexmilcgems

leslie3d
tpch2

zeusmplbmmcflibq
h264d

0

500

1000

1500

2000

2500

3000

3500

4000
Id

le
 P

er
io

d 
Le

ng
th

 (D
RA

M
 C

yc
le

s)

Figure 5: Distribution of DRAM Idle Period Lengths

We design DR-STRaNGe to quickly generate at least eight
random bits whenever a channel is idle. To leverage bank-level
parallelism, we simultaneously access all DRAM banks and
read at least one random bit from each bank during an idle
period.

Generating random numbers in small batches does not solve
the problem entirely due to existence of idle periods that are
even shorter than the time interval required to generate an 8-
bit random number (40 cycles). Generating random numbers
during these short idle periods can degrade system performance
by stalling regular memory requests. Therefore, the mechanism
needs to avoid generating random numbers during short idle
periods. Our buffering mechanism consists of two parts: (1) a
lightweight DRAM idleness predictor that identifies idle periods
that are at least 40 cycles long (i.e., long idle periods) and (2)
a small buffer that stores random numbers. Since the DRAM
idleness predictor adds area and time complexity to the design,
we evaluate the random number buffering mechanism with and
without the idleness predictor in Section 8.
5.1.1. Simple Buffering Mechanism. Our simple buffering
mechanism does not predict for the length of idle DRAM pe-
riods and leverages every idle cycle of a DRAM channel to
generate random numbers and fill the buffer.

With the simple buffering mechanism, DR-STRaNGe selects
a channel for RNG when the channel has no regular request
in read and write queues. When a channel is selected, DR-
STRaNGe puts the channel into the RNG Mode and gathers
at least 8 random bits. After generating at least 8 bits, DR-
STRaNGe switches back to the Regular Execution Mode if
the random number buffer is full or the memory scheduler has
new regular memory requests. Regular requests that are at the
memory scheduler while the channel is in RNG mode are served
after switching to the Regular Execution Mode.
5.1.2. DRAM Idleness Predictor. The main goal of the DRAM
idleness predictor is to accurately identify sufficiently long idle
DRAM periods for RNG. We design two DRAM idle period
length predictors that differ in their prediction mechanisms,
accuracy and complexity.

Simple DRAM Idleness Predictor. We propose a
lightweight DRAM channel idleness predictor that uses last
accessed memory addresses to predict idle period lengths. Our
predictor maintains a table of 2-bit saturating counters, a regis-
ter for last accessed address value, and a counter for idle period
length initialized as 0 for each channel. A channel’s predictor ta-
ble is accessed with the last accessed memory address when its
memory request queues are empty. We group idle periods into
two categories: (1) long (# of cycles ≥ PeriodThreshold) and

(2) short (# of cycles < PeriodThreshold). The predictor treats
the idle period as long if the last accessed address’s counter is 2
or larger and otherwise as short.

During idle periods, DR-STRaNGe increments the idle pe-
riod length counter by one every cycle. When a channel re-
ceives a regular memory request, DR-STRaNGe updates the
predictor table of the corresponding channel as follows. First,
DR-STRaNGe retrieves the predictor table entry for the last
accessed memory address to access the saturating counter. Sec-
ond, if the observed idle period length is at least as long as the
Period Threshold (empirically determined as 40 cycles), DR-
STRaNGe increments the saturating counter by one. Otherwise,
it decrements the saturating counter. Finally, DR-STRaNGe
sets the idle period length to zero and updates the last accessed
memory address with the new request’s address.

The accuracy of the predictor affects DR-STRaNGe’s per-
formance in two ways. First, if the predictor mispredicts a
short idle period as a long idle period, which we refer to as
a false positive, the interference between RNG and non-RNG
applications can increase. Second, if the predictor mispredicts
a long idle period as a short idle period, which we refer to as
a false negative, it wastes an idle period; hence, future random
number requests can experience the full RNG latency if the
random number buffer is empty. The predictor cannot starve
RNG applications by predicting all idle periods as short because
DR-STRaNGe serves random number requests by generating
random numbers on demand when the random number buffer is
empty.

We observe that the predictor often predicts idle periods as
short due to the large number of short idle periods. This results
in a small number of idle periods used for random number gen-
eration. Hence, DR-STRaNGe provides limited performance
gain by using the simple DRAM idleness predictor. To increase
the RNG opportunities, we propose a method to utilize the peri-
ods when a DRAM channel has low utilization (i.e., the memory
request queue is largely empty) to generate random numbers
for the buffer.

We augment the predictor to determine if a DRAM channel
has low utilization based on a threshold, called the low uti-
lization threshold. To determine if a DRAM channel has low
utilization, the predictor first checks the memory request queue
occupancy and determines DRAM utilization to be low if the
the number of requests in the memory request queue is less than
the low utilization threshold value (empirically determined as
4). Second, when the DRAM utilization is low, the predictor
accesses the last accessed memory address’s entry in the predic-
tor table and predicts the length of the low utilization period. If
the simple DRAM idleness predictor predicts the period to be
long, DR-STRaNGe stalls the regular read queue and generates
random numbers for the random number buffer. The predictor
stalls only a small number of requests as the predictor does not
trigger RNG if there are more requests than the low utilization
threshold value in the request queue. Some regular memory
requests experience higher latency due to RNG but serving the
RNG requests with lower TRNG latency improves the overall
system performance.

Reinforcement Learning Agent for DRAM Idleness Pre-
diction. As a second predictor, we design a reinforcement
learning agent to predict the DRAM idle period lengths and cre-
ate a model by defining the DRAM idleness prediction problem
as a reinforcement learning problem.
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Reinforcement learning (RL) is a commonly employed tech-
nique to solve architectural optimization problems such as
branch prediction [196], memory scheduling [74, 131], prefetch-
ing [13, 144], dynamic voltage swing control for I/O communi-
cation [40], and garbage collection [76]. Among RL techniques,
Q-learning [185] is a preferable method due to its simplicity
and model-free nature, making it a practical and effective solu-
tion. A Q-learning-based RL agent maintains a state machine,
where performing a certain action (a) at a particular state (s)
has a value, called Q-value, denoted as Q(s,a). These Q-values
represent the future cumulative reward of each action for each
state and they are stored in a look-up table for fast access. At
a given state (s), the algorithm chooses the action (a) with the
largest Q-value, Q(s,a). We define two possible actions in our
mechanism: 1) to initiate random number generation procedure
and 2) to wait. In our implementation, the state is defined as
the last accessed address whose least significant 10 bits are
XOR’ed with the history of last 10 idle periods, where a logic-1
represents a long idle period, and a logic-0 means a short idle
period.

After the agent takes an action (a) based on the state (s) of
the environment, the Q-value of that state-action pair (Q(s,a))
is updated when the reward r is determined. Reward r depends
on the idle period length and the action taken according to the
RL-agent’s prediction and it is added to the Q-value of the state-
action pair. Positive rewards are used when the agent correctly
predicts the idle period length and generates random numbers
in long idle periods, or decides to wait in short idle periods. In
contrast, negative rewards are used when the agent mispredicts
and causes more interference by initiating the RNG procedure in
short idle periods (false positives) or waits in long idle periods
(false negatives). An action’s reward is calculated at the end
of the idle period when the agent can observe the idle period’s
length and determine the correctness of its prediction.

The agent can observe the state only when a DRAM channel
is idle. The next state cannot be determined before taking an
action because it depends on future memory accesses. There-
fore, we omit the next state’s part in the update function. The
Q-value update function is Q(s,a) = (1 – α)Q(s,a) + α ∗ r where
α is the learning rate. A high learning rate enables fast adap-
tation to changes in the access pattern but it is susceptible to
noise. Based on our experiments, we observe that the agent
achieves peak performance when the learning rate is 0.05.
5.2. RNG-Aware Memory Request Scheduler

DR-STRaNGe cannot serve all random number requests from
the buffer due to the distribution of idle DRAM periods. Mem-
ory request scheduling becomes more critical when a random
number is requested, the buffer is empty, and there are RNG
and regular read requests waiting in the queues. The goal of the
RNG-aware scheduler is to (1) schedule RNG requests with-
out stalling other requests significantly and (2) improve system
fairness.

RNG requests can (1) block regular memory requests when
a single memory request queue is used for both types of re-
quests and (2) cause the memory controller to switch between
the Regular Execution Mode and the RNG Mode frequently.
Since RNG and regular memory requests are different types of
requests, it is intuitive to have separate queues for each type.
DR-STRaNGe uses and maintains an additional queue, the RNG
queue, for RNG requests. Two queues reduce contention for
queue space between the two types of requests.

5.2.1. Configuring The Scheduler Using Application Priori-
ties. The operating system (OS) manages hardware resources
based on priority levels of applications, and it is possible to
use these priority levels for memory request scheduling. The
RNG-aware scheduler can use these priority levels to priori-
tize either the RNG queue or the regular read queue. However,
these priority levels are insufficient to employ application-level
scheduling decisions because the regular read queue is shared
across all applications. The scheduler needs to identify the ap-
plications that use both the RNG and regular read queues (i.e.,
RNG applications). DR-STRaNGe marks an application as an
RNG application when it requests a random number for the first
time. After identifying RNG and non-RNG applications, the
scheduler can use the priority bits set by the OS and prioritize
one queue over the other. The deprioritized queue can suffer
from longer memory stalls, leading to starvation. The RNG-
aware scheduler uses a set of rules to enforce priorities while
preventing starvation, explained as follows.

RNG Prioritized. When an RNG application is prioritized
over other applications, DR-STRaNGe prioritizes the RNG
application’s RNG requests to (1) alleviate the slowdowns in-
curred due to RNG and (2) reduce the RNG interference. The
scheduler chooses the RNG queue over the regular read queue
when both queues are non-empty and an RNG application with
a request has higher priority than any non-RNG application
with a request. The scheduler chooses the RNG queue until the
last request in the queue is scheduled. When DR-STRaNGe
completes the high-priority random number generation request,
the scheduler starts to schedule requests from the regular read
queue, preventing the starvation of non-RNG applications with
a request. However, as a result of the required RNG throughput,
the scheduler can choose the RNG read queue once it receives
another high-priority RNG request.

Non-RNG Prioritized. The scheduler chooses the regular
read queue over the RNG queue and aims to minimize the
memory stall time of non-RNG requests when both queues
are non-empty and a non-RNG application with a request has
higher priority than any RNG application with a request. The
scheduler only chooses the RNG queue when the oldest request
in the regular read queue is (1) from an RNG application, and
(2) received after the oldest RNG request in the RNG queue.
In this case, the scheduler chooses the RNG queue until the
older RNG requests are scheduled to prevent starvation of RNG
applications. After RNG requests are scheduled, it prioritizes
the regular read queue again.

Equal Priorities. If two RNG applications with an RNG
request have the same priority level, the scheduler schedules the
older RNG request first. If both RNG applications have regular
memory requests, the scheduler schedules them by following
the baseline scheduling policy. Similarly, in between two non-
RNG applications’ requests with the same priority level, the
scheduler follows the rules of the baseline scheduler. However,
if one RNG application with an RNG request and one non-RNG
application with a regular request have the same priority, DR-
STRaNGe prioritizes the RNG requests to minimize the RNG
interference. Section 8.5 shows that DR-STRaNGe does not
degrade the performance of non-RNG applications or system
fairness when the RNG queue is prioritized.

Starvation Prevention Mechanism. There can be extreme
cases that can lead to starvation regardless of the RNG-aware
scheduling rules we explained. An RNG application that re-
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quires a high RNG throughput can fill the RNG queue frequently.
If this application is prioritized, then the regular read requests
can experience long memory stalls. Similarly, a high-priority
memory-intensive non-RNG application can fill the regular read
queue frequently and can cause RNG applications to experience
long memory stalls. The RNG-aware scheduling rules might
not be sufficient to identify these cases. Therefore, we employ
a starvation prevention mechanism.

The prevention mechanism works as follows. DR-STRaNGe
observes which memory request queue is deprioritized due
to the priority levels of running applications and prevents the
scheduler from stalling the deprioritized queue for a long time
period. RNG-aware scheduler increments a counter, the stall
time counter, when it chooses a memory request queue based
on the higher priority level of an application, which means the
other queue is deprioritized and stalled. It then compares the
stall time counter to a threshold value, the stall limit, and if the
stall time counter reaches the stall limit, the scheduler chooses
a request from the deprioritized queue. This prevents high-
priority applications from starving other types of applications.
In every cycle that a request from the deprioritized queue is
scheduled or when the priority levels are changed, the stall time
counter is set to 0.

When we set the stall limit as 100 memory cycles in our
evaluation, none of the workloads cause the stall time counter
to reach the stall limit. We observe that the RNG-aware sched-
uler’s rules are sufficient to prevent starvation even when a
memory-intensive non-RNG application or an RNG application
with a high RNG throughput requirement is prioritized.
5.3. Application Interface

An interface between the software and the DRAM-based
TRNG mechanism is needed to integrate the mechanism into
the system. In Linux systems, this can be done by changing
the existing interface of the kernel’s random number generator
[57]. The random number generator uses environmental noise
from device drivers and gathers bits in an entropy pool. The
getrandom() system call is used when an application asks for
random numbers, which fills a buffer passed to it with a pointer
using the random bits in the entropy pool.

Our proposed interface changes the getrandom() system call
to use DR-STRaNGe. This can be done by setting memory-
mapped configuration status registers or using other existing I/O
datapaths based on the target system. When a request is made,
DR-STRaNGe serves the request either from the random num-
ber buffer (see Section 5.1) or by generating random numbers
(see Section 5.2).

When the random number buffer is not empty, DR-
STRaNGe’s system call does not incur any overhead over the
baseline system call. However, when the random number buffer
is empty, the overhead is related to the difference between the
latencies of gathering random bits with the available RNG of
the baseline system (e.g., the Linux kernel’s built-in RNGs [57])
and DRAM-based TRNGs. Since the first one depends on avail-
able devices that can be used as entropy sources, this overhead
depends on the target system.
6. Security Analysis of DR-STRaNGe

Secure Random Numbers. To use random numbers for
security-critical applications, a good TRNG should provide
two key properties. First, the TRNG should not leak random
numbers to applications other than the requesting one. DR-
STRaNGe ensures this property by using a random number

buffer that can be accessed by applications only via a system
call. The system call returns random bits only to the application
that requested them and discards the used bits from the buffer.
Second, the TRNG should provide a unique random number
to each random number request. DR-STRaNGe ensures this
property by discarding each random number after being served.
We conclude that the simple and restrictive interface of DR-
STRaNGe provides secure true random numbers to security-
critical applications.

The Random Number Buffer as a Timing Side-Channel.
Side-channel attacks [96] are a class of attacks that observe and
use side-channel information to infer application behaviour or
leak sensitive information and confidential data [96]. Unlike
many other shared hardware structures (e.g., caches [87, 113,
184]) that can be exploited to provide timing information about
arbitrary data, DR-STRaNGe can be exploited by an attacker
to measure the time it takes to get a random number from
DR-STRaNGe. This timing information can be used to infer
whether or not the buffer is empty, and understand if another
application is requesting random numbers. This side channel
is difficult to exploit efficiently due to two reasons: (1) DR-
STRaNGe continuously fills the buffer with random numbers
asynchronously to the applications, (2) this could cause the
buffer to be empty very few times, and (3) if two or more
applications are using random numbers, it might be challenging
to identify which of those applications is emptying the buffer.
We conclude that DR-STRaNGe timing side channels are likely
to be more difficult to exploit than side-channels from other
more general-purpose shared hardware structures (e.g., caches).

The Random Number Buffer as a Covert Channel. An
attacker can use channels that are not designed as communica-
tion channels to send data from one process to another. The
random number buffer can be used as a covert channel [101]
under certain circumstances, such as when no process other
than an attacker controlled process is requesting random num-
bers. The random number buffer provides a covert channel
fundamentally similar to existing cache covert channels. Previ-
ous work proposes several techniques to use shared caches as
covert channels [72, 112, 124, 145, 150, 189, 190] and coun-
termeasures to mitigate such attacks [70, 87, 111, 120, 179,
184]. Countermeasures of cache-based covert channels can be
applied to the random number buffer. First, the random number
buffer can be partitioned across different threads with small
performance overhead, since a small size buffer is effective for
many applications as shown in Section 8.3. Second, the system
can give access privilege of the buffer only to a small number of
applications (possibly to one application at a time). This would
hurt the performance of RNG applications that cannot access
the random number buffer at a given time, but these applications
would still benefit from DR-STRaNGe’s RNG-Aware scheduler
design.

Denial of Service Attacks. An attacker might attempt to
occupy the DRAM bandwidth with RNG requests to starve
other applications. Our RNG-aware memory request scheduler
prevents applications from starving with a set of rules to provide
system fairness (see Section 5.2). In addition to these rules, DoS
attacks can be easily mitigated at OS-level by adapting fairness-
aware process scheduling policies (e.g., [126]) to be aware of
RNG requests.
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7. Methodology
To evaluate DR-STRaNGe’s performance and fairness, we

use a modified version of Ramulator [1, 92], a cycle-accurate
DRAM simulator, that can simulate two state-of-the-art DRAM-
based TRNG mechanisms (i.e., D-RaNGe [82] and QUAC-
TRNG [138]). We extend the core model of Ramulator to
support random number requests. We simulate a system with
configurations given in Table 1. We use the configurations of
DR-STRaNGe in Table 1 and simulate the TRNG as proposed
in D-RaNGe [82] unless stated otherwise.

Workloads. We evaluate 43 single-core applications from
five benchmark suites: SPEC CPU2006 [2], TPC [172],
STREAM [125], MediaBench [48], and YCSB benchmark
suite [35]. Based on the last-level cache misses-per-kilo-
instruction (MPKI), we group the applications into three cat-
egories: (1) L (low memory-intensity, MPKI < 1), (2) M
(medium memory-intensity, 1 ≤ MPKI < 10), (3) H (high
memory-intensity, MPKI ≥ 10). To do so, we obtain the MPKI
values of the applications by analyzing SimPoint [59] traces
(200M instructions) of each application.

We create synthetic RNG benchmarks with varying random
number request intensities to test our designs. The random
number request intensity is controlled by the number of instruc-
tions the benchmark has in between two 64-bit random number
requests. The synthetic RNG applications read from all banks
across all channels, but they are not memory intensive in terms
of non-RNG requests. The least RNG-intensive synthetic bench-
mark requests random numbers with a throughput of 640Mb/s,
which is below the maximum throughput of the current best
DRAM TRNG mechanism. The most RNG-intensive bench-
mark requires 5Gb/s random number throughput. We use the
most RNG-intensive synthetic RNG benchmark for all tests
unless stated otherwise.

We create 43 two-core workloads, each consisting of one
non-RNG and one RNG application. In addition, for the four-
core configuration we create four multi-programmed workload
groups, each consisting of 10 multi-programmed workloads.
Each group has 3 different applications from different memory-
intensity categories and one synthetic RNG benchmark. For
example, a workload in LLHS group has two randomly se-
lected single-core applications from low memory-intensity cate-
gory, one randomly selected single core application from high
memory-intensity category, and a synthetic RNG benchmark.
We also create 30 multi-programmed workloads for 8-core and
16-core configurations consisting of low, medium, and high
memory-intensity applications.

Comparison Points. We compare DR-STRaNGe to (1) an
RNG-oblivious system, and (2) a Greedy Idle Design, for per-
formance and fairness results. We compare our RNG-aware
Scheduler design to FR-FCFS [151, 197] with a column cap

Table 1: Simulated System Configuration

Processor
1-2-4-8-16 cores, 4GHz clock frequency,
3-wide issue, 128-entry instruction window

DRAM
DDR3-1600 [75], 800Mhz bus frequency,
4 channels, 1 rank/channel,
8 banks/rank, 64K rows/bank

Memory Ctrl. 32-entry read/write queues,
FR-FCFS [151, 197] with a column cap of 16 [135]

DR-STRANGE
32-entry random read queue, RNG-aware
scheduler, 256-entry predictor table/channel,
16-entry random number buffer

of 16 [135] and BLISS [163, 164] memory schedulers. We
compare (1) the simple DRAM idleness predictor with a low
utilization threshold of 4 to (2) the RL-based DRAM idleness
predictor (see Section 5.1.2).

The Greedy Idle Design is based on the idea of a buffer filling
mechanism with no overhead.2 If an idle period reaches the
Period Threshold, which is 40 cycles in our tests, we assume
we fill the buffer with 8 random bits without any overhead.
Greedy Idle Design has a separate RNG read queue similar to
DR-STRaNGe. To simulate a fair comparison point, we also
employ application-priority-based RNG-aware scheduling in
the Greedy Idle Design.

Metrics. We measure the performance of the non-RNG
and RNG applications running on a dual-core system using
normalized execution time of the same number of simulated
instructions. For multi-core evaluations, for non-RNG applica-
tions we use the weighted speedup metric [160], which prior
work shows is a good measure of job throughput [45].

For fairness results, we use the unfairness metric proposed
in [49, 128, 135]. Unfairness index is calculated as the ratio
of the maximum memory-related slowdown experienced by an
application in the workload to the minimum memory-related
slowdown. To calculate the memory-related slowdown of an
application, we measure the memory stall time when mem-
ory is shared normalized to the memory stall time when the
application runs alone:

MemSlowdowni=
MCPIshared

i
MCPIalone

i
, Unfairness= maxi MemSlowdowni

miniMemSlowdowni

If the unfairness index is equal to one, it means that appli-
cations running on the system experience similar slowdowns.
A higher unfairness index shows that the system unfairly pri-
oritizes one application, and thus there is a large difference
between the slowdowns of the applications.
8. Results

We evaluate the performance, fairness, energy efficiency, and
area overhead of DR-STRaNGe.
8.1. Impact on Performance
8.1.1. Dual-core Performance. Figure 6 compares the perfor-
mance results of three designs: (1) the RNG-Oblivious baseline,
(2) the Greedy Idle Design, and (3) DR-STRaNGe. The fig-
ure shows the slowdown of non-RNG (top) and RNG (bottom)
applications in workloads executed on a dual-core system com-
pared to each application’s performance when executed alone
on a single core. We make two observations.

First, DR-STRaNGe improves the performance of both RNG
and non-RNG applications. DR-STRaNGe reduces the ex-
ecution time of non-RNG applications by 17.9% and RNG
applications by 25.1% on average compared to the baseline
RNG-oblivious system. DR-STRaNGe improves the average
performance of RNG applications by 20.6% compared to the
performance of RNG applications when executed alone on a
single core, due to the lower RNG latency.

Second, the greedy design improves average performance of
non-RNG and RNG applications by 7.6% and 10.7%, respec-
tively. DR-STRaNGe outperforms the greedy design in most
of the workloads because the greedy design fills the random

2The Greedy Idle Design provides an upper bound for performance and
fairness results using a greedy algorithm. However, its performance and fairness
improvement is limited because the best dynamic memory request scheduling
order cannot be determined with a greedy approach in polynomial time.
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number buffer only in sufficiently long idle periods. In con-
trast, DR-STRaNGe leverages the low DRAM utilization to fill
the random number buffer with its low utilization prediction
mechanism (see Section 5.1.2).
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Figure 6: Slowdown over single-core execution of non-RNG (top)
and RNG (bottom) applications in dual-core workloads.

8.1.2. Multi-core Performance.
Non-RNG Applications. Figure 7 shows the normalized
weighted speedup of non-RNG applications in four-core work-
load groups (left) and 4-, 8-, 16-core workload groups (right)
normalized to the RNG-oblivious baseline design. We make
two observations. First, for four-core workloads, DR-STRaNGe
provides 7.6% average performance improvement. As the num-
ber of highly memory-intensive applications in the workload
increases, DR-STRaNGe’s performance improvement increases.
The greedy design has 5.4% higher performance improvement
over the RNG-oblivious baseline. DR-STRaNGe outperforms
the greedy design because DR-STRaNGe serves a larger num-
ber of random number requests from the random number buffer
compared to the greedy design. Second, DR-STRaNGe pro-
vides 12.1%, 8.2%, and 6.1% average performance improve-
ment for workloads consisting of high, medium, and low
memory-intensity applications, respectively. DR-STRaNGe out-
performs greedy design in all workload groups with only two
exceptions. For highly memory-intensive workloads consisting
of 8 and 16 applications, the greedy design provides a slightly
higher performance improvement compared to DR-STRaNGe
due to the performance overhead of DRAM utilization mispre-
dictions of DR-STRaNGe.
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Figure 7: Normalized weighted speedup of non-RNG applications
in (a) 4-core workloads, and (b) 4-, 8-, 16-core workloads grouped
based on memory-intensity.

RNG Applications. Figure 8 compares the performance of
RNG applications on (1) the RNG-Oblivious baseline, (2) the
Greedy Idle Design, and (3) DR-STRaNGe over the perfor-
mance of RNG applications when executed on a single-core
baseline system. The figure shows the slowdown of RNG appli-
cations in four-core workload groups (left) and 4-, 8-, 16-core
workload groups (right). For four-core workload groups, DR-
STRaNGe improves average performance by 17.8%. For 4-,
8-, 16-core workload groups, DR-STRaNGe improves aver-
age performance by 4.5%, 6.7% and 16.9% for high, medium,
and low memory-intensity workloads. For all workloads DR-
STRaNGe improves performance at least as much as the greedy
idle design.
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Figure 8: Slowdown of RNG applications in (a) 4-core workloads,
and (b) 4-,8-,16-core workloads grouped based on non-RNG appli-
cations’ memory-intensity.

8.2. Impact on System Fairness
We evaluate system fairness impact of three designs: (1)

the RNG-Oblivious baseline, (2) the Greedy Idle Design, and
(3) DR-STRaNGe. Figure 9 plots system fairness, which we
calculate using the unfairness index metric [49, 128, 135], for
two-core workloads. We make three observations. First, DR-
STRaNGe improves average system fairness by 32.1% com-
pared to the RNG-oblivious baseline design. Second, DR-
STRaNGe outperforms the greedy design by 15.2% in terms of
fairness. Third, some workloads that include non-RNG appli-
cations, such as jp2d and cactusADM, show higher unfairness
indices compared to the greedy design because DR-STRaNGe
improves performance of RNG applications more than that of
such non-RNG applications due to its effective random num-
ber buffering. We conclude that DR-STRaNGe outperforms
both the RNG-oblivious baseline and the Greedy Idle Design in
terms of system fairness by employing an RNG-aware schedul-
ing policy and effectively reducing and controlling the RNG
interference.
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Figure 9: System fairness on a dual-core system.

8.3. Impact of the Random Number Buffer
Serving random number requests from the random number

buffer reduces the total execution time by reducing the RNG
latency. The impact of the random number buffer depends on
the ratio of random number requests served from the random
number buffer over all random number requests. We call this
ratio the buffer serve rate. The buffer serve rate depends on
(1) DRAM channel utilization, (2) required TRNG throughput,
and (3) the random number buffer size. In this section, we
evaluate DR-STRaNGe with different random number buffer
sizes maintained with the simple buffering mechanism.

Figure 10 shows the slowdown of non-RNG and RNG appli-
cations executed on a dual-core system compared to when each
application is executed alone on a single-core system (top and
middle) and the buffer serve rate of workloads (bottom). We
make two observations.

First, a 16-entry random number buffer improves the average
performance of non-RNG and RNG applications by 11.7% and
13.8%, respectively. The performance improvement of non-
RNG and RNG applications (top and middle) increases with
larger buffer sizes until 16 entries and a significant performance
improvement is achieved with a 16-entry random number buffer.

Second, a 16-entry random number buffer achieves an aver-
age buffer serve rate of 0.55. Increasing the buffer size improves
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the buffer serve rate of only a few workloads, such as the work-
loads including jp2e, cactus, and libquantum.

Third, RNG applications in some workloads consisting of
memory-intensive non-RNG applications, such as zeusmp and
lbm, experience slowdown due to the low number of sufficiently
long idle periods and increased RNG interference as a result of
random number generation for the buffer. These workloads do
not benefit much from the random number buffer and have low
buffer serve rates as shown in Figure 10 (bottom).

We conclude that the buffering mechanism improves the
average performance of non-RNG and RNG applications by
reducing the RNG interference and TRNG latency.
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Figure 10: Impact of the buffer size on slowdown of non-RNG (top,
lower is better) and RNG applications (middle, lower is better)
and buffer serve rate (bottom, higher is better).

8.4. Impact of RNG-Aware Scheduling
We evaluate (1) DR-STRaNGe, (2) BLISS [163, 164]3,

and (3) the RNG-oblivious baseline design with the FR-FCFS
scheduler [151, 197] with a column cap of 16, called FR-
FCFS+Cap [135]. In these tests, we evaluate DR-STRaNGe
designs with no random number buffer.

Figure 11 shows the performance impact of the RNG-Aware
scheduler on non-RNG applications (top) and RNG applica-
tions (middle) normalized to the performance of applications
executed on a single core. We make two observations.

First, the RNG-Aware scheduler outperforms both FR-
FCFS+Cap and BLISS mechanisms and improves average fair-
ness by 16.1%. It improves average performance of non-RNG
and RNG applications by 5.6% and 1.6%, respectively. The
performance of the RNG-aware scheduler is greater than the
performance of FR-FCFS+Cap and BLISS for almost all work-
loads.

Second, on average, BLISS has a higher unfairness index
compared to FR-FCFS+Cap and increases average unfairness
by 6.6%. Some workloads consisting of memory-intensive
non-RNG applications, such as jp2e, wcount0, tpch17, soplex,
tpch2, lbm, mcf, and h264d, have significantly higher unfairness
indices compared to the FR-FCFS+Cap and the RNG-Aware
schedulers because BLISS frequently blacklists these highly
memory-intensive non-RNG applications and prioritizes RNG
applications. Due to the frequently blacklisted non-RNG ap-
plications, BLISS degrades average performance of non-RNG
applications over FR-FCFS+Cap by 8.9%.
8.5. Impact of Priority-Based Scheduling

To show the impact of priority-based RNG-aware scheduling,
we compare three designs: (1) the RNG-Oblivious baseline, (2)
DR-STRaNGe with high-priority RNG applications, and (3)
DR-STRaNGe with high-priority non-RNG applications.

3We use a value of four for Blacklisting Threshold and a value of 10000
cycles for Clearing Interval as proposed in [164].
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Figure 11: Impact of the memory request scheduler on the per-
formance of non-RNG (top) and RNG (middle) applications and
system fairness (bottom).

Figure 12 shows the normalized weighted speedup of non-
RNG applications (left) and the slowdown of RNG applications
normalized to their performance when executed on a single core
(right). We make three observations.

First, priority-based RNG-aware scheduling provides sig-
nificant performance improvement when workloads fully uti-
lize the DRAM bandwidth. Both types of applications benefit
from RNG-aware scheduling and performance improvements
increase when they have high priority levels.

Second, Figure 12 (left) shows that prioritizing the non-
RNG applications using DR-STRaNGe improves the average
weighted speedup of the non-RNG applications by 8.9% com-
pared to the RNG-oblivious baseline. Figure 12 (right) shows
that prioritizing the RNG applications using DR-STRaNGe im-
proves average performance of the RNG applications by 9.9%
compared to the RNG-oblivious baseline.

Third, prioritizing RNG applications using DR-STRaNGe
improves the average performance of both non-RNG and RNG
applications in 4-core workloads. Some workloads consisting
of low and medium memory-intensity non-RNG applications
switch between RNG and regular memory request queues fre-
quently when non-RNG applications are prioritized due to low
memory-intensity applications creating requests at lower rates.
These workloads benefit from lower RNG interference when
RNG applications are prioritized using DR-STRaNGe.
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Figure 12: Impact of the priority-based RNG-aware scheduler on
performance of non-RNG (left) and RNG (right) applications.

8.6. Impact of the DRAM Idleness Predictor
Figure 13 evaluates the performance of four designs: (1) the

RNG-oblivious baseline, (2) DR-STRaNGe with no DRAM
idleness predictor, (3) DR-STRaNGe with the simple DRAM
idleness predictor, and (4) DR-STRaNGe with the RL-based
DRAM idleness predictor. Figure 13 plots the slowdown of
non-RNG (top) and RNG applications (bottom). We make three
observations. First, DR-STRaNGe with the simple DRAM idle-
ness predictor improves average performance of non-RNG and
RNG applications by 17.9% and 25.1%, respectively, compared
to the RNG-oblivious baseline. Second, the simple DRAM idle-
ness predictor improves DR-STRaNGe’s performance by 12.4%
and 13.8% for non-RNG and RNG applications, respectively.
Third, DR-STRaNGe with the simple predictor achieves sim-
ilar performance improvement at lower hardware complexity
compared to DR-STRaNGe with the RL-based idleness predic-
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tor, which improves non-RNG and RNG applications’ average
performance by 19.3% and 23.9%, respectively.
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Figure 13: Impact of the DRAM Idleness Predictor on non-RNG
(top) and RNG (bottom) applications’ performance.

Figure 14 shows the predictor accuracy of the 2-core work-
loads (left) and 2-, 4-, 8-, 16-core workloads (right). We make
the following observations. First, with two-core workloads, the
simple DRAM idleness predictor and the RL-based idleness
predictor have an accuracy of 80.0% and 80.3%, respectively.
Second, the simple DRAM idleness predictor’s accuracy is
slightly higher than the RL-based predictor’s accuracy when
the workload’s memory-intensity is high and the number of
long idle periods is low. In workloads containing low memory-
intensity applications, the simple DRAM idleness predictor
mispredicts long idle periods to be short and has a higher false
negative rate. Third, in 4-, 8-, and 16-core workloads, both
predictors have lower accuracy due to less idleness and more
complex interference patterns.
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Figure 14: DRAM idleness predictor accuracy in two-core (left)
and multicore workloads (right).

8.6.1. Impact of the Low Utilization Prediction. We evaluate
three designs: (1) the RNG-oblivious baseline, (2) the simple
DRAM idleness predictor without low utilization prediction,
and (3) the simple DRAM idleness predictor with low utilization
prediction using the threshold value of 4. Figure 15 shows the
performance impact of DR-STRaNGe with and without the low
utilization prediction mechanism on non-RNG (top) and RNG
(bottom) applications. We conclude that the simple DRAM
idleness predictor with a low utilization threshold of 4 improves
the average performance of non-RNG and RNG applications by
5.5% and 11.7%, respectively, compared to the DRAM idleness
predictor without low utilization prediction.
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Figure 15: Impact of the low utilization prediction on non-RNG
(top) and RNG (bottom) applications’ performance.

8.7. Experiments Using QUAC-TRNG
To show that DR-STRaNGe is compatible with different

DRAM-based TRNGs, we evaluate DR-STRaNGe with QUAC-
TRNG [138]. QUAC-TRNG provides a higher RNG through-
put compared to D-RaNGe [82]. However, it also has higher
latency for 64-bit random number generation. We compare
DR-STRaNGe’s impact on performance and system fairness
compared to the RNG-oblivious baseline when both systems
use QUAC-TRNG to generate the random numbers.

Figure 16 plots the performance of non-RNG and RNG appli-
cations (top and middle) and system fairness (bottom) compared
to the RNG-Oblivious baseline. We make three observations.
First, DR-STRaNGe improves average performance of non-
RNG and RNG applications by 18.2% and 17.2%, respectively.
Second, DR-STRaNGe improves average system fairness by
10.9%. Some workloads with high memory-intensity (zeusmp,
lbm, mcf, h264d) suffer from higher unfairness indices because
DR-STRaNGe improves performance of non-RNG applications
more than the performance of RNG applications.

We conclude that DR-STRaNGe improves both performance
and system fairness regardless of the implemented DRAM
TRNG. DR-STRaNGe can also potentially leverage hybrid
DRAM TRNGs that can generate random numbers using (1)
a low-latency DRAM-based TRNG to fill the random num-
ber buffer, and (2) a high-throughput DRAM-based TRNG to
generate random numbers after receiving a random number re-
quest when the random number buffer is empty. We leave the
evaluation of such design to future work.
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Figure 16: Performance and fairness in dual-core workloads con-
sisting of RNG and non-RNG applications in a system that uses
QUAC-TRNG [138].

8.8. Results of Low-Intensity Applications

We evaluate DR-STRaNGe with workloads consisting of
(1) one low-intensity RNG application (i.e., 640 Mb/s RNG
throughput), and (2) one non-RNG application. We observe
that DR-STRaNGe improves the average performance of the
RNG and non-RNG applications by 3.2% and 4.6% respectively.
Due to the low RNG interference caused by the low required
TRNG throughput, DR-STRaNGe does not significantly im-
prove system fairness over the baseline.

8.9. Area and Energy Consumption Analysis

To evaluate DR-STRaNGe’s energy consumption, we use
DRAMPower [24] with Ramulator’s output traces. We observe
that DR-STRaNGe reduces energy consumption and total mem-
ory cycles by 21% and 15.8%, respectively, compared to the
RNG-oblivious baseline system.

We use CACTI [132] at 22nm process technology node to
model the DR-STRANGE configuration shown in Table 1, in-
cluding the random number buffer, RNG request queue, and
the DRAM idleness predictor. We find that DR-STRaNGe in-
curs minor area overhead: 0.0022mm2 (0.00048% of an Intel
Cascade Lake CPU Core [187]). These evaluations include the
simple DRAM idleness predictor that consists of 256 entries
and a 2-bit saturating counter in each entry, with a total of
0.0625 KB area overhead. If we use the RL-based predictor,
DR-STRaNGe has an area cost of 0.012mm2 (0.0033% of an
Intel Cascade Lake CPU Core [187]) and the RL agent requires
8KB storage assuming 4-byte Q-values and 10-bit state values.
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9. Other Related Work
To our knowledge, DR-STRaNGe is the first work to pro-

pose an end-to-end system design for DRAM TRNGs that (1)
reduces the interference between RNG and non-RNG appli-
cations in the memory controller, (2) improves system fair-
ness, and (3) reduces high TRNG latency. We have already
discussed closely related work on memory request schedulers
(Section 8.4) and DRAM-based TRNG mechanisms and com-
pared DR-STRaNGe to prior proposals (Sections 8.2, 8.1, and
8.7). In this section, we discuss other related works.

Memory Request Scheduling. Previously proposed memory
request scheduler designs [8, 43, 54, 73, 89, 90, 129, 135,
135–137, 163, 164, 175, 195] aim to reduce inter-application
interference to improve the system performance and fairness.
These proposals are RNG-oblivious. We already compare DR-
STRaNGe to BLISS [163, 164] and FR-FCFS [151, 197] with
a column cap [135] in Section 8.4.

Low-Throughput DRAM-based TRNGs. Prior work pro-
poses DRAM-based TRNGs that generate random numbers
using different entropy sources, such as DRAM start-up val-
ues [44], and retention failures [60, 78, 166, 168]. These
DRAM-based TRNGs are limited in the throughput they can
provide and cannot be used in a streaming manner. As such,
they are less practical than the high-throughput DRAM-based
TRNGs we evaluate [82, 138].

DRAM Idleness Predictors. Prior work proposes DRAM
idleness predictors that predict the idle period lengths to reduce
DRAM energy consumption [169] and efficiently schedule last
level cache writebacks [183]. Compared to these techniques,
DR-STRaNGe’s idleness predictor can be implemented using
simple hardware at low cost (Section 8.9) and requires no modi-
fications to the interface between the processor and the memory
controller.
10. Conclusion

We propose DR-STRaNGe, the first end-to-end system de-
sign for DRAM true random number generators (TRNGs) that
reduces the RNG interference in the memory controller, pro-
vides system fairness among different types of applications,
and successfully hides the latency of DRAM-based TRNGs.
Our system design consists of three main parts: (1) a random
number buffering mechanism combined with a DRAM idleness
predictor, (2) an RNG-aware memory request scheduler, and
(3) an application interface. Our evaluations show that DR-
STRaNGe improves the performance of RNG and non-RNG
applications by 17.9% and 25.1% respectively, and the overall
system fairness by 32.1% while reducing average system energy
consumption by 21%. We conclude that with an end-to-end
system design, DRAM-based TRNGs can be seamlessly inte-
grated into today’s systems with low overheads and provide true
random numbers at high throughput and low latency.
Acknowledgments

We thank the anonymous reviewers of MICRO 2021 and
HPCA 2022 for feedback. We thank the SAFARI group mem-
bers for feedback and the stimulating intellectual environment.
We acknowledge the generous gifts provided by our industrial
partners: Google, Huawei, Intel, Microsoft, VMware.
References

[1] “Ramulator Source Code,” https://github.com/CMU-SAFARI/ramulator.
[2] “Standard Performance Evaluation Corporation,” http://www.spec.org/cpu2006.
[3] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das,

“Compute Caches,” in HPCA, 2017.
[4] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-in-Memory

Accelerator for Parallel Graph Processing,” in ISCA, 2015.
[5] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: a Low-overhead,

Locality-aware Processing-in-Memory Architecture,” in ISCA, 2015.

[6] B. Akin, F. Franchetti, and J. C. Hoe, “Data Reorganization in Memory Using
3D-Stacked DRAM,” in ISCA, 2015.

[7] T. Amaki, M. Hashimoto, and T. Onoye, “An Oscillator-based True Random Number
Generator with Process and Temperature Tolerance,” in DAC, 2015.

[8] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and O. Mutlu,
“Staged Memory Scheduling: Achieving High Performance and Scalability in Het-
erogeneous Systems,” in ISCA, 2012.

[9] O. O. Babarinsa and S. Idreos, “JAFAR: Near-Data Processing for Databases,” in
SIGMOD, 2015.

[10] V. Bagini and M. Bucci, “A Design of Reliable True Random Number Generator for
Cryptographic Applications,” in CHES, 1999.

[11] B. M. S. Bahar Talukder, J. Kerns, B. Ray, T. Morris, and M. T. Rahman, “Exploiting
DRAM Latency Variations for Generating True Random Numbers,” in ICCE, 2019.

[12] M. Barangi, J. S. Chang, and P. Mazumder, “Straintronics-Based True Random
Number Generator for High-Speed and Energy-Limited Applications,” in IEEE
Trans. Magn, 2016.

[13] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney, and O. Mutlu,
“Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforce-
ment Learning,” in MICRO, 2021.

[14] M. Bhargava, K. Sheikh, and K. Mai, “Robust True Random Number Generator
using Hot-carrier Injection Balanced Metastable Sense Amplifiers,” in HOST, 2015.

[15] I. Bhati, Z. Chishti, S.-L. Lu, and B. Jacob, “Flexible Auto-Refresh: Enabling
Scalable and Energy-Efficient DRAM Refresh Reductions,” in ISCA, 2015.

[16] L. Blum, M. Blum, and M. Shub, “A Simple Unpredictable pseudo-random Number
Generator,” in SIAM Journal on Computing, 1986.

[17] A. Boroumand, S. Ghose, B. Akin, R. Narayanaswami, G. F. Oliveira, X. Ma,
E. Shiu, and O. Mutlu, “Mitigating Edge Machine Learning Inference Bottlenecks:
An Empirical Study on Accelerating Google Edge Models,” arXiv:2103.00768,
2021.

[18] A. Boroumand, S. Ghose, Y. Kim, R. Ausavarungnirun, E. Shiu, R. Thakur, D. Kim,
A. Kuusela, A. Knies, P. Ranganathan, and O. Mutlu, “Google Workloads for
Consumer Devices: Mitigating Data Movement Bottlenecks,” in ASPLOS, 2018.

[19] A. Boroumand, S. Ghose, B. Lucia, K. Hsieh, K. Malladi, H. Zheng, and O. Mutlu,
“LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,”
in CAL, 2017.

[20] R. Botha, “The Development of a Hardware Random Number Generator for Gamma-
ray Astronomy,” Ph.D. dissertation, North-West University, 2005.

[21] R. Brederlow, R. Prakash, C. Paulus, and R. Thewes, “A Low-power True Random
Number Generator using Random Telegraph Noise of Single Oxide-traps,” in ISSCC,
2006.

[22] M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A High-speed
Oscillator-based Truly Random Number Source for Cryptographic Applications on
a Smart Card IC,” in TC, 2003.

[23] J. J. M. Chan, B. Sharma, J. Lv, G. Thomas, R. Thulasiram, and P. Thulasira-
man, “True Random Number Generator using GPUs and Histogram Equalization
Techniques,” in HPCC, 2011.

[24] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji, B. Akesson,
N. Wehn, and K. Goossens, “DRAMPower: Open-Source DRAM Power & Energy
Estimation Tool,” http://www.drampower.info/.

[25] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhi-
menko, S. Khan, and O. Mutlu, “Understanding Latency Variation in Modern
DRAM Chips: Experimental Characterization, Analysis, and Optimization,” in
SIGMETRICS, 2016.

[26] K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim, and
O. Mutlu, “Improving DRAM Performance by Parallelizing Refreshes with Ac-
cesses,” in HPCA, 2014.

[27] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-cost
Inter-linked Subarrays (LISA): Enabling Fast Inter-subarray Data Movement in
DRAM,” in HPCA, 2016.
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A. Appendix
A.1. Analysis of RNG Applications with Higher RNG Throughput Requirements

Figure 17 compares the performance and fairness results of three designs: (1) the RNG-oblivious baseline, (2) the Greedy Idle
Design, and (3) DR-STRaNGe. The figure shows the slowdown of non-RNG applications (top) and RNG applications that require
10 Gb/s RNG throughput (middle) executed on a dual-core system compared to each application’s performance when executed
alone on a single core. Figure 17 (bottom) plots system fairness, calculated using the unfairness index metric [49, 128, 135]. We
make two observations. First, DR-STRaNGe improves the average performance of non-RNG and RNG applications by 34.9%
and 24.5%, respectively. Second, DR-STRaNGe improves the average system fairness by 56.9%, compared to the RNG-oblivious
baseline design.
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Figure 17: Performance and fairness in dual-core workloads consisting of non-RNG applications and RNG applications that require
10 Gb/s RNG throughput.

A.2. Multicore Workloads
Table 2 shows the dual-core workloads that we use in Section 3. We create 172 workloads, each workload consisting of one

non-RNG and one RNG application. We use 43 non-RNG applications across different benchmark suites and create 4 synthetic
RNG benchmarks with required RNG throughputs ranging from 640 Mb/s to 5120 Mb/s.

Table 2: RNG applications

Multicore Workloads Non-RNG Applications RNG Applications

2-core 43 applications

x1 RNG application with 640 Mb/s RNG throughput requirement
x1 RNG application with 1280 Mb/s RNG throughput requirement
x1 RNG application with 2560 Mb/s RNG throughput requirement
x1 RNG application with 5120 Mb/s RNG throughput requirement
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Table 3 shows the multicore workloads that we use to evaluate DR-STRaNGe in Section 8. We create 186 workloads for 2-,
4-, 8-, and 16-core systems. We create 43 two-core workloads, each consisting of one non-RNG and one RNG application. In
addition, for the four-core configuration we create four workload groups, each consisting of 10 multi-programmed workloads. Each
group has 3 different applications from different memory-intensity categories and one synthetic RNG benchmark. We also create
30 multi-programmed workloads for 8-core and 16-core configurations consisting of low, medium, and high memory-intensity
applications.

Table 3: Multicore workloads in Section 8

Number of Cores Non-RNG Applications/Workloads RNG Applications

2-core 43 non-RNG applications
x1 RNG application with 5120 Mb/s RNG throughput requirement
x1 RNG application with 640 Mb/s RNG throughput requirement

4-core
40 workloads consisting of non-RNG applications
(4 memory-intensity groups, 10 workloads each.) x1 RNG application with 5120 Mb/s RNG throughput requirement

8-core
30 workloads consisting of non-RNG applications
(3 memory-intensity groups, 10 workloads each.) x1 RNG application with 5120 Mb/s RNG throughput requirement

16-core
30 workloads consisting of non-RNG applications
(3 memory-intensity groups, 10 workloads each.) x1 RNG application with 5120 Mb/s RNG throughput requirement
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