

DSPATCH: <u>D</u>UAL <u>Spatial Pattern Prefetcher</u>

Rahul Bera¹, Anant V. Nori¹, Onur Mutlu², Sreenivas Subramoney¹

¹Processor Architecture Research Lab, Intel Labs ²ETH Zürich

Session IV-B: Microarchitecture (Tuesday, Oct 15th 2019, 11:40 AM)

Motivation and Challenge

- DRAM bandwidth increases every generation
- Prefetchers need to adapt in speculation and coverage to utilize this valuable resource

Motivation and Challenge

- DRAM bandwidth increases every generation
- Prefetchers need to adapt in speculation and coverage to utilize this valuable resource
- Traditionally, prefetchers have juggled between coverage and accuracy

Motivation and Challenge

- DRAM bandwidth increases every generation
- Prefetchers need to adapt in speculation and coverage to utilize this valuable resource
- Traditionally, prefetchers have juggled between coverage and accuracy

Need to boost Coverage while simultaneously optimizing for Accuracy

Z

<u>Dual Spatial Pattern Prefetcher</u>

- Simultaneously learn *two* spatial bit-pattern representations of program accesses per page
 - Coverage-Biased
 - Accuracy-Biased

<u>Dual Spatial Pattern Prefetcher</u>

- Simultaneously learn *two* spatial bit-pattern representations of program accesses per page
 - Coverage-Biased
 - Accuracy-Biased

 Predict one of the patterns based on current DRAM bandwidth headroom

<u>Dual Spatial Pattern Prefetcher</u>

- Simultaneously learn *two* spatial bit-pattern representations of program accesses per page
 - Coverage-Biased
 - Accuracy-Biased
- Predict **one** of the patterns based on current DRAM bandwidth headroom

DSPatch can boost Coverage while *simultaneously* optimizing for Accuracy

Key Results Summary

- 6% average speedup over baseline with PC-stride @ L1 and SPP @ L2
- **10% average speedup** if DRAM bandwidth is doubled
- **3.6 KB** of hardware storage

DSPATCH: <u>D</u>UAL <u>Spatial Pattern Prefetcher</u>

Rahul Bera¹, Anant V. Nori¹, Onur Mutlu², Sreenivas Subramoney¹

¹Processor Architecture Research Lab, Intel Labs ²ETH Zürich

Session IV-B: Microarchitecture (Tuesday, Oct 15th 2019, 11:40 AM)