DSPatch: <u>Dual Spatial Pattern Prefetcher</u>

Rahul Bera^{*} Anant V. Nori^{*} Onur Mutlu⁺ Sreenivas Subramoney^{*} *Processor Architecture Research Lab (PARL), (intel Labs + SAFAR | ETH Zürich

1. Motivation

- Current state-of-the-art spatial prefetcher performance plateaus despite increasing memory bandwidth
- \Rightarrow Need to boost speculation and coverage to maximize utilization of memory bandwidth resource

2. Challenge

- Fundamental tradeoff in traditional prefetcher design between *Coverage* versus *Accuracy*
- ⇒ Limits ability to dynamically adapt to memory bandwidth headroom and significantly *boost* **Coverage**

3. Goal

New prefetcher design should include:

- 1. Pattern representations best suited to capture spatially co-located program accesses and *boost* **Coverage**
- 2. Mechanisms to simultaneously optimize for both **Coverage** and **Accuracy**
- Ability to dynamically adjust
 aggressiveness (Coverage vs. Accuracy)
 based on available DRAM bandwidth

A **bit-pattern** representation, **rotated** and **anchored** to the first "triggering" access to a page, captures all spatially identical patterns subsuming any temporal variability. \Rightarrow Captures all "global deltas" from the trigger access

- Bit-wise OR of rotated bit-patterns adds missing bits to the pattern, biasing it towards Coverage
- Bit-wise AND of rotated bit-patterns keeps only repeating bits in the pattern, biasing it for Accuracy

Using **dual** modulated bit-patterns allows **DSPatch** to simultaneously optimize for both **Coverage** and **Accuracy**

5. DSPatch Design

5. DSPatch Results

