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Executive Summary
 Motivation

 Data reduction: Effective at reducing the management cost of a data center by 
reducing the amount of data physically written to storage devices

 Post-deduplication delta compression: Maximizes the data-reduction ratio by 
applying delta compression along with deduplication and lossless compression

 Problem: Existing post-deduplication delta-compression techniques provide 
significantly low data-reduction ratios compared to the optimal.
 Due to the limited accuracy of reference search for delta compression
 Cannot identify a good reference block for many incoming data blocks

 Key Idea: DeepSketch, a new machine learning-based reference search technique 
that uses the learning-to-hash method
 Generates a given data block’s signature (sketch) using a deep neural network
 The higher the delta-compression benefit of two data blocks, 

the more similar the signatures of the two blocks to each other

 Evaluation Results: DeepSketch reduces the amount of physically-written data
 Up to 33% (21% on average) compared to a state-of-the-art baseline
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Big Data Era
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 Unprecedented amounts of data processed in modern 
computing systems
 e.g., Facebook generates 4 petabytes of new data every day
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Data Reduction in Storage Systems
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 Effective at reducing the management cost of a data center
 By reducing the amount of written data to storage devices
 Enabling the system to deal with the same amount of data with 

fewer and/or smaller storage devices
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Post-deduplication Delta Compression
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 Combines three different data-reduction approaches
 To maximize the data-reduction ratio (= 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
)

 Deduplication  Delta compression  Lossless compression
 Can achieve more than 2x data reduction over a simple 

combination of deduplication and lossless compression
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File System
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File System

Step 3: Lossless Compression
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Key Challenge: Reference Search
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 How to find a good reference block for an incoming data block 
across a wide range of stored data at low cost

 Scanning all stored data blocks: Prohibitive performance overhead

 Reference search in deduplication
 Uses a strong hash function (e.g., SHA1 or MD5) to generate

a data block’s fingerprint
 Enables quick reference search by comparing only fingerprints

 Reference search in delta compression
 Difficult to use a strong hash function that generates significantly 

different hash values for non-identical yet similar data blocks



State-of-the-Art: Data Sketching
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 Generates a data signature (called sketch) of each data block
 Sketch: More approximate signature than fingerprint
 Goal: two similar data blocks have similar sketches

U S E N I X F A S T 2 0 2 2

Feature1= H1(SENI) = 0x73

Block 1

Feature2= H2(FAST) = 0x32
Feature3= H3(USEN) = 0xF1
Feature4= H4(S202) = 0xCC

SF(Block 1) = 0x7332F1CC

U S E N I X F A S T 2 0 2 0Block 2

Feature1= H1(SENI) > H1(2020)
Feature2= H2(FAST) > H2(2020)
Feature3= H3(USEN) > H3(2020)
Feature4= H4(S202) > H4(2020)

SF(Block 2) = 0x7332F1CC
Super Feature



Limitations of Existing Techniques
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 Provide significantly lower data-reduction ratios than the optimal
 Due to limited accuracy in reference search for delta compression

 In a general-PC-usage workload, an SF-based approach
 Provides only 60% of the data-reduction ratio of brute-force search
 High false-negative ratio: Fails to find any reference data block for 36% 

of the incoming data blocks that can benefit from delta compression
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DeepSketch: Key Idea
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 Use the learning-to-hash method for sketch generation
 A promising machine learning (ML)-based approach for the 

nearest-neighbor search problem
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DeepSketch: Overview
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DeepSketch: Challenges
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 Lack of semantic information
 Most prior learning-to-hash approaches deal with specific data 

types (e.g., image sets with well-defined classes)
 DeepSketch needs to process general binary data

 Extremely high dimensional space
 Possible bit patterns: 24,096×8 for a data block size of 4 KiB
 Difficult to collect large enough data to train the DNN with high 

inference accuracy



Training the DNN of DeepSketch
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Data Clustering for DeepSketch
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 Existing clustering algorithms are unsuitable for DeepSketch
 K-means clustering: No information of appropriate initial 

parameter values (e.g., # of cluster k) in DeepSketch
 Hierarchical clustering: Huge computation and memory 

overheads for large data sets

 Dynamic k-means clustering (DK-Clustering)
 A version of k-means clustering that dynamically refines the 

value for k while clustering a data set
 Key idea: Two-step clustering that iterates

 Step 1: Coarse-grained clustering to roughly group data 
blocks at low cost and remove low-impact data blocks

 Step 2: Fine-grained clustering to find the best mean block 
and outliers of each group



Post-Processing for Training Data Set
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 Non-uniform distribution of data blocks across the clusters
 e.g., the largest 10% clusters contain 47.93% of the total data 

blocks.
 Can make DNN training significantly biased towards specific 

data patterns

 Resize every cluster to have the same number of data blocks
 If # of data blocks > T  Randomly select T data blocks
 If # of data blocks < T  Add randomly-modified data blocks 

(shifting random part of data blocks)



DNN Training
 Two-step transfer learning from GreedyHash [Su+, NeurIPS’18]
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Evaluation Methodology
 Compared data-reduction techniques

 Dedup+Comp: Deduplication  Lossless compression (LZ4)
 Finesse [Zhang+, FAST’19]

 High-performance super-feature-based reference search
 Deduplication  Delta compression (XDelta)  LZ4

 Workloads
 Six workloads collected from real systems w/ written data

 PC, Install, Update, Synth, Sensor, Web
 10% of each trace: Training data set
 Remaining 90%: Data-reduction & performance evaluation

 Five workloads collected while storing Stack Overflow 
databases (SOF)
 Not used for training
 To see the generality of DeepSketch
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Overall Data-Reduction Benefits
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Large data-reduction improvement:
Up to 33% (21% on average)

Effective for unseen workloads (SOFs)
that cannot benefit from the state-of-the-art



Combined w/ Existing SF-Based Technique
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Higher benefits over stand-alone techniques:
DeepSketch and Finesse can complement each other

Call for future work: Significant room for improvement



Performance Overhead
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Call for future work: Non-trivial performance overheads due to 
approximate nearest-neighbor search (details in the full paper)



Other Analyses in the Paper
 Empirical Study on Super Feature-Based Reference Search

 Hyper-Parameter Exploration for DeepSketch’s DNN

 Performance and Space Overheads

 Reference Search Patterns of DeepSketch and Finesse

 Impact of Training Data Set
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We hope that our key ideas inspire 
many valuable studies going forward
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DeepSketch: Application Scenarios
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