DeepSketch:

A New Machine Learning-Based Reference Search Technique for Post-Deduplication Delta Compression

Jisung Park^{1*}, Jeonggyun Kim^{2*}, Yeseong Kim², Sungjin Lee², and Onur Mutlu¹

¹**SAFARI ETH**zürich

USENIX FAST 2022

*J. Park and J. Kim are co-primary authors.

Executive Summary

Motivation

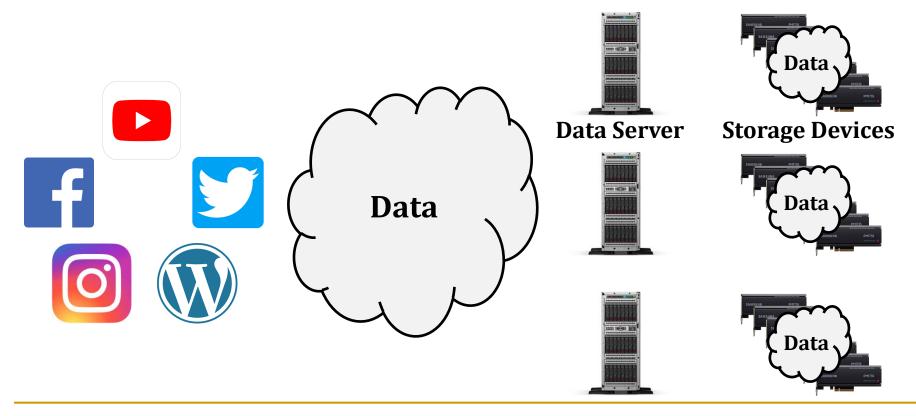
- Data reduction: Effective at reducing the management cost of a data center by reducing the amount of data physically written to storage devices
- Post-deduplication delta compression: Maximizes the data-reduction ratio by applying delta compression along with deduplication and lossless compression
- Problem: Existing post-deduplication delta-compression techniques provide significantly low data-reduction ratios compared to the optimal.
 - Due to the limited accuracy of reference search for delta compression
 - Cannot identify a good reference block for many incoming data blocks
- Key Idea: DeepSketch, a new machine learning-based reference search technique that uses the learning-to-hash method
 - Generates a given data block's signature (sketch) using a deep neural network
 - The higher the delta-compression benefit of two data blocks, the more similar the signatures of the two blocks to each other
- Evaluation Results: DeepSketch reduces the amount of physically-written data
 - □ Up to 33% (21% on average) compared to a state-of-the-art baseline

DeepSketch: A New Machine Learning-based Reference Search Technique

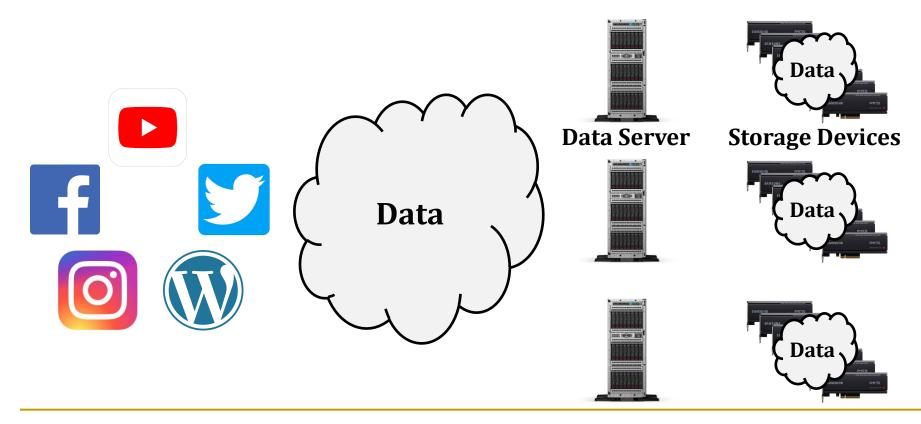
Evaluation Results

Big Data Era

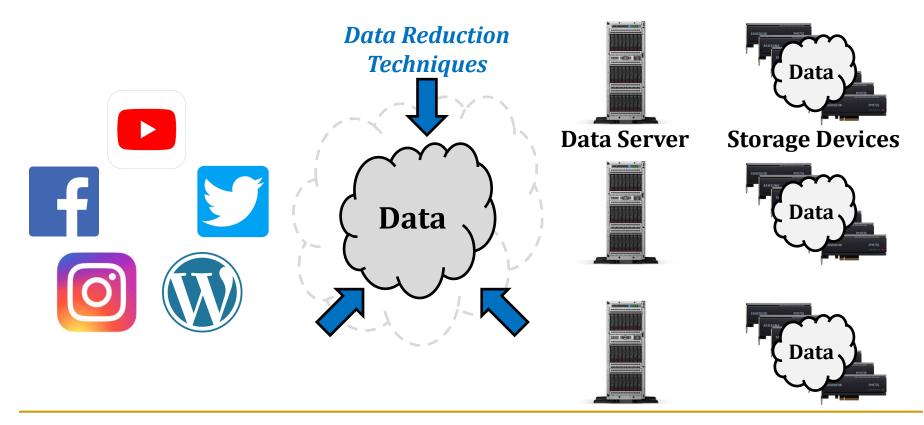
- Unprecedented amounts of data processed in modern computing systems
 - e.g., Facebook generates 4 petabytes of new data every day



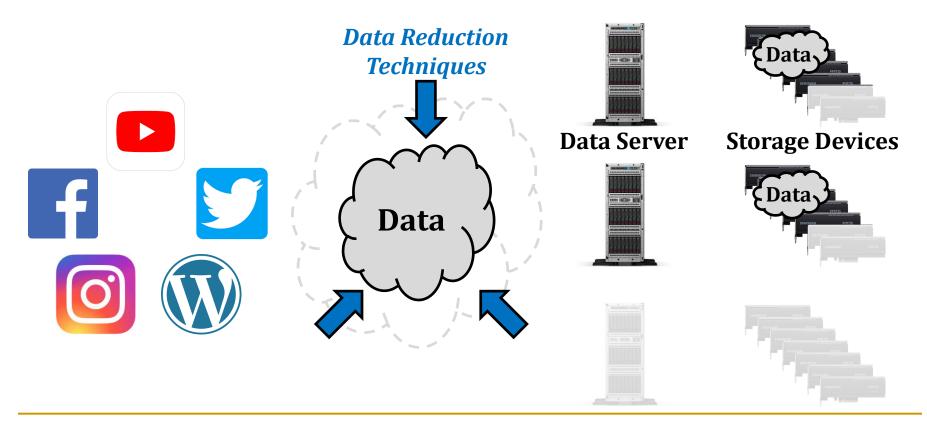
Effective at reducing the management cost of a data center



Effective at reducing the management cost of a data center
 By reducing the amount of written data to storage devices



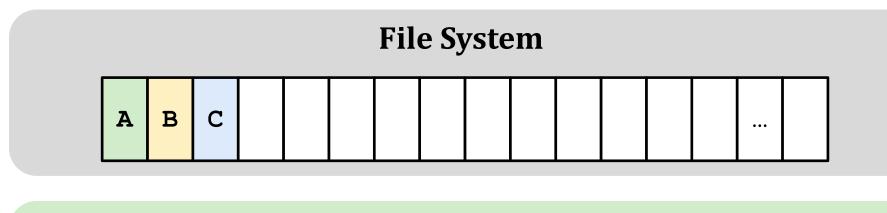
- Effective at reducing the management cost of a data center
 - By reducing the amount of written data to storage devices
 - Enabling the system to deal with the same amount of data with fewer and/or smaller storage devices



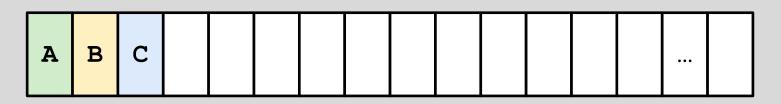
Post-deduplication Delta Compression

- Combines three different data-reduction approaches
 - To maximize the data-reduction ratio $\left(=\frac{Original Data Size}{Reduced Data Size}\right)$
 - □ Deduplication \rightarrow Delta compression \rightarrow Lossless compression
 - Can achieve more than 2x data reduction over a simple combination of deduplication and lossless compression

Overview of Post-Deduplication Delta Compression

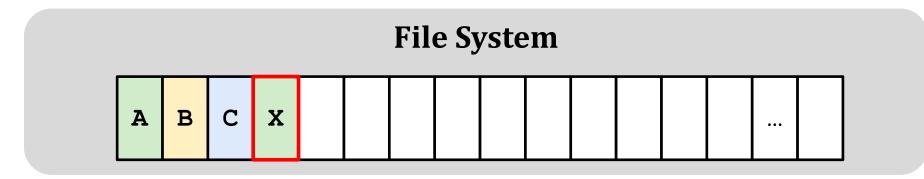


Data Reduction Module

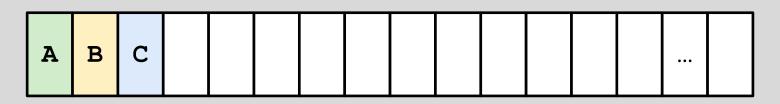


Storage Device

Step 1: Deduplication

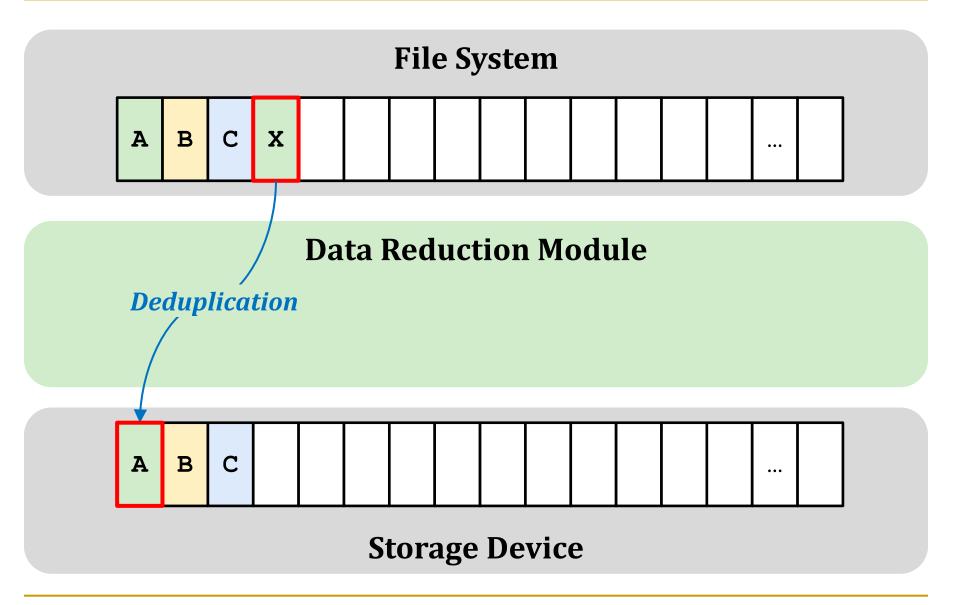


Data Reduction Module

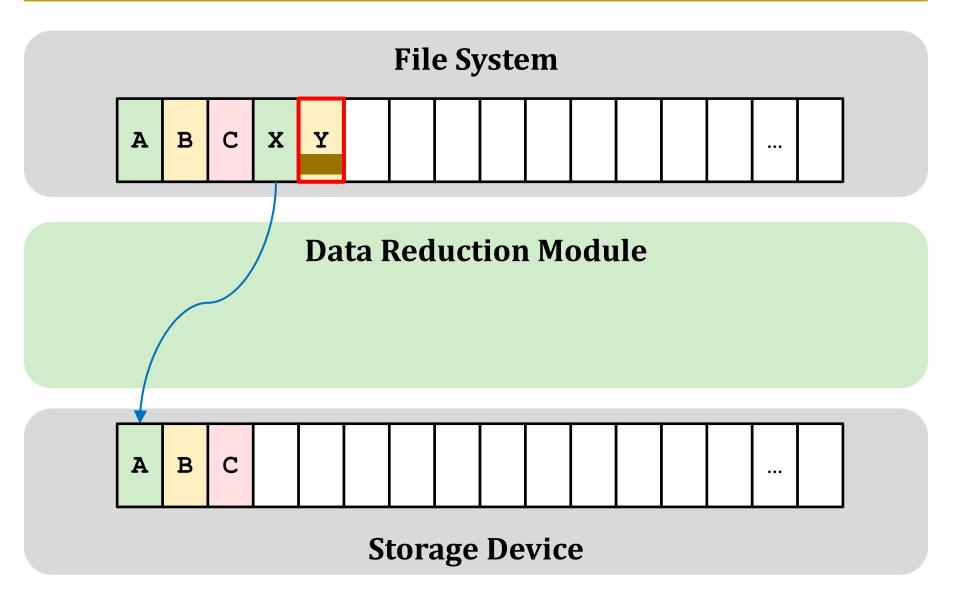


Storage Device

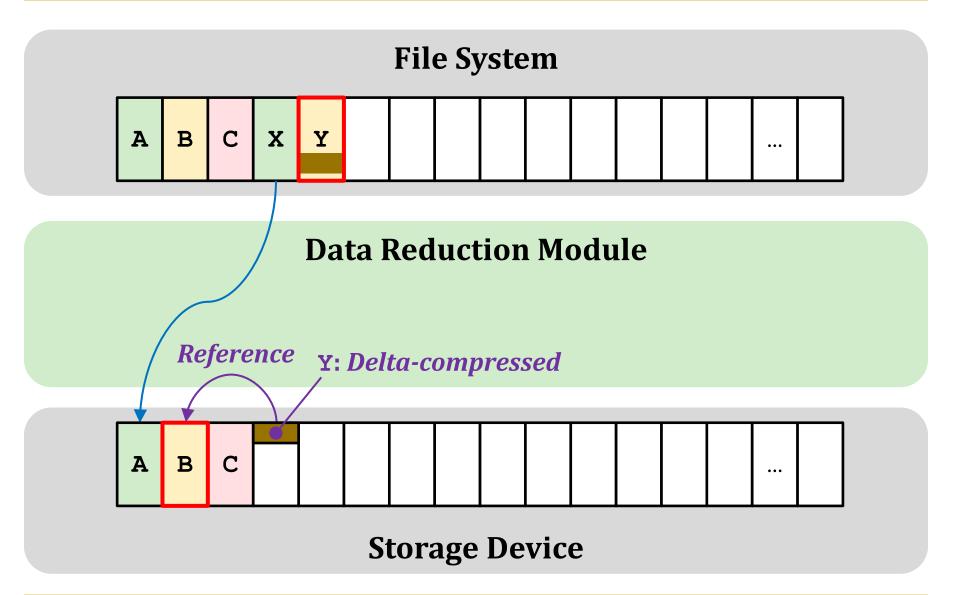
Step 1: Deduplication



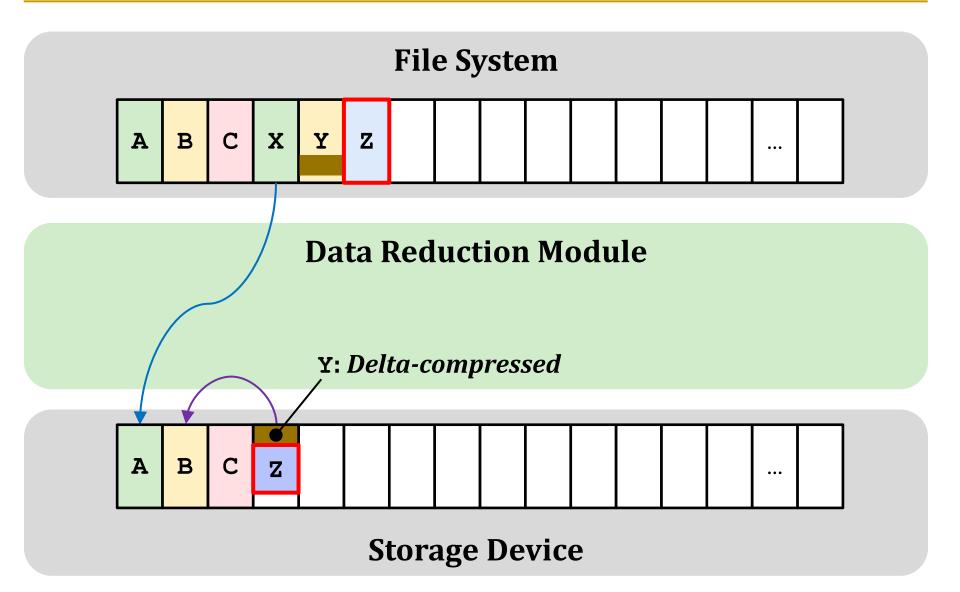
Step 2: Delta Compression



Step 2: Delta Compression



Step 3: Lossless Compression

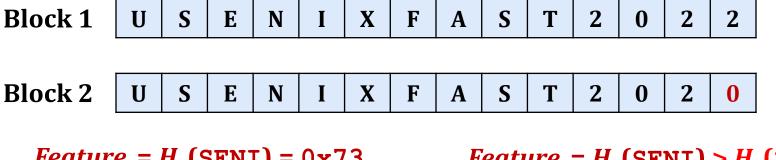


Key Challenge: Reference Search

- How to find a good reference block for an incoming data block across a wide range of stored data at low cost
- Scanning all stored data blocks: Prohibitive performance overhead
- Reference search in deduplication
 - Uses a strong hash function (e.g., SHA1 or MD5) to generate a data block's fingerprint
 - Enables quick reference search by comparing only fingerprints
- Reference search in delta compression
 - Difficult to use a strong hash function that generates significantly different hash values for non-identical yet similar data blocks

State-of-the-Art: Data Sketching

- Generates a data signature (called sketch) of each data block
 - □ Sketch: More approximate signature than fingerprint
 - Goal: two similar data blocks have similar sketches



Feature₁= H_1 (SENI) = 0x73 Feature₂= H_2 (FAST) = 0x32 Feature₃= H_3 (USEN) = 0xF1 Feature₄= H_4 (S202) = 0xCC

Super Feature

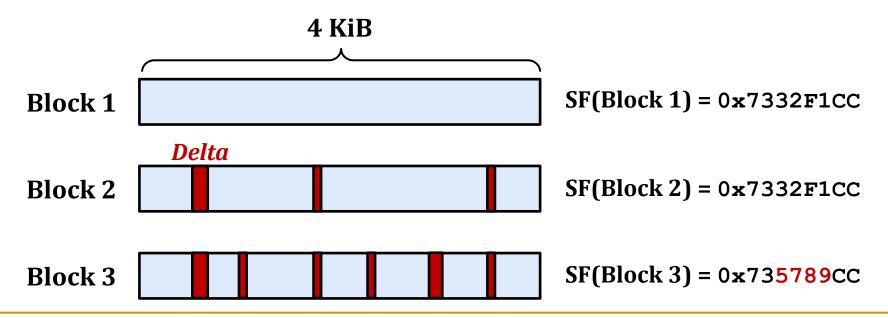
SF(Block 1) = 0x7332F1CC

 $Feature_{1} = H_{1}(SENI) > H_{1}(2020)$ $Feature_{2} = H_{2}(FAST) > H_{2}(2020)$ $Feature_{3} = H_{3}(USEN) > H_{3}(2020)$ $Feature_{4} = H_{4}(S202) > H_{4}(2020)$

SF(Block 2) = 0x7332F1CC

Limitations of Existing Techniques

- Provide significantly lower data-reduction ratios than the optimal
 Due to limited accuracy in reference search for delta compression
- In a general-PC-usage workload, an SF-based approach
 - Provides only 60% of the data-reduction ratio of brute-force search
 - High false-negative ratio: Fails to find any reference data block for 36% of the incoming data blocks that can benefit from delta compression

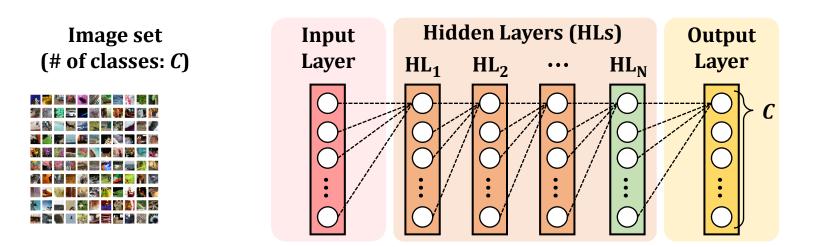


DeepSketch: A New Machine Learning-based Reference Search Technique

Evaluation Results

DeepSketch: Key Idea

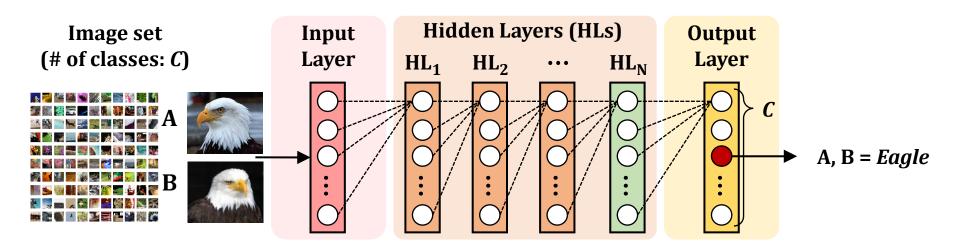
- Use the learning-to-hash method for sketch generation
 - A promising machine learning (ML)-based approach for the nearest-neighbor search problem



<Learning-to-hash for content-based image retrieval>

DeepSketch: Key Idea

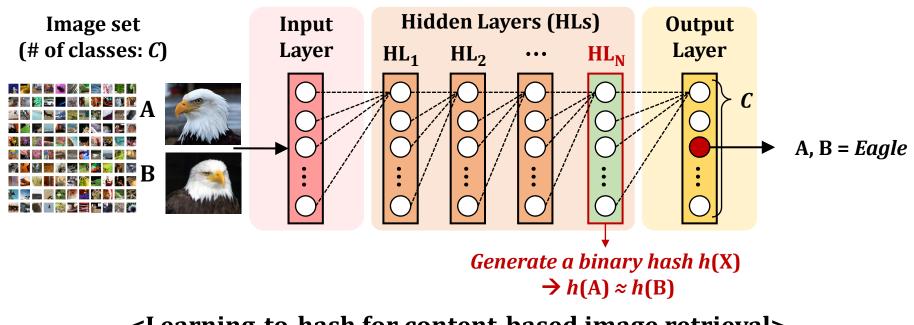
- Use the learning-to-hash method for sketch generation
 - A promising machine learning (ML)-based approach for the nearest-neighbor search problem



<Learning-to-hash for content-based image retrieval>

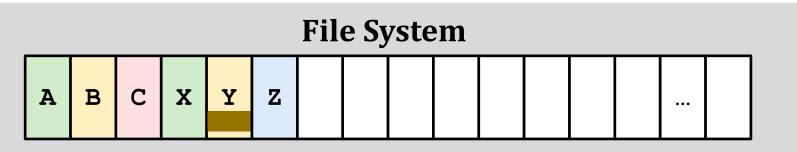
DeepSketch: Key Idea

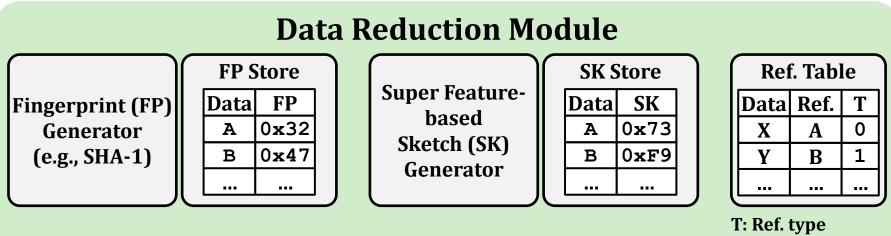
- Use the learning-to-hash method for sketch generation
 - A promising machine learning (ML)-based approach for the nearest-neighbor search problem



<Learning-to-hash for content-based image retrieval>

DeepSketch: Overview



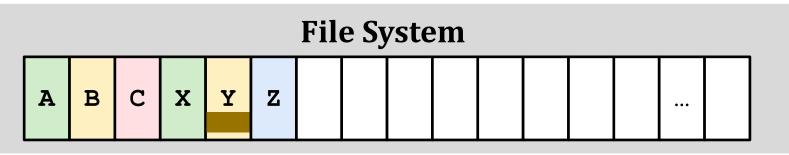


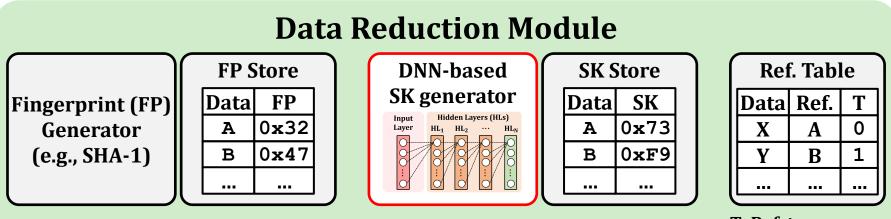
(0: dedup., 1: delta-comp.)

			Y							
A	в	С	Z						•••	
						 _				

Storage Device

DeepSketch: Overview





T: Ref. type (0: dedup., 1: delta-comp.)

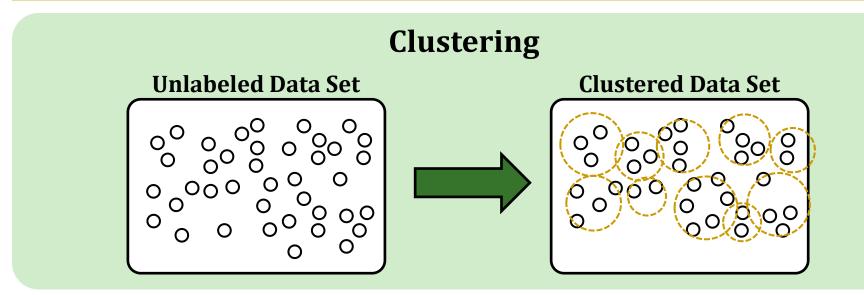
			Y							
A	в	С	Z						•••	

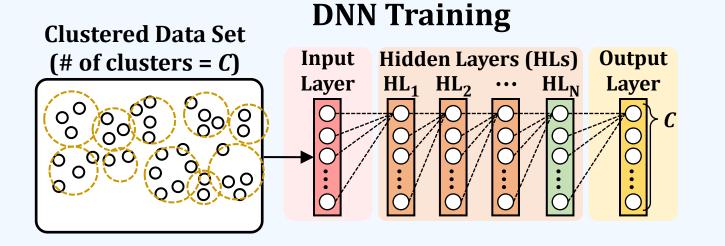
Storage Device

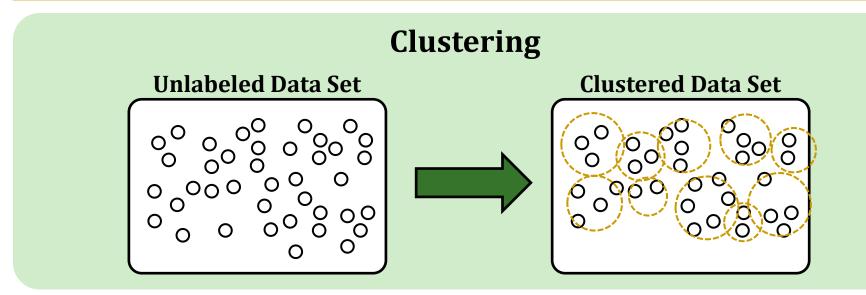
DeepSketch: Challenges

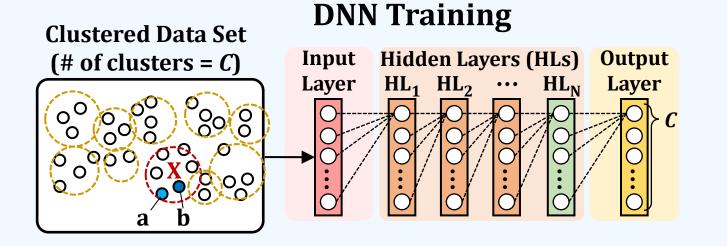
- Lack of semantic information
 - Most prior learning-to-hash approaches deal with specific data types (e.g., image sets with well-defined classes)
 - DeepSketch needs to process general binary data

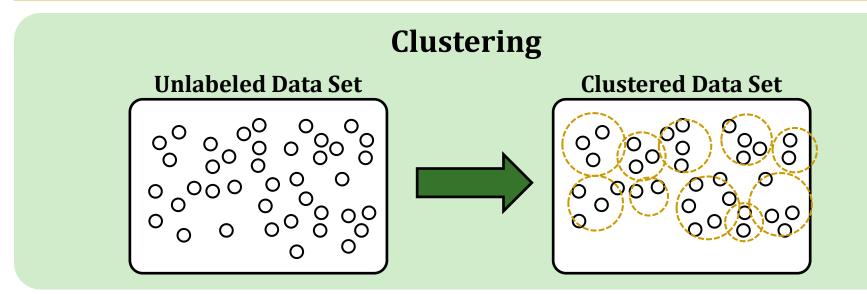
- Extremely high dimensional space
 - Possible bit patterns: 2^{4,096×8} for a data block size of 4 KiB
 - Difficult to collect large enough data to train the DNN with high inference accuracy

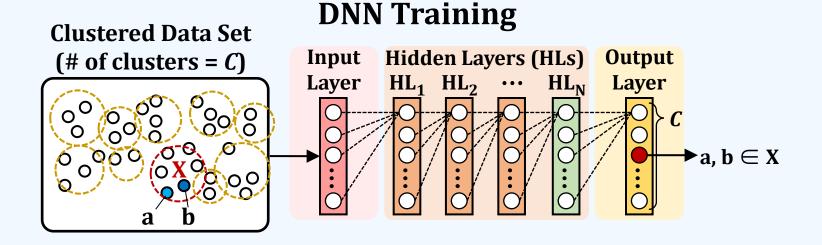


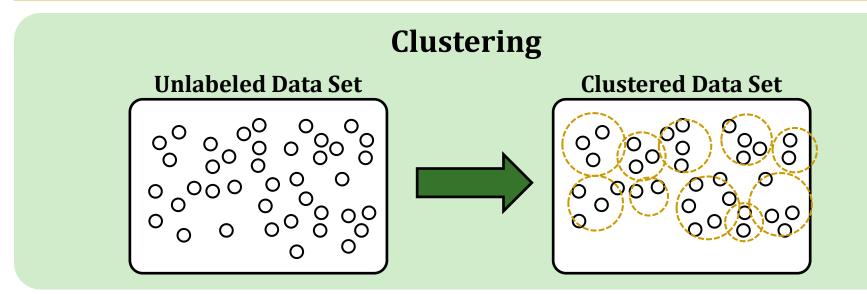


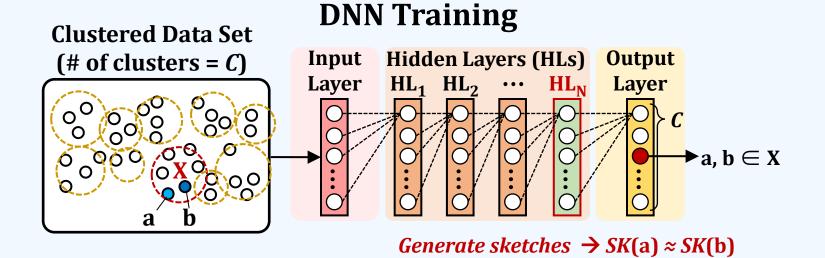












Data Clustering for DeepSketch

- Existing clustering algorithms are unsuitable for DeepSketch
 - K-means clustering: No information of appropriate initial parameter values (e.g., # of cluster k) in DeepSketch
 - Hierarchical clustering: Huge computation and memory overheads for large data sets
- Dynamic k-means clustering (DK-Clustering)
 - A version of k-means clustering that dynamically refines the value for k while clustering a data set
 - Key idea: Two-step clustering that iterates
 - Step 1: Coarse-grained clustering to roughly group data blocks at low cost and remove low-impact data blocks
 - Step 2: Fine-grained clustering to find the best mean block and outliers of each group

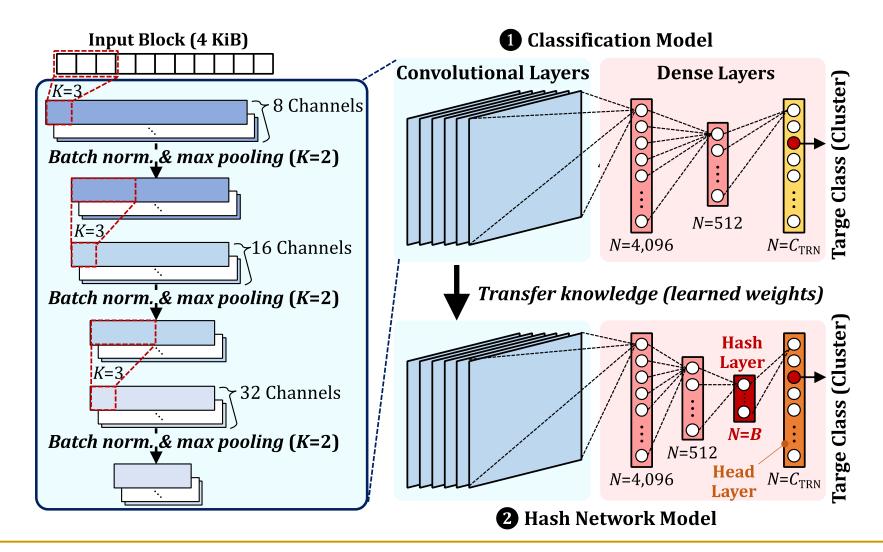
Post-Processing for Training Data Set

- Non-uniform distribution of data blocks across the clusters
 - e.g., the largest 10% clusters contain 47.93% of the total data blocks.
 - Can make DNN training significantly biased towards specific data patterns

- Resize every cluster to have the same number of data blocks
 - □ If # of data blocks > $T \rightarrow$ Randomly select T data blocks
 - □ If # of data blocks < $T \rightarrow$ Add randomly-modified data blocks (shifting random part of data blocks)

DNN Training

Two-step transfer learning from GreedyHash [Su+, NeurIPS'18]



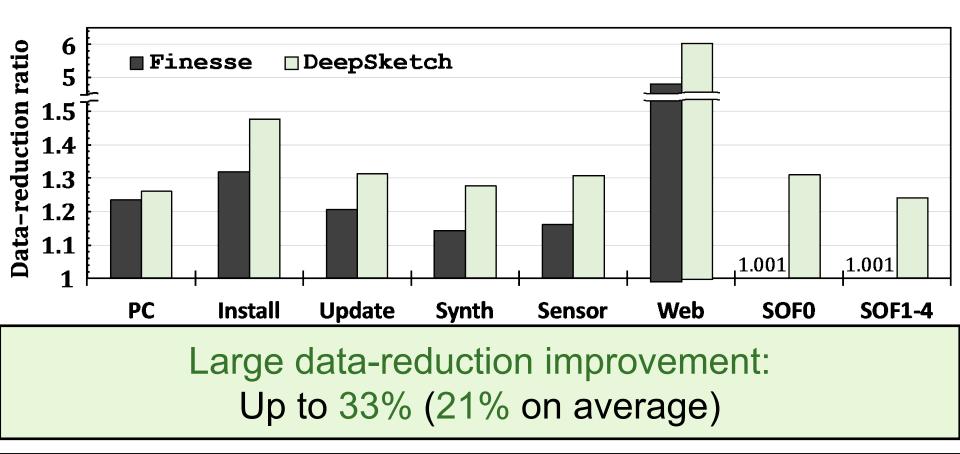
DeepSketch: A New Machine Learning-based Reference Search Technique

Evaluation Results

Evaluation Methodology

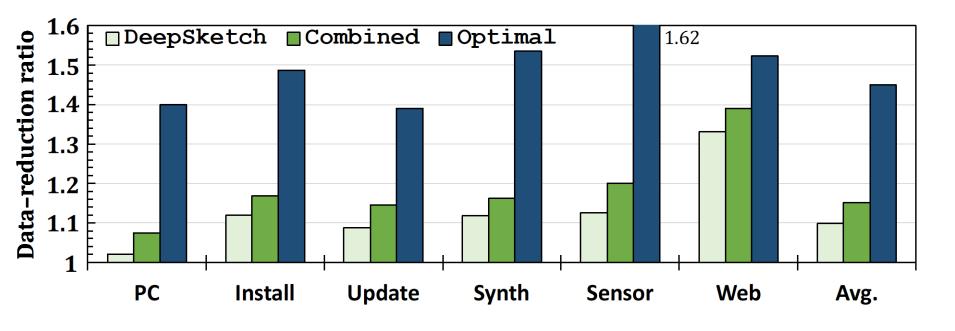
- Compared data-reduction techniques
 - □ Dedup+Comp: Deduplication \rightarrow Lossless compression (LZ4)
 - Finesse [Zhang+, FAST'19]
 - High-performance super-feature-based reference search
 - Deduplication \rightarrow Delta compression (XDelta) \rightarrow LZ4
- Workloads
 - □ Six workloads collected from real systems w/ written data
 - PC, Install, Update, Synth, Sensor, Web
 - 10% of each trace: Training data set
 - Remaining 90%: Data-reduction & performance evaluation
 - Five workloads collected while storing Stack Overflow databases (SOF)
 - Not used for training
 - To see the generality of DeepSketch

Overall Data-Reduction Benefits



Effective for unseen workloads (SOFs) that cannot benefit from the state-of-the-art

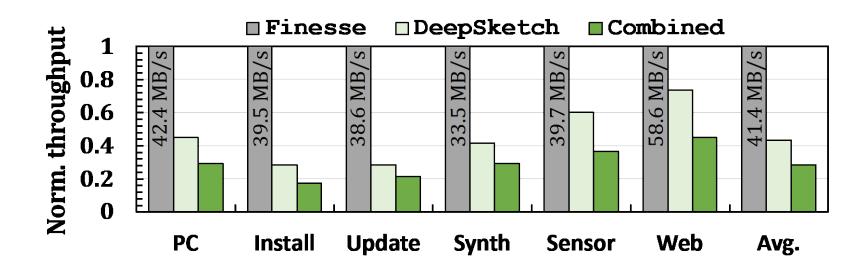
Combined w/ Existing SF-Based Technique



Higher benefits over stand-alone techniques: DeepSketch and Finesse can complement each other

Call for future work: Significant room for improvement

Performance Overhead



Call for future work: Non-trivial performance overheads due to approximate nearest-neighbor search (details in the full paper)

Other Analyses in the Paper

- Empirical Study on Super Feature-Based Reference Search
- Hyper-Parameter Exploration for DeepSketch's DNN
- Performance and Space Overheads
- Reference Search Patterns of DeepSketch and Finesse
- Impact of Training Data Set

Executive Summary

- **Problem:** Existing post-deduplication delta-compression techniques provide significantly low data-reduction ratios compared to the optimal.
 - Due to the limited accuracy of reference search for delta compression
 - Cannot identify a good reference block for many incoming data blocks
- Key Idea: DeepSketch, a new machine learning-based reference search technique that uses the learning-to-hash method
 - Generates a given data block's signature (sketch) using a deep neural network
 - The higher the delta-compression benefit of two data blocks, the more similar the signatures of the two blocks to each other
- **Evaluation Results:** DeepSketch reduces the amount of physically-written data Up to 33% (21% on average) compared to a state-of-the-art baseline
 - We hope that our key ideas inspire many valuable studies going forward

DeepSketch:

A New Machine Learning-Based Reference Search Technique for Post-Deduplication Delta Compression

Jisung Park^{1*}, Jeonggyun Kim^{2*}, Yeseong Kim², Sungjin Lee², and Onur Mutlu¹

¹**SAFARI ETH**zürich

USENIX FAST 2022

*J. Park and J. Kim are co-primary authors.

DeepSketch: Application Scenarios

