
DeepSketch: A New Machine Learning-Based Reference Search Technique
for Post-Deduplication Delta Compression

Jisung Park1∗ Jeonggyun Kim2∗ Yeseong Kim2 Sungjin Lee2 Onur Mutlu1

1ETH Zürich 2DGIST

Abstract
Data reduction in storage systems is becoming increasingly
important as an effective solution to minimize the manage-
ment cost of a data center. To maximize data-reduction effi-
ciency, existing post-deduplication delta-compression tech-
niques perform delta compression along with traditional data
deduplication and lossless compression. Unfortunately, we
observe that existing techniques achieve significantly lower
data-reduction ratios than the optimal due to their limited
accuracy in identifying similar data blocks.

In this paper, we propose DeepSketch, a new reference
search technique for post-deduplication delta compression
that leverages the learning-to-hash method to achieve higher
accuracy in reference search for delta compression, thereby
improving data-reduction efficiency. DeepSketch uses a deep
neural network to extract a data block’s sketch, i.e., to create
an approximate data signature of the block that can preserve
similarity with other blocks. Our evaluation using eleven real-
world workloads shows that DeepSketch improves the data-
reduction ratio by up to 33% (21% on average) over a state-
of-the-art post-deduplication delta-compression technique.

1 Introduction
As modern data centers generate a tremendous volume of new
data every day, it becomes critical for sustainability to store
such large amounts of data in an economical way. Employing
a data-reduction technique is one of the effective solutions
to cut down the management cost of a data center. A data-
reduction technique reduces the amount of data physically
stored in storage media by reducing data redundancy, which
allows a data center to handle the same amount of data with
fewer or smaller resources (e.g., storage devices and servers).

Many prior works have proposed various data-reduction
techniques based on data compression [9,30,46,51,52,58] and
data deduplication [12,21,22,26,36,49,59,62,67,76,88]. Data
compression encodes a data block using lossless-compression
algorithms so that a smaller number of bits can represent the
data block. Data deduplication prevents a data block from
being written if there already exists an identical data block
(i.e., a block that contains exactly the same data) in the stor-
age system. To achieve a high data-reduction ratio (i.e., Orig-
inal Data Size / Reduced Data Size), some studies [45, 55]
integrate the two techniques in a manner that first applies data
deduplication for incoming (i.e., to-be-stored) blocks and
performs lossless compression on non-deduplicated blocks.

Delta compression [3, 8, 64, 75, 81, 82, 86] has recently
received increasing attention as a complementary method
to overcome the limitations of data compression and data

∗J. Park and J. Kim are co-primary authors.

deduplication. It compares the data block to compress with a
reference data block and extracts only different bit patterns
between the two blocks, which are then encoded using loss-
less compression. The more similar the data block and the
reference (i.e., the smaller the delta between the data and the
reference), the higher the data-reduction ratio. By leverag-
ing the similarity between two blocks, delta compression can
achieve a high data-reduction ratio even for non-duplicate
data (which cannot benefit from data deduplication) and high-
entropy data (which lossless compression cannot efficiently
handle). Several prior works [64, 75, 82, 86] demonstrate that
post-deduplication delta compression, which performs dedu-
plication, delta compression, and lossless compression in or-
der, can significantly improve the data-reduction ratio over
simple integration of deduplication and lossless compression.

A key challenge for post-deduplication delta-compression
techniques is how to find a good reference block that provides
a high data-reduction ratio. The most intuitive approach is
to scan all the data blocks stored in the storage system and
use the one that provides the highest data-reduction ratio as
the reference for the incoming block. Unfortunately, doing
so is practically infeasible due to its prohibitive performance
overhead. To address this, prior works [64, 75, 82, 86] use
locality-sensitive hash (LSH) functions [7, 34] to generate
similar data signatures for data blocks with similar bit pat-
terns, which is called data sketching. Data sketching enables
quick reference search across a large-scale storage system by
comparing only the signatures (i.e., sketches) of data blocks.

In this work, we observe that existing post-deduplication
delta-compression techniques [75, 86] achieve significantly
lower data-reduction ratios than the optimal due to the high
false-negative rate (FNR) of LSH-based reference search. Our
analysis using six real-world workloads shows that, although
a state-of-the-art reference search technique [86] is effective
at identifying a very similar reference block (which thus pro-
vides a very high data-reduction ratio) for an incoming block,
it also fails to find any reference block for a large number of
incoming blocks (up to 75.5%) that actually have at least one
good reference block within the storage system. Tuning the
used LSH function may be able to reduce the high FNR in
reference search, but it would require significant human effort
to identify the best settings for each workload.

Our goal is to improve the space efficiency of a stor-
age system by increasing the accuracy of reference search
in post-deduplcation delta compression, thereby reducing
the gap between existing data-reduction techniques and
the optimal.1 To this end, we propose DeepSketch, a

1In this work, we focus on data reduction rather than other optimizations
(e.g., mitigation of performance/memory overheads), targeting systems where
space efficiency is the highest priority (e.g., archival or backup systems).

new machine learning (ML)-based data sketching mecha-
nism specialized for reference search in delta compression.
Our key idea is to use the learning-to-hash method [43, 80]
to automatically generate similar data signatures for any two
data blocks that would provide a high data-reduction ratio
when delta-compressed relative to each other.

For each incoming data block, DeepSketch generates the
block’s sketch using a deep neural network (DNN) model.
It performs DNN inference with the target data block as an
input of the DNN and uses the resulting activation values
in the DNN’s last hidden layer as the data block’s sketch.
We envision that DeepSketch’s DNN is pre-trained before
building or updating a DeepSketch-enabled system, using data
sets collected from other existing systems that store similar
(or the same) types of data.

While many prior works [10, 11, 48, 50, 70, 89] demon-
strate the high effectiveness of the learning-to-hash method
in various nearest-neighbor search applications (e.g., image
recognition and classification), applying the learning-to-hash
method to the reference search problem in post-deduplication
delta compression is not straightforward. A key problem is
that, unlike existing ML-based applications that deal with spe-
cific known data types (e.g., images and voices), DeepSketch
needs to process general binary data, which introduces two
key challenges. First, there is no well-defined labeled data or
semantic information (e.g., cats, dogs, and monkeys in image
classification) within our target data sets. Second, possible
bit patterns of a data block have an extremely high dimen-
sional space (e.g., 24,096×8 unique bit patterns for a 4-KiB
data block). Due to the high dimensionality of the target data
set, it is difficult to collect large enough data to train the DNN
with high inference accuracy using known training methods.

To address the above challenges, we develop a new method
to train the DNN of DeepSketch, which generates hash val-
ues suitable for reference search in post-deduplication delta
compression. We extend the traditional unsupervised learn-
ing approach [29] in three ways. First, based on the k-means
clustering algorithm [53], we design a new clustering method,
called dynamic k-means clustering (DK-Clustering), which ef-
fectively classifies high-dimensional data without any knowl-
edge of the number of clusters. Second, after clustering, we
ensure each cluster to have a sufficient number of data blocks
by adding data blocks slightly and randomly modified from
each cluster’s representative block. Doing so prevents DNN
training from being biased towards some specific data pat-
terns that occur frequently. Third, we perform two-stage DNN
training to enable DeepSketch to generate a data block’s hash
value. We first train a DNN to classify data blocks into the
clusters formed by DK-Clustering and then transfer the knowl-
edge of the trained DNN to build the learning-to-hash network
that generates the hash values (i.e., sketches) of data blocks.

We integrate our DeepSketch engine into a state-of-the-art
post-deduplication delta-compression technique [86]. Unlike
existing techniques that aim to find a reference block whose
sketch exactly matches that of the incoming block, we ex-
ploit a state-of-the-art approximate nearest-neighbor search

algorithm [16]. Doing so allows DeepSketch to tolerate small
differences within data sketches (i.e., it can identify similar
blocks even when the blocks’ sketches are different), thereby
increasing the chance of delta compression for an incoming
data block. Our evaluation using eleven real-world workloads
shows that DeepSketch improves the data-reduction ratio by
up to 33% (21% on average) over the state-of-the-art baseline.

This paper makes the following key contributions:
• We propose DeepSketch, the first machine learning-based

reference search technique for post-deduplication delta
compression. We demonstrate that the learning-to-hash
method can be an effective solution to generate delta-
compression-aware data signatures for general binary data.

• We introduce a new training method that allows DeepSketch
to learn delta-compression-aware data representation for an
extremely high-dimensional data set.

• We integrate DeepSketch into the state-of-the-art post-
deduplication delta-compression technique [86]. Evaluation
results using eleven real-world workloads show that DeepS-
ketch improves the data-reduction ratio by up to 33% (21%
on average) compared to the state-of-the-art baseline.

2 Background
We provide brief background on data-reduction techniques in
storage systems necessary to understand the rest of the paper.

2.1 Data Reduction in Storage Systems
There are three major data-reduction approaches: 1) data dedu-
plication, 2) lossless compression, and 3) delta compression.
Data Deduplication. Data deduplication [12, 21, 22, 26, 36,
49, 59, 62, 67, 76, 88] reduces the amount of data physically
written to storage devices by eliminating duplicate data in the
storage system. In data deduplication, an incoming data block
is not physically written if it has the same data content as a
data block previously stored in the storage system. Instead,
the storage system maintains a table that stores mapping infor-
mation between such a deduplicated block and the previously-
stored block with the same content (called reference), so that
future reads to any deduplicated blocks can be serviced from
their reference. This mechanism allows data deduplication to
store only a single copy of any block-granularity unique data
content in the storage system.

To quickly identify an incoming block’s reference, dedu-
plication uses a strong hash function (e.g., SHA1 [78] or
MD5 [69]) to generate a data block’s unique signature, com-
monly called a fingerprint. Given two blocks, deduplication
determines whether or not they have the same content, by
comparing only the two blocks’ fingerprints. To avoid any
data loss due to hash collision, it is common practice for
deduplication to use a strong hash function to generate fin-
gerprints whose collision rate is lower than the uncorrectable
bit-error rate (UBER) requirement of a disk (e.g., < 10−15 to
10−16 [17, 25, 26, 67]).
Lossless Compression. Data compression [31, 74, 90] is a
fundamental method to reduce the size of data in computing
systems. Given a data block, it encodes the block’s content to

2

be represented by a smaller number of bits in a manner that
replaces repetitive bit patterns with smaller metadata or sym-
bols. Doing so results in an increase in the entropy [74] of the
compressed data. For a data block with low entropy (i.e., the
block contains many repeated bit patterns), lossless compres-
sion can achieve a high data-reduction ratio (i.e., Original
Data Size / Compressed Data Size).
Delta Compression. Delta compression [3,8,64,75,81,82,86]
eliminates redundant bit patterns that coexist in two different
blocks. It stores only either of the two blocks and the differ-
ence (i.e., delta) between the two blocks. Leveraging the sim-
ilarity of two different data blocks enables delta compression
to achieve higher data reduction over 1) deduplication, which
removes only identical data blocks, and 2) lossless compres-
sion, which eliminates redundancy only within a block and
does not work well with high-entropy data. For this reason,
delta compression has gained increasing attention in recent
studies [64, 75, 82, 86] as a complementary method bridging
deduplication and lossless compression.

A key challenge for delta compression in large-capacity
storage systems is how to find a good reference block that
provides a high data-reduction ratio for each incoming block.
Designing a reference search technique for delta compression
is similar to solving a nearest-neighbor search problem, as its
goal is to find the most similar data block (which does not
have to be an exact match) within a large data set for a given
incoming block. The most widely-used approach is to use
locality sensitive hashing (LSH) [7,34] to generate a sketch of
a block [64,75,82,86], which is a more approximate signature
than the block’s fingerprint (used in deduplication for exact-
match searching). An LSH function L(di) is designed to hash
data di, such that the more similar the given data d1 and d2,
the lower the bit-pattern difference between L(d1) and L(d2).
LSH-based data sketching enables quick reference search by
comparing only the sketches of data blocks.

2.2 Combined Data-Reduction Technique
For systems where storage efficiency is the paramount re-
quirement, prior works propose to combine the three major
data-reduction techniques, called post-deduplication delta
compression. Figure 1 depicts the overall architecture of a
storage system that adopts post-deduplication delta compres-
sion [75, 86] to perform deduplication (1 – 3), delta com-
pression (4 – 7), and lossless compression (8) in order. A
data-reduction module (DRM), which can be implemented
as an intermediate layer between a file system and storage
devices, performs post-deduplication delta compression for a
write request to reduce its size. For a read request, it looks for
the location of the corresponding compressed data in storage
devices and returns the decompressed data. To this end, the
DRM maintains a fingerprint (FP) store and a sketch (SK)
store for quick reference search for deduplication and delta
compression, respectively, along with a reference (Ref.) table
to store the mapping information between each deduplicated
or delta-compressed block and its reference block.

For each incoming data block, the DRM 1 first checks

Data	Reduction	Module	(DRM)

FP	Store

fp(X)=0x32
fp(Y)=0x73
fp(Z)=0xA2

Data FP

B 0x47
C 0xF0
Y 0x73
Z 0xA2
⋯ ⋯

A 0x32

SK	Store
Data SK
A 0x12

C 0x59
Z 0x3F

⋯ ⋯

B 0xC8

Ref.	Table
Data
X
Y

⋯

Ref.
A
B

⋯

T
0
1

⋯

❶

sk(Y)=0xC8
sk(Z)=0x3F
❹

❼

Storage	Device

A B
Y

⋯

C
Z

❺ ❽

File	System
A B
C X
Y Z
⋯ ⋯

ZYX

Y Z

❸

❻
❷

DRM

fp:	fingerprint,	sk:	sketch,	T:	ref.	type	(0:	dedup.,	1:	delta-comp.)		

Figure 1: Overview of post-deduplication delta compression.
if the storage system already contains a data block with the
same content by referring to the FP store. If the incoming
block’s fingerprint matches one in the FP store (e.g., block X
matching block A in Figure 1), the DRM skips writing the
block to the storage device and 2 just updates its mapping
information in the reference table in order to redirect future
reads for the incoming block to the matching reference block.
To use non-deduplicated blocks (e.g., blocks Y and Z) as
potential reference data for deduplication in the future, the
DRM 3 writes their fingerprints into the FP store.

If there is no matching fingerprint in the FP store, the DRM
4 searches for matching sketches in the SK store to find a ref-
erence block for delta compression. When it finds a reference
block (e.g., block B for block Y), the DRM 5 performs delta
compression with the reference and stores the compressed
data. There is a possibility of having multiple matching ref-
erences in the SK store (see Section 3.1). In such a case, the
DRM usually selects the first-found candidate (called first-fit
selection) [75, 86]. The DRM then 6 updates the reference
table to map the incoming block to the reference block so
that it can decompress the delta-compressed data using the
reference block for future read requests. If no matching sketch
is found in the SK store (e.g., block Z), the DRM 7 adds the
incoming block’s sketch into the SK store to use the incoming
block as a potential reference block for delta compression in
the future. Finally, the DRM 8 compresses the block with a
lossless compression algorithm and stores the result.

3 Motivation
In this section, we discuss 1) the limitations of existing LSH-
based post-deduplication delta-compression techniques [75,
86] and 2) the potential of the learning-to-hash method [43,80]
for more accurate reference search in delta compression.

3.1 Limitations of LSH-Based Sketching
As explained in Section 2.1, LSH-based data sketching en-
ables quick search for a reference block (i.e., reference search)
in post-deduplication delta compression. Figure 2 describes
the high-level idea of state-of-the-art LSH-based sketching
schemes [75, 86], which we call super-feature data sketching
(SFSketch). SFSketch generates a data block’s sketch using m
features extracted from the block (e.g., m= 12 in Figure 2). To
extract a feature Fi(A) of block A (0 ≤ i ≤ m−1), as shown in

3

SF0(B)	= T(F 0(B),	F1(B),	F2(B),	F3(B))

w

W0 Wj WL–w

Sliding	&	hashing

Feature Fi(A) =	Max(Hi(Wj))

Block	A

F0(A) F1(A) F2(A) F11(A)⋯

Block	B
F0(B) F2(B) F11(B)⋯

Delta

F1(B)

F3(A)

F3(B)

SF0(A)

Figure 2: An example of LSH-based sketching.

Figure 2 (right), SFSketch calculates the hash value Hi(W j) of
each sliding window W j, where j is the starting byte position
of the window in the block. Given a block size of L and a win-
dow size of w, (L−w+1) hash values are calculated in total,
and the maximum hash value Max(Hi(Wj)) is selected as fea-
ture Fi(A). SFSketch repeats this process to extract m features
using a different hash function for each feature (i.e., Hi for Fi)
and then builds N super-features (SFs) by transposing the m
features (e.g., given m = 12 and N = 3, SFk(A) = T (F4k(A),
F4k+1(A), F4k+2(A), F4k+3(A)), where 0≤k≤2).

Using multiple SFs as the sketch of a data block enables
SFSketch to tune the accuracy of reference search by chang-
ing the matching criteria (i.e., criteria for judging the similar-
ity of given two blocks). Consider the example of Figure 2
where block A’s data content is almost the same as block
B, except for the red regions marked as Delta. Suppose that,
due to the small differences between blocks A and B, every
hash function Hi other than H1 has the same maximum value
Max(Hi(Wj)) for blocks A and B, i.e., every feature Fi except
F1 is identical between blocks A and B. In such a case, SF0(A)
does not match SF0(B) (∵ F1(A) ̸= F1(B)), while all the other
SFs are identical between blocks A and B. The two blocks can
be considered either similar or not depending on the matching
criteria; SFSketch may either decide that the two blocks are
dissimilar because there exists a different SF or judge that
block A resembles block B since their other two SFs (i.e., SF1
and SF2) match each other. There are many possible matching
criteria, but to maximize the data-reduction ratio, existing
SFSketch-based techniques [75, 86] consider that two blocks
are similar if there exists at least one matching SF.

While existing SFSketch-based delta-compression tech-
niques provide significant improvement in data reduction
compared to a simple combination of deduplication and loss-
less compression [75, 86], we observe that SFSketch-based
reference search often fails to identify a good reference block
that can provide a high data-reduction ratio for an incoming
block. To show this, we compare a state-of-the-art SFSketch-
based reference search technique [86] to brute-force search
that performs delta compression of an incoming block with
every stored block and selects the stored block that provides
the highest data-reduction ratio as the incoming block’s refer-
ence.2 For our evaluation, we use 4,090,975 4-KiB data blocks
collected from six different workloads in real systems (see
Section 5.1 for our evaluation methodology and workloads).

2While brute-force search guarantees the highest data-reduction ratio for
a workload, it is infeasible to use due to its prohibitively high performance
overhead. For example, in our evaluation environments (see Section 5.1 for
more detail), brute-force search takes more than 300 hours for the Install
trace that writes a total of 8.83-GB data to the storage system.

We use two major metrics to evaluate the accuracy of SFS-
ketch compared to brute-force search: 1) false-negative rate
(FNR), the probability of identifying no reference block for
an incoming data block even though brute-force search can
find one, and 2) false-positive rate (FPR), the probability
of identifying a reference block different from what brute-
force search finds. For FN cases, SFSketch compresses the
data block using the LZ4 algorithm [15] because there is no
reference block. For FP cases, SFSketch uses the Xdelta al-
gorithm [56, 57] to perform delta compression of the block
with the reference block that it identifies. For both cases, we
measure the average data-reduction ratio (DRR) and compare
it with that of brute-force search. Table 1 shows FNR, FPR,
and DRR for FN/FP cases of the SFSketch-based reference
search. DRR is normalized to that of brute-force search.

Table 1: Accuracy of LSH-based reference search [86].
Workload PC Install Update Synth Sensor Web Avg.

FNR 35.3% 51.8% 56.3% 75.5% 48.1% 5.5% 35.7%
FPR 21.1% 15.8% 11.3% 14.1% 47.3% 60.6% 23.1%

DRR FN cases 0.474 0.488 0.578 0.639 0.567 0.539 0.562
FP cases 0.621 0.608 0.644 0.683 0.798 0.674 0.669

We make three observations from Table 1. First, the exist-
ing SFSketch-based technique suffers from high FNR (up to
75.5% and 35.7% on average), failing to find any reference
block for many incoming blocks that actually have one or
more reference blocks. Except for Web, SFSketch’s FNR is
higher than 35% for every workload. For FN cases, each data
block is compressed by the LZ4 algorithm, and thus its DRR
is considerably lower compared to when the block is delta-
compressed with the reference block identified by brute-force
search. As shown in Table 1, the normalized DRR in FN cases
is 0.562 on average, showing that SFSketch provides 43.8%
lower data reduction compared to the optimal for the FN cases
(i.e., for 35.7% of the entire data blocks on average).

Second, the SFSketch-based reference search frequently
chooses a sub-optimal reference in some workloads, e.g., Sen-
sor and Web, which have a FPR of 47.3% and 60.6%, respec-
tively. The sub-optimal selection of reference blocks results in
lower data-reduction ratios over brute-force search. As shown
in the last row in Table 1, the normalized DRR in FP cases is
0.669 on average, which means that SFSketch provides 33.1%
lower data reduction compared to the optimal for the FP cases
(i.e., for 23.1% of the entire data blocks).

Third, FN cases are more common and have more negative
impact on the DRR than FP cases. On average, FN cases occur
for 35.7% of the incoming blocks, whereas FP cases occur
for 23.1%. When a FN case happens, the data-reduction ratio
using LZ4 is lower than when an FP case happens, which still
uses delta compression albeit with a sub-optimal reference
block; on average, the normalized DRR in FP cases (0.669)
is 19% higher than that in FN cases (0.562).

The limited accuracy of SFSketch mainly stems from its
inherent property; SFSketch is highly optimized to identify
only very similar data. Considering the SF-based sketching
process explained in Figure 2, it is highly unlikely that two
blocks have at least one matching SF, unless they are very

4

similar. This property enables SFSketch to provide a high data-
reduction ratio even when it selects a sub-optimal reference
block for an incoming block (i.e., for FP cases). However, it
also causes SFSketch to frequently fail to find a sufficiently
good reference block that is not very similar to the incoming
block but is still beneficial for improving the data-reduction
ratio.

It is challenging to optimize existing SF-based sketch algo-
rithms to increase both FPR and FNR at the same time. The
accuracy of SFSketch highly depends on its settings such as
the number of features (m), the number of super features (N),
the sliding window size (w), and the matching criteria. For
example, under a matching criterion where two blocks are
considered similar if they have at least one common SF, in-
creasing the number of SFs (i.e., N) for each data block would
reduce overall FNR. However, at the same time, it might in-
crease FPR and reduce data-reduction ratios in FP cases be-
cause more dissimilar blocks could be chosen as reference
blocks. Moreover, as shown in Table 1, the FNR/FPR trend
of SFSketch-based search greatly varies across workloads,
which makes it even more difficult to find the best configura-
tion on average as well as on a per-workload basis. Instead, we
investigate applicability of deep-learning algorithms for data
sketching in delta compression, which can reduce the human
effort for developing a new sketching scheme or fine-tuning
existing techniques for different workloads.

3.2 Learning-to-Hash Method
The learning-to-hash method [43, 80] is a promising machine
learning (ML)-based approach for the nearest-neighbor search
problem. It trains a neural network (NN) to generate a hash
value for a given input data block such that any two similar
data blocks have similar hash values. Many prior works [10,
11,23,47,48,50,89] demonstrate the high effectiveness of the
learning-to-hash method at nearest-neighbor search in various
applications, such as image recognition and classification.

Figure 3 depicts how a representative learning-to-hash
scheme [50] generates a binary hash value of an image for
content-based image retrieval. It extracts the hash value of an
input image from the last hidden layer (e.g., HLN in Figure 3)
of a NN that is trained to classify the input image to one of C
possible classes. During inference, the activations in the last
hidden layer of two similar images are likely to be largely the
same if the two images belong to the same class. Therefore,
their hash values should also be similar because they are di-
rectly extracted from the last layer by translating the output
of each activation into a binary (‘1’ or ‘0’).

The learning-to-hash method has potential to be used for

Output	
Layer

Hidden	Layers
HL1 HL2 ⋯ HLN

Input	
Layer

⋯⋯ ⋯ ⋯ ⋯⋯

C

Image	set
(#	of	classes:	C)

A,	B	=	Eagle

Generate	a	binary	hash	h(X)
à h(A) ≈	h(B)

A

B

Figure 3: Learning-to-hash for image retrieval.

reference block search in post-deduplication delta compres-
sion, another nearest-neighbor search problem. In particular,
rapid advances in machine learning have enabled learning-
based algorithms to outperform a human or human-made
heuristics in various problems, such as facial recognition [65],
speech recognition [83, 84], image classification [50], and
system optimizations (e.g., branch prediction [37, 38], mem-
ory scheduling [35], and prefetching [4]). These successful
examples motivate us to develop a learning-based sketching
scheme that could be more effective than existing LSH-based
sketching schemes relying on human-designed heuristics and
metrics.

4 DeepSketch
The key idea of DeepSketch is to use the learning-to-hash
method to generate similar data signatures (i.e., sketches) for
any two data blocks that would provide a high data-reduction
ratio when delta-compressed relative to each other. The main
difference of DeepSketch over the existing post-deduplication
delta-compression approach [75, 86] (described in Figure 1)
is that DeepSketch generates a data block’s sketch by using a
deep neural network (DNN) model, instead of using an LSH
function (e.g., sk(X) in Figure 1). For each incoming data
block, DeepSketch performs DNN inference with the block
as input and uses the resulting activation values in the DNN’s
last hidden layer as the block’s sketch.

We envision that DeepSketch’s DNN is pre-trained offline
in other machines with more powerful computation resources
before building or updating a storage machine. For example,
to adopt DeepSketch in a new storage server of a data center,
one can train DeepSketch’s DNN using randomly-selected
data blocks from existing storage servers that contain specific
types of data (e.g., databases, images, web caching, etc.) ex-
pected to be stored in the new storage server. Similarly, to
further enhance the accuracy of DeepSketch, one can retrain
DeepSketch’s DNN and use the enhanced DNN to build new
storage servers or reorganize existing ones.

While the high-level idea may sound simple, applying
the learning-to-hash method for reference search in post-
deduplication delta compression is not straightforward. This
is because DeepSketch needs to deal with general binary
data, which introduces the following two technical challenges:
Challenge 1. Lack of Semantic Information. The target data
set of DeepSketch can contain any data from various applica-
tions, such as text, images, binary executable files, and so on.
Compared to existing learning-to-hash approaches focusing
on pre-categorized data (e.g., Imagenet [20], CIFAR [42], and
MNIST [44]), DeepSketch needs to process a much wider
range of data without any well-defined semantic information
about the delta-compressibility of data blocks.
Challenge 2. High Dimensional Space. The lack of seman-
tic information in DeepSketch’s target data sets leads us to
perform unsupervised learning that is used for drawing infer-
ences from a data set without labeled information. The most
common unsupervised learning approach is to use a clustering
algorithm that groups the target data set according to a certain

5

measure, e.g., similarity of bit patterns in our case. However,
possible bit patterns of a data block for DeepSketch have
extremely high dimensional space (e.g., 24,096×8 assuming a
4-KiB data block), which makes it difficult to 1) set a proper
number of final clusters and 2) collect a data set large enough
to cover all possible data patterns for a clustering algorithm.

To address the above challenges, we develop a new clus-
tering algorithm, called dynamic k-means clustering (DK-
Clustering), which groups data blocks that would provide
high delta-compression ratios when delta-compressed relative
to each other (Section 4.1). To cope with potential groups
of data blocks that are missing in the collected data sets,
after clustering, we generate new data blocks by randomly
and slightly modifying existing blocks. We then generalize
the understanding of the similarity relationship between data
blocks using the learning-to-hash method, so that DeepS-
ketch can generate a learning-based data sketch for any given
block (Section 4.2). With the sketch values computed by the
learning-to-hash model, DeepSketch identifies the most sim-
ilar reference block to each incoming block based on an ap-
proximate nearest-neighbor search technique (Section 4.3).
We also perform hyper-parameter exploration for our DNN
model to find the appropriate sketch size (Section 4.4).

4.1 Dynamic K-Means Clustering
DK-Clustering is based on the existing k-means clustering
algorithm [53] that partitions a data set into a given number
(i.e., k) of clusters such that each data element belongs to
the cluster with the nearest mean value. Unfortunately, in our
case, the value of k is initially unknown. Figuring out the
most suitable value for k by exploring a given data set is time-
consuming, considering the extremely high dimensionality of
the data set that DeepSketch deals with.

The hierarchical clustering algorithm [39] is known to be
suitable for such data sets, but it introduces prohibitive com-
putation and memory overheads for a large-size data set. To
be specific, the computation and space complexities of hierar-
chical clustering are O(N3) and O(N2), respectively, where
N is the number of data blocks to cluster. This means that, for
example, hierarchical clustering of a 4-GB data set requires
TB-scale memory space assuming a data block size of 4 KiB.

There exist a number of adaptive clustering algorithms
(e.g., [5, 28, 63, 72, 87]) that aim to cluster a data set with lim-
ited knowledge of the number of final clusters. Unfortunately,
using them for DNN training in DeepSketch is not straightfor-
ward either, because their efficiency also highly depends on
the initial parameters that are set either randomly or manually,
such as the initial number of clusters [28, 63, 72, 87] or the
distance threshold to determine the similarity of given two
objects [5]. Since the target data set of DeepSketch has an
extremely high dimensional space while there is no available
hint for good initial parameters, using existing techniques
could either require significant effort to find appropriate ini-
tial parameters or lead to limited accuracy and/or prohibitive
performance overhead due to the use of inappropriate initial
parameters.

To overcome the above challenges, we develop DK-
Clustering by extending the existing k-means clustering al-
gorithm with specialized initialization steps to dynamically
refine the value of k while clustering data without any hints for
initial parameters. Figure 4 describes the overall process of
DK-Clustering composed of two steps that are performed
iteratively: Step 1. coarse-grained clustering and Step 2.
fine-grained clustering. Coarse-grained clustering first cre-
ates rough clusters within an unlabeled data set, and then
fine-grained clustering adjusts the assignment of data blocks
by running a modified k-means clustering algorithm. Fine-
grained clustering returns a data block to be unlabeled if the
block is an outlier in the cluster, so that coarse-grained clus-
tering can re-categorize the block at the next iteration. After
Steps 1 and 2 converge, DK-Clustering repeats the above
steps for each cluster in a recursive manner, which enables
us to form fine-grained clusters that only contain data blocks
sufficiently similar to each other.

Step	1:	Coarse-grained	Clustering

Unlabeled	Data	Set	

Unlabeled
Clustered
Mean

δ

❹ Next	iteration:	Repeat	steps	1	and	2	for	the	same	data	set

❺ Recursive	clustering:
Repeat	DK-Clustering for	each	cluster	with	δ’	= δ +	ɑ

❶ Assign	unlabeled	blks ❷ Remove	outliers

Step	2:	Fine-grained	Clustering

❸ k-means	clustering

Figure 4: Overall procedure of dynamic k-means clustering.

Step 1: Coarse-Grained Clustering. Coarse-grained cluster-
ing takes a set of unlabeled blocks and clusters as the input,
and aims to categorize all the unlabeled blocks. Initially, there
exist only unlabeled blocks but no cluster, so DK-Clustering
creates a new cluster and assigns the first block as the repre-
sentative block (i.e., mean) of the cluster. After that, for each
unlabeled block, DK-Clustering measures the data-reduction
ratio when the block is delta-compressed with the mean of
each cluster through the target delta-compression algorithm
(e.g., Xdelta [56,57]). DK-Clustering selects the cluster whose
mean provides the highest data-reduction ratio for the unla-
beled data block. If the data-reduction ratio is higher than a
threshold δ, DK-Clustering adds the unlabeled block to the
selected cluster. Otherwise, it creates a new cluster, and the
unlabeled block becomes the new cluster’s mean (1 in Fig-
ure 4). After categorizing all unlabeled blocks, coarse-grained
clustering removes clusters that contain only a single data
block from the data set as there are likely no other blocks
sufficiently similar to that block (2).
Step 2: Fine-Grained Clustering. Since coarse-grained clus-
tering roughly assigns unlabeled blocks to clusters, it cannot
guarantee that all the data blocks belonging to the same clus-
ter are sufficiently similar to each other. To address this, DK-
Clustering performs fine-grained clustering for the resulting
clusters from coarse-grained clustering. Fine-grained cluster-
ing performs a variant of k-means clustering, adjusting the

6

mean of each cluster and re-assigning each data block to the
cluster containing the nearest mean (3). Fine-grained cluster-
ing operates differently from the typical k-means clustering in
three aspects. First, instead of Euclidean distance [19], it uses
the delta-compression ratio of two data blocks as the distance
function. Second, it derives a cluster’s mean by selecting
the block that provides the highest average data-reduction
ratio when delta-compressed relative to each of the other
blocks in the cluster. Third, if there is a data block whose
delta-compression ratio when delta-compressed relative to the
cluster’s mean is lower than the threshold δ, DK-Clustering
excludes the block from the cluster and considers it as an
unlabeled block. After finishing fine-grained clustering on all
the clusters, DK-Clustering repeats Steps 1 and 2 over all the
clusters until no unlabeled data blocks exist (4).
Step 3: Recursive Clustering. Fine-grained clustering guar-
antees that every resulting data block belongs to an appro-
priate cluster where the data block provides a data-reduction
ratio higher than the given threshold δ when delta-compressed
relative to the cluster’s mean. Even though a sufficiently high
value for δ would allow DK-Clustering to group only simi-
lar data blocks into the same cluster, other values for δ can
provide better clustering results. In order to automatically
find the best δ for a data set, once DK-Clustering reaches
the convergence with a given threshold δ, it performs Steps 1
and 2 for each cluster using a new threshold δ′ = δ+α in a
recursive manner (5). Data blocks assigned to each cluster
are considered unlabelled again for the next recursion with the
new threshold δ′. The recursion terminates when splitting a
cluster shows no more benefit in improving the data-reduction
ratio. More specifically, DK-Clustering stops the recursion
for a cluster if the average data-reduction ratio of data blocks
in the cluster is similar or lower than the average ratio of
sub-clusters spawned from the cluster.
DK-Clustering Complexity. The space complexity of DK-
Clustering is O(N) since it only requires storing per-block
information about which cluster the block belongs to. The
computation complexity of DK-Clustering is O(N ×KF)+
O(N2/KC) < O(N2), where KC and KF are the number of
total clusters after coarse-grained and fine-grained clustering
steps, respectively. Although the number of iterations for DK-
Clustering can vary depending on workload, DK-Clustering
finishes within up to eight iterations for our training data sets.
Note that, even for an extreme case where DK-Clustering
requires a large number of iterations, we can easily limit
the maximum number of iterations at minimal degradation
in clustering quality. For example, one can set a threshold
distance to finish DK-Clustering once it groups all data blocks
such that any data block’s distance from the corresponding
cluster’s mean is lower than the threshold distance.

4.2 Neural-Network Training
Figure 5 shows our method to train a DNN model for DeepS-
ketch to generate a data block’s sketch, which consists of two
steps. In the first step, we train a classification model (1)
using the CTRN clusters formed by DK-Clustering as differ-

Convolutional	Layers Dense Layers

⋯

N=4,096

⋯

N=512

⋯

N=CTRN

⋯

N=4,096

⋯

N=512

⋯

⋯

N=B	

❶ Classification	Model

❷ Hash	Network	Model

Input	Block	(4	KiB)

8 Channels
⋯

K=3

Batch norm.	&	max	pooling	(K=2)

⋯

⋯

K=3
16 Channels

K=3
⋯

⋯
32 Channels

⋯

Ta
rg
e	
Cl
as
s	
(C
lu
st
er
)

Ta
rg
e	
Cl
as
s	
(C
lu
st
er
)

Transfer	knowledge	(learned	weights)

N=CTRNHead	
Layer

Hash	
Layer

Batch norm.	&	max	pooling	(K=2)

Batch norm.	&	max	pooling	(K=2)

Figure 5: NN models of DeepSketch.

ent target classes. The first part consists of three standard
1D convolutional layers applying the max pooling and batch
normalization techniques, which capture spatial locality of
neighbor bytes within the data block. The network is then
connected to dense layers to learn the relationship between
the extracted spatial features and the target class.3

After training the classification model, in the second step,
we transfer the learned knowledge of the classification model
to a hash network model (2). We employ a state-of-the-art
learning-to-hash technique called GreedyHash [79]. We first
initialize the hash network with the weights of the classifica-
tion model. Instead of using the last layer of the classification
model, we train the hash network with two different layers, a
hash layer and a head layer, each of which learns the binary
hash and class likelihood, respectively.

A key challenge in NN training for DeepSketch is that data
blocks are not uniformly distributed over CTRN clusters. In
our data set, the largest 10% clusters contain 47.93% of the
total data blocks. It would render training of the NN to be
significantly biased towards specific bit patterns. To address
this, we resize each of CTRN clusters to have the same number
of NBLK blocks by 1) randomly selecting NBLK blocks within
a cluster containing more blocks than other clusters and 2)
adding data blocks randomly and slightly modified from ones
in a cluster containing fewer blocks.

Once training the hash network, the hash layer yields the
B-bit representation for an input block, i.e., the input block’s
sketch, allowing any two similar data blocks to have similar
sketches with low Hamming distance. Note that, even if two
data blocks do not belong to any of CTRN clusters, we can
infer their binary hash values based on the likelihood that each
block belongs to the clusters, which dramatically improves
the adaptability of our NN model over various data sets.

3We explore multiple NN structures and choose the one that provides
the best classification accuracy and data-reduction ratio (shown in Figure 5).
For example, when using a much simpler multi-layer perceptron (MLP)
networks [24], DeepSketch hardly provides data-reduction benefits (less than
1%) over existing SF-based techniques. Adding the number of dense layers
in the classification model in Figure 5 does not improve classification quality,
either. We discuss detailed results for hyper-parameter search in Section 4.4.

7

4.3 Reference Selection
DeepSketch identifies whether or not any two given data
blocks are similar by comparing the two blocks’ sketches
generated from the hash network model. A key challenge here
is that the traditional exact-matching-based search method
(which uses a hash table for the SK store) is not effective for
the learning-to-hash model. For example, the hash network
model may generate similar but few-bit different sketches for
some blocks beneficial to be delta-compressed, which causes
an exact-matching-based search method to misjudge those
blocks to be dissimilar.

To address this issue, we use the approximate nearest-
neighbor search (ANN) technique. Unlike the standard exact
nearest-neighbor search, ANN techniques provide a scalable
and performance-efficient way to find the most similar values
by relaxing search conditions. In particular, we use the NGT
library [16] that supports searching with high-dimensional
binary data using neighborhood graphs and tree indexing.

Figure 6 illustrates the reference selection procedure of
DeepSketch. For each incoming block, DeepSketch first com-
putes its sketch, H, using the hash network model. It then
searches for the similar block from two SK stores. The first
SK store utilizes the ANN technique, and DeepSketch queries
it with H to get the data block with the most similar sketch, Ĥ,
in the ANN model. The other SK store buffers the sketches of
R most-recently-written blocks. Let ∆(H,Ĥ) be the Hamming
distance between the two hash values. For each recent block
in the buffer store, DeepSketch checks if there is a block with
a Hamming distance smaller than ∆(H,Ĥ). If there exists,
DeepSketch chooses the block from the buffer store as the
reference for the incoming block. Otherwise, it uses the block
from the ANN-based SK store (i.e., the block whose sketch
is Ĥ) as the reference.

HashNetwork

In
pu
t	B
lo
ck
(4
Ki
B) 𝑯:	B-bit Sketch	

ANN	ModelQuery

"𝑯 Sketch	
Buffer

…

𝑹

Find	the	minimum
Hamming	distance

Re
fe
re
nc
e

Flow	to	find	the	reference	block	with	the	minimal	Hamming	distance	in	the	hash	value
Flow	to	maintain	the	recent	hash	values	and	update	the	ANN	model

Update	the	ANN	model	

Insert

Figure 6: Overview of the reference selection procedure.

The underlying reason for using the two SK stores is that,
under the current implementation using the NGT library, up-
dating the ANN model takes a non-negligible amount of time.
To avoid frequent updates of the data structure that would hurt
the performance of DeepSketch, we design DeepSketch to
update the ANN model in a batch by buffering the sketches of
recently-written data blocks. When the number of sketches in
the buffer exceeds a threshold TBLK (e.g., 128 in our default
settings), DeepSketch flushes the buffered sketches to the
ANN-based SK store. Note that it is important to check the
sketch buffer in order to maximize the data-reduction ratio of
DeepSketch. In our evaluation, 13.8% of the reference blocks
are found in the sketch buffer on average (up to 33.8%).

4.4 Hyper-Parameter Exploration
This section presents our hyper-parameter exploration for
DeepSketch to achieve high accuracy in reference search with
a convolutional hash network.
Classification Model. As discussed in Section 4.2, the DNN
training procedure of DeepSketch has two steps to train the
classification model and the hash network model, respec-
tively. To generate accurate sketches of data blocks, the
classification model should predict the correct target classes
(i.e., the clusters formed by DK-Clustering). We identify
the best hyper-parameters for the proposed classification
model using the standard machine learning practice of the
grid search along with nested cross-validation. We choose
the number of the convolutional and dense layers from the
grid ⟨1,2,3⟩, the number of the convolution channels size
from ⟨8,16,32,64⟩, the number of neurons for each dense
layer from ⟨512,1,024,2,048,4,096⟩, the dropout rate for
the dense layers from ⟨0.0,0.1,0.2,0.5⟩, and the learning rate
from ⟨0.01,0.02,0.005,0.1,0.5⟩. We utilize ReLU for the ac-
tivation function for each layer and train the model with the
Adam optimizer [41]. We use 10% of samples in our data sets
for training and the remaining 90% for testing. Finally, we
select the proposed classification model structure that shows
the best testing accuracy in the cross-validation.

Figure 7 shows the loss and testing accuracy changes over
training epochs for the classification model. The proposed
classification model accurately predicts the target cluster iden-
tified in DK-Clustering even though the data sets used in
our evaluation has a relatively large number of the clusters,
CTRN = 34,025. After training with 350 epochs, the model
training procedure sufficiently converges, achieving 93.42%
for Top-1 and 96.02% for Top-5 accuracy. It implies that the
deep learning method itself can accurately identify similar
blocks for an incoming block without any other information.

50%

60%
70%
80%
90%

100%

0

2
4
6
8

10

0 50 100 150 200 250 300 350

Ac
cu
ra
cy
	(%

)

Lo
ss

Epoch

Loss Top-1	Acc. Top-5	Acc.

Figure 7: Loss and accuracy of classification model.

Hash Network Model. Next, we train the hash network model
while changing the sketch size B. With the smaller B, similar
data blocks would have a higher chance to have the same hash
value, but it also increases the false-positive rate, i.e., dissimi-
lar blocks belonging to different clusters would have the same
hash value. One may set the number of bits with a sufficiently
large number, but doing so increases the memory overhead
for the SK store and the computation time for ANN search
and update processes.

To determine the best sketch size, we verify when the hash
network model could achieve the classification model’s origi-
nal accuracy. Recall that the hash network model learns both

8

the hash coding and classification at the same time. Thus,
we can verify whether it correctly classifies the target class
by checking the last head layer’s activations. Figure 8 sum-
marizes our evaluation results. We evaluate three candidate
values for B, 32, 64, and 128, over different learning rates
λ. Note that the model does not converge when B = 128
and λ = 0.005, so we omit the results. The results show that
the hash network model does not recover the accuracy of
the classification model with the small hash bits, 32 and 64,
since the representation capability of the hash coding is in-
sufficient. When B = 128, we observe that the hash network
model also predicts the target clusters with a high accuracy,
e.g., it achieves the Top-5 accuracy of 96.92% with λ = 0.002,
exceeding the original target accuracy of the classification
model. Thus, we decide to use B = 128 for our implementa-
tion of DeepSketch.

0
20
40
60
80
100

Ac
cu
ra
cy
		[
%
]

0
20
40
60
80
100

(a) Top–1 accuracy. (b) Top–5 accuracy.

Target	accuracy:	93.42%

Sketch	size	[#	of	bits]
32 64 128

Sketch	size	[#	of	bits]
32 64 128

Target	accuracy:	96.02%

𝜆 = 0.001
𝜆 = 0.002
𝜆 = 0.005

Figure 8: Accuracy of hash network model.

5 Evaluation
In this section, we evaluate the data-reduction benefits and
performance/memory overheads compared to the state-of-the-
art super feature (SF)-based sketching technique [86].

5.1 Methodology
Evaluation Platform. We develop a post-deduplication delta-
compression platform that is used as a general workbench to
implement and evaluate various reference search techniques.4

Our platform runs on a server machine that employs Intel’s
Xeon 4110 CPU with 8 cores running at 2.1 GHz, 128-GB
DDR4 DRAM, and 8 Samsung 860PRO 1-TB SSDs, while
using GeForce RTX 2080 for DNN inference in DeepSketch.

Our platform operates as described in Figure 1; for ev-
ery host write, it performs deduplication, delta compression,
and lossless compression in order. It maintains three main
data structures: 1) a fingerprint store for deduplication, 2)
a sketch store for delta compression, and 3) a reference ta-
ble for serving future read requests. The data block size is 4
KiB, which is identical to the default block size of widely-
used file systems [18, 60]. We use the MD5 cryptographic
hash algorithm [69] to generate a 128-bit fingerprint of an
incoming data block and the Xdelta delta-compression algo-
rithm [56,57] to compress a non-deduplicated data block with
its reference block. If there are multiple reference blocks simi-
lar to an incoming data block, our platform uses the first-found

4We open source our platform along with the data sets used in our
evaluation [1].

one as a reference by default. When the platform cannot find
a reference block, it compresses the incoming block using the
LZ4 algorithm [15]. We set the threshold for the number of
buffered sketches to invoke ANN updates to 128, which we
empirically determine to minimize the performance overhead
of exhaustive search and prevent too frequent ANN updates.
Baseline Technique.We compare DeepSketch against Fi-
nesse [86], the state-of-the-art SF-based technique that pro-
vides much higher throughput while retaining almost the
same data-reduction ratio compared to the representative post-
deduplication delta-compression technique [75]. We config-
ure Finesse using the default settings presented in [86], which
are already optimized and have been shown to provide the
best data-reduction efficiency with low overhead for a wide
range of workloads. Finesse generates three 192-bit SFs, each
of which can be obtained by transposing four features from
different hash functions (i.e., twelve (= 3 × 4) Rabin finger-
print functions [68] with a window size of 48 bytes are used in
total). It considers that two data blocks are similar if they have
one or more matching SFs, and selects the data block that has
the largest number of matching SFs with the incoming block
as the reference block for delta compression.
Workloads. We use eleven block I/O traces that we collect by
running different applications on real systems and capturing
write requests (including the requested data) to the storage
devices. There is no backup process during trace collection.
Table 2 summarizes the characteristics of the traces in terms
of the size, deduplication ratio (i.e., Orignial Data-Set Size /
Data-Set Size after Deduplication), and average compression
ratio (i.e., Original Data-Set Size / Compressed Data-Set
Size). We collect the I/O traces including contents written in
the storage system from real desktop machines and servers
while running different applications.

Table 2: Summary of the evaluated workloads.

Workload Description Size Dedup. Comp.
ratio ratio

PC General Ubuntu PC usage 1.57 GB 1.381 2.209
Install Installing & executing programs 8.83 GB 1.309 2.45
Update Updating & downloading SW packages 3.73 GB 1.249 2.116
Synth Synthesizing hardware modules 653 MB 1.898 2.083

Sensor Sensor data in semiconductor fabrication 91.2 MB 1.269 12.38
Web Web page caching 959 MB 1.9 6.84
SOF0 8.98 GB 1.007 2.088
SOF1 Storing Stack Overflow database [33] 13.6 GB 1.01 1.997
SOF2 as of 2010 (SOF0) and 2013 (SOF1–4) 13.6 GB 1.01 1.996
SOF3 13.6 GB 1.01 1.997
SOF4 13.6 GB 1.01 1.996

For DeepSketch, we use different sets of data for training
and testing. In order to evaluate the adaptability of DeepS-
ketch (i.e., how well DeepSketch operates under a workload
totally different from ones used in its DNN training), we
do not use the five traces collected from Stack Overflow
database [33] (SOF0–4) for training the DNN of DeepSketch.
By default, we train DeepSketch’s DNN model using a single
data set that contains 10% of all the remaining six traces and
evaluate DeepSketch with the remaining 90% of the six traces
and entire SOF traces.

9

5.2 Overall Data Reduction
Figure 9 shows the data-reduction ratio after post-dedup-
lication delta compression with the two reference search tech-
niques, Finesse and DeepSketch, under the eleven workloads.
We only present SOF1 as a representative result of SOF1-4 as
they show little variations lower than 0.01%. All values are
normalized to the data-reduction ratios of a baseline system
that performs only deduplication and lossless compression in
order, which we call no delta compression (noDC).

PC Install Update Synth Sensor Web SOF0 SOF1-4

Finesse DeepSketch

D
at
a–
re
du
ct
io
n	
ra
tio

1
1.1
1.2
1.3
1.4
1.5
5
6

1.001 1.001

Figure 9: Comparison of overall data-reduction ratio.

We make two main observations from Figure 9. First,
DeepSketch significantly outperforms Finesse in most work-
loads. Except for PC in which DeepSketch provides the sim-
ilar data-reduction ratio with Finesse, DeepSketch exhibits
up to 33% (on average 21%) higher data-reduction ratios
than Finesse. In particular, DeepSketch greatly improves the
data-reduction ratio by at least 24% over Finesse under SOF
workloads. This suggests that 1) DeepSketch can improve
the data-reduction efficiency for workloads that the state-of-
the-art SF-based search technique cannot effectively cope
with, and 2) DeepSketch has high adaptability (i.e., it can
work efficiently for data sets that are not used for the DNN
training). Second, DeepSketch provides higher data-reduction
ratios even for highly compressible workloads. Under Web,
Finesse significantly reduces the write traffic by about 80%
over noDC, but DeepSketch increases the data-reduction ratio
even further by 33% compared to Finesse. From our observa-
tions, we conclude that DeepSketch is an effective solution to
maximize the data-reduction ratio for various workloads.

5.3 Reference Search Pattern Analysis
To better understand how DeepSketch can outperform the
state-of-the-art technique, we analyze the reference-search
efficiency of DeepSketch and Finesse. Given a data block B,
we measure SFS(B) and SDS(B), the number of saved bytes by
Finesse and DeepSketch, respectively. SFS(B) (or SDS(B)) is
obtained by subtracting the size of B when delta-compressed
with the reference block found by Finesse (or DeepSketch)
from the original size of B (i.e., 4 KiB). The larger the SFS(B)
(or SDS(B)) value, the higher the reference-search efficiency.
If a reference search technique fails to find a reference block
for B, we compress it using the LZ4 algorithm and then use
the compressed size to calculate data saving.

Figure 10 plots coordinates of x = SFS(Bi) and y = SDS(Bi)
for a block Bi in each workload. If x = y, Finesse and DeepS-
ketch exhibit the same delta-compression ratio (highlighted
with a red line in Figure 10), which implies that they select the
same reference block. A coordinate (SFS(Bi), SDS(Bi)) above

x	=	SFS(Bi)

y	
=	
S D

S(
B i
)

(a) PC.

y	=	x

#	
of
	c
oo
rd
in
at
es

0
10
102
103
104

4,096

4,096

x	=	SFS(Bi)

y	
=	
S D

S(
B i
)

(b) Install.
x	=	SFS(Bi)

y	
=	
S D

S(
B i
)

(c) Update.

y	
=	
S D

S(
B i
)

y	
=	
S D

S(
B i
)

y	
=	
S D

S(
B i
)

y	
=	
S D

S(
B i
)

x	=	SFS(Bi)
(e) Sensor.

x	=	SFS(Bi)
(d) Synth.

x	=	SFS(Bi)
(f) Web.

x	=	SFS(Bi)
(g) SOF0.

x	=	SFS(Bi)
(i) SOF2.

x	=	SFS(Bi)
(h) SOF1.

x	=	SFS(Bi)
(j) SOF3.

x	=	SFS(Bi)
(k) SOF4.

y	
=	
S D

S(
B i
)

y	
=	
S D

S(
B i
)

y	
=	
S D

S(
B i
)

y	
=	
S D

S(
B i
)

Figure 10: Comparison of the reference-search pattern.

(or below) the line means that DeepSketch provides higher
(or lower) data-reduction ratio for block Bi than Finesse.

From Figure 10, we make three observations. First, as ex-
pected, DeepSketch provides higher data savings compared
to Finesse for a large number of blocks under every workload.
Second, despite the higher data savings of DeepSketch over Fi-
nesse in general, there are also a non-trivial number of blocks
for which Finesse selects better references, achieving higher
data savings than DeepSketch. Excluding the SOF work-
loads, Finesse selects higher-quality references compared to
DeepSketch for up to 11.8% of the total blocks. Third, DeepS-
ketch and Finesse show quite different patterns in reference
search. As shown in Figure 10, the coordinates in y > x region
(i.e., where DeepSketch outperforms Finesse) are close to the
line y = x, and at the same time, many of them are scattered
across a wide range of the region compared to the coordi-
nates in y < x region. On the other hand, a majority of the
coordinates in y < x region (i.e., where Finesse outperforms
DeepSketch) tend to have a very large y value (e.g., > 3,072).
These imply that, while Finesse is effective to find a refer-
ence highly similar to an input block, it also misses a number
of blocks that DeepSketch can find and use to improve the
data-reduction efficiency.

5.4 Combination with Existing Techniques
Our second and third observations in Section 5.3 motivate us
to combine DeepSketch with existing techniques to maximize
the data-reduction ratio. We design a storage system that em-
ploys both Finesse and DeepSketch. When the two techniques
find different reference blocks for an incoming block, the sys-
tem chooses the one that provides a higher data-reduction
ratio. Such an approach increases the memory and compu-
tation overheads for data sketching but would be desirable
for a system where data reduction is paramount (e.g., backup
systems). We leave the study of efficiently combining DeepS-
ketch with existing techniques as future work.

10

Figure 11 shows the combined approach’s data-reduction
benefits compared to when using either Finesse or DeepS-
ketch alone.5 We also measure the optimal data-reduction
ratio (i.e., when every data block is delta-compressed with
the best reference block found by brute-force search) for each
workload to understand room for improvement after applying
the combined approach. To emphasize the benefits of the com-
bined approach over the standalone techniques, we normalize
all the results in Figure 11 to Finesse.

PC Install Update Synth Sensor Web Avg.

DeepSketch Combined Optimal

D
at
a–
re
du
ct
io
n	
ra
tio

1

1.1
1.2
1.3

1.4
1.5

1.6 1.62

Figure 11: Data-reduction improvement of a combination of
DeepSketch and Finesse.

We observe that, as expected, the combined approach fur-
ther improves the data-reduction ratio compared to the two
standalone techniques under most workloads. The combined
approach achieves up to 38% and 6.6% (15% and 4.8% on av-
erage) data-reduction improvements over Finesse and DeepS-
ketch, respectively. We also observe that the combined ap-
proach can reduce the gap in data-reduction ratios between
the existing reference search techniques and the optimal. Al-
though there is still large room for improvement (i.e., up to
35% and 26% on average) even after applying the combined
approach, the combined approach reduces the gap by up to
81% (i.e., 62% → 9.6% under Web) and by 42% on average.
From our observations, we conclude that DeepSketch can also
be used as a useful method to complement the weakness of
existing post-deduplication delta-compression techniques.

5.5 Impact of Training Data-Set Quality
We evaluate the impact of the training data-set quality on
the data-reduction ratio of DeepSketch. Figure 12 shows
the average data-reduction ratio of DeepSketch for the en-
tire workloads listed in Table 2 when we use two different
types of training data sets. First, we evaluate how DeepS-
ketch’s benefit changes when we train its DNN model using
1%/2%/3%/5%/10% of the entire data sets (the blue line in
Figure 12). Second, we measure DeepSketch’s benefit when
we use 10% of requests only from Sensor for DNN training
(the dashed red line in Figure 12). When we use x% (< 10%)
of each trace for training, we use the remaining (100−x)% to
evaluate the data-reduction ratio of DeepSketch. All values in
Figure 12 are normalized to the data-reduction ratio obtained
when using 10% of the entire data sets for DNN training.

We make two observations from Figure 12. First, while a
larger training data set increases DeepSketch’s benefit, DeepS-
ketch can provide a fairly good data-reduction ratio even with

5We omit the results of the SOF workloads in Figure 11 because there is
no motivation to combine DeepSketch with Finesse under such workloads
for which Finesse provides negligible data reduction.

0.98

0.99

1

1% 2% 3% 5% 10%

N
or
m
al
iz
ed
	

da
ta
–r
ed
uc
ti
on
	r
at
io

Fraction	of	training	data

10%	of	Sensor

Figure 12: Effect of training data set on data-reduction ratio.
a very small training data set. Using only 1% of the traces
for DNN training provides 98.9% of the data-reduction ratio
obtained when using 10% of the traces. Second, DeepSketch
can provide a high data-reduction ratio even when we use
a training data set collected from a single trace. Compared
to when we use 10% of all traces for DNN training, using
10% of only Sensor decreases the data-reduction ratio by less
than 1%. Based on our observations, we conclude that it is
possible to train an effective DNN model for DeepSketch
with a limited data set, while providing high adaptability for
diverse input data sets.

To study the detailed impact of the training data-set quality,
we analyze how the sketches generated by DeepSketch change
with different training data sets. To this end, we measure
the average data-saving ratio (i.e., 1− Delta-Compressed
Data Size / Original Data Size) of delta-compressed blocks
depending on the Hamming distance between the sketches of
the input and reference blocks (i.e., ∆(H,Ĥ) in Section 4.3.)
Figure 13 shows the relationship between the data-saving ratio
and sketch Hamming distance for three different DNN models
trained with 10% of Sensor (10%-Sensor) and 1%/10% of
all traces (1%-All and 10%-All). In general, the higher the
data-saving ratio at a low sketch Hamming distance, the more
accurate the sketches generated by DeepSketch.

0.5
0.6
0.7
0.8
0.9
1

0 5 10 15

D
at
a	
sa
vi
ng
	r
at
io

Hamming	distance	b/w	sketches

10%-All
1%-All
10%-Sensor

Figure 13: Effect of training data set on sketch accuracy.

We identify the following two findings from Figure 13.
First, for all DNN models, DeepSketch provides extremely
high data saving (close to 1) when ∆(H,Ĥ) ≤ 2. The result
shows that all the three DNN models enable DeepSketch
to identify highly similar data blocks by generating almost
identical sketches. It is due to the nature of the DNN-based
learning-to-hash method: a DNN can be easily trained to
yield the same hash values for the data with negligible differ-
ences. Second, in 1%-All and 10%-Sensor, the data-reduction
ratio degrades more significantly as the Hamming distance
increases, compared to 10%-All. It suggests that we can fur-
ther improve the benefit of DeepSketch by increasing the
accuracy of the sketch generation with a better DNN model,
e.g., using high-quality data sets and/or advanced model ar-

11

chitectures. In the current version of DeepSketch, the ANN
model compensates for such potential accuracy loss by finding
sufficiently-good reference blocks with best efforts.

5.6 Overhead Analysis
Performance Overhead. Figure 14 shows the average
throughput of DeepSketch and the combined approach of
DeepSketch and Finesse under different workloads, normal-
ized to Finesse.6 DeepSketch and combined approach provide
up to 73.7% and 44.9% (44.6% and 28.4% on average across
all workloads) of the average throughput of Finesse. This
non-trivial performance overhead is due to the inherent trade-
off between the data-reduction ratio and throughput in post-
deduplication delta compression; performing delta compres-
sion for more data blocks would increase the data-reduction
ratio, but it comes at the cost of performance degradation
since delta compression takes more time compared to lossless
compression (e.g., in our current implementation, LZ4 takes
6.9 µs per block on average, which is less than 10% of the
average execution time of Xdelta).

PC Install Update Synth Sensor Web Avg.
0

0.2
0.4
0.6
0.8
1

Finesse DeepSketch Combined

N
or
m
.	t
hr
ou
gh
pu
t

42.4 M
B/s

39.5 M
B/s

38.6 M
B/s

33.5 M
B/s

39.7 M
B/s

58.6 M
B/s

41.4 M
B/s

Figure 14: Performance overhead of DeepSketch.
To better understand the performance overheads of DeepS-

ketch, we measure the average latency of each step per input
data block during the post-deduplication delta-compression
process. DeepSketch requires two modifications on existing
techniques, 1) replacing the SF-based sketching engine with
the DNN-based one and 2) using the ANN engine described
in Section 4.3 as the SK store. For fair comparison, we im-
plement the SK store of Finesse using the unordered-map
data structure that provides O(1) time complexity for lookup.
Figure 15 visualizes the fraction of the average time spent for
each step in the entire data-reduction process.

103.98	us

36.47	us 106.7	us 87.58	us47.71 us

LZ4	comp.
(4.7	us)

88.73	us 87.58	us

(a)
SK	generation SK	retrieval SK	update Xdelta comp.

292.71	us

(b)

Deduplication
(9.55	us)

Figure 15: Average latency for each data-reduction step in
(a) DeepSketch and (b) Finesse.

As shown in Figure 15, DeepSketch and Finesse operate
differently in only three steps of the entire data-reduction pro-
cess: 1) sketch generation for an incoming block, 2) sketch
retrieval from the SK store, and 3) sketch update to the SK

6Note that DNN training does not affect DeepSketch’s throughput be-
cause it can be performed offline as explained in Section 4. In our system
described in Section 5.1, DNN training (including DK-Clustering) takes less
than 4 hours with 300 epochs for our 1.6-GB training data set.

store. The other steps, including deduplication, Xdelta com-
pression, and LZ4 compression, are performed in the same
ways. Due to the simplicity of the hash network model net-
work and GPU acceleration, DeepSketch reduces the latency
of sketch generation from 88.73 µs to 36.47 µs (by 58.9%)
over Finesse. However, using the ANN engine significantly
increases the latencies for sketch retrieval and update, leading
to 55.1% increase in the total average latency over Finesse.

The performance overhead of DeepSketch over Finesse
is non-trivial, but it would not be a serious obstacle for its
wide adoption due to two reasons. First, we target a system
where data reduction is critically important so that DeepS-
ketch’s benefits outweigh its performance overheads. Second,
the performance overhead of DeepSketch can be mitigated
in several ways. For example, if the data-reduction process
is performed in background, its negative performance impact
could be relatively small. We can also leverage the paral-
lelism of multi-core CPUs to optimize software modules. For
example, the sketch update procedure can be performed in
parallel with other modules. This hides the cost of updating
sketches during the compression steps, thereby reducing the
performance overhead by 45.8% (i.e., 103.98 µs → 56.27 µs).
Memory Overhead. Like existing post-deduplication delta-
compression techniques [75, 86], DeepSketch inevitably re-
quires additional memory space for the sketch store. Despite
the smaller sketch size of DeepSketch compared to exist-
ing techniques [75, 86] (128 bits vs. 192 bits), DeepSketch’s
memory overhead might be unacceptable if it keeps track of
the sketches of all non-deduplicated data blocks. For exam-
ple, suppose that the data block size is 4 KiB, and 80% of
the stored data is unique (i.e., non-deduplicated). Then, the
required memory space for the sketch store is about 0.3%
(0.8×16/4,096) of the size of the stored data (e.g., around
100-GB memory space to work with 32-TB data).

However, the memory overhead would not be a signif-
icant obstacle to use DeepSketch in practice for two rea-
sons. First, the memory overhead for the sketch store is a
common problem in all the sketch-based techniques. Sec-
ond, prior works demonstrate that a small fraction of data
blocks are frequently used as the reference block for many
input blocks [26, 64]. Thus, keeping only most-frequently-
used sketches in a limited-size sketch store (i.e., a with least-
frequently-used (LFU) eviction policy) would provide suffi-
ciently high compression efficiency. We leave such further
optimizations to mitigate DeepSketch’s memory overhead for
future work.

6 Discussion
Scalability to Larger Data Sets. As shown in our evalua-
tion, DeepSketch provides high data-reduction ratios even
for workloads that are not used in DNN training (e.g., SOF
workloads), which implies the high generalizability of DeepS-
ketch. Nevertheless, due to the limited amount of data sets
publicly accessible, it is difficult to say whether DeepSketch
would be effective under any given workload. For example,
DeepSketch may require a larger DNN model to provide suf-

12

ficient benefits for large data sets (that we do not observe in
this work), which would significantly increase the training
overheads of DeepSketch. However, we believe that DeepS-
ketch would be able to work for larger data sets due to three
reasons. First, DeepSketch ’s DNN model has much smaller
computation complexity than state-of-the-art DNN models,
so there is significant room for DeepSketch to use the larger
DNN models. Second, the memory space required for training
depends more on the size of the DNN model rather than the
size of the training data set. Our current model is only a few
hundreds of megabytes in size, which can be run on a single
commonly-used GPU. Third, as explained in Section 4, DNN
training can be performed offline in different machines with
more computing/memory resources.
Cost-Effectiveness of DeepSketch. The current version
of DeepSketch requires a powerful GPU for DNN infer-
ence/training and thus introduces non-trivial performance
and power overheads. However, we believe that such over-
heads would not be a significant obstacle for the wide adop-
tion of DeepSketch due to two reasons. First, as explained in
Section 4, DNN training can be done in different machines
(e.g., in cloud servers) without requiring frequent retrain-
ing, and multiple storage servers (that store similar types
of data) can use the same DNN model, amortizing the train-
ing cost. Second, there has been significant effort to develop
high-performance and energy-efficient accelerators for both
light-weight DNN inference (e.g., [6, 27, 66, 73]) and ANN
search (e.g., [32, 40, 71]), which would greatly reduce the
performance, power, and resource overheads of DeepSketch.

7 Related Work
To our knowledge, this work is the first to propose a learning-
based data-sketching technique for accurate reference search
in storage-level delta compression. As we have already dis-
cussed state-of-the-art techniques closely related to DeepS-
ketch in Sections 2 and 3, in this section, we briefly discuss
other recent works on 1) storage-level data reduction and
2) machine learning-based video/image compression.
Storage-level Data Reduction. The fundamental ideas of
data-reduction techniques were proposed several decades ago.
Hence, their theoretical properties and limitations, in terms
of data reduction, have been studied intensively. Recent stud-
ies focus more on how to efficiently deploy them to various
platforms to achieve space savings with faster compression
speeds, lower computation costs, and less energy consump-
tion [12, 26, 46, 64, 85, 86]. For example, SmartDedup [85]
proposes a low-cost deduplication technique for resource-
constrained devices where computing resources as well as
energy budget are seriously limited. Finesse [86] is a represen-
tative example of enhancing delta-compression speed without
loss in data-reduction ratio by relaxing the complexity of
sketch generation. Some prior works [12, 26, 46] present that
deduplication and compression could be integrated in an SSD
controller to improve storage lifetime as well as performance.

The key difference of this study from the above recent
works is that this work presents a new direction to improve

data-reduction ratio, the fundamental goal of a data-reduction
technique. Our work analyzes the limitations of probabilis-
tic and statistical approaches and shows that emerging deep-
learning methods can be promising alternatives to and/or
complements the traditional methods.
Machine Learning for Video and Image Compression. Sev-
eral works attempt to improve video/image compression ef-
ficiency using machine learning [2, 13, 14, 54, 61, 77, 77]. To
enhance existing video compression algorithms, some lever-
age CNNs [13, 14, 77] and others employ Long Short-Term
Memory (LSTM) networks to learn video representations [77]
and predict future frames [54]. Their common idea is to accu-
rately predict pixel values of next video frames and store only
deltas for reconstruction. More recent studies use Generative
Adversarial Networks (GAN) to generate part or all of the im-
age content from a semantic label map [2, 61]. They achieve
space savings by storing only a smaller amount of preserved
data and the label map in storage devices.

DeepSketch is different from these studies in two aspects.
First, unlike existing ML-based compression methods that tar-
get images and videos, DeepSketch aims to compress binary
data, which requires handling extremely high-dimensional
data sets without any semantic information. Second, ML-
based compression methods are basically lossy compression
algorithms, but our system is a lossless compression system
that enables us to reconstruct original data without any data
loss.

8 Conclusion
We introduce DeepSketch, the first learning-based reference
search technique to improve the data-reduction efficiency
of post-deduplication delta compression. DeepSketch uses
the learning-to-hash method to overcome the limitations of
existing techniques that miss a number of good reference
candidates for delta compression of incoming data blocks.
We present a new deep neural network training method that
enables DeepSketch to efficiently learn delta-compression-
aware data representation for unlabeled data sets with an
extremely high dimensional space. Using various real-world
data sets, we experimentally demonstrate that DeepSketch is
an efficient solution not only as a replacement for but also as
a complement to existing reference search techniques, signifi-
cantly reducing the data-reduction gap from the optimal.

Acknowledgements
We would like to thank our shepherd Chao Tian and anony-
mous reviewers for their feedback and comments. We thank
the SAFARI Research Group members for feedback and the
stimulating intellectual environment they provide. We thank
our industrial partners, especially Google, Huawei, Intel, Mi-
crosoft, and VMware, for their generous donations. This work
was in part supported by the Semiconductor Research Cor-
poration, SNU-SK Hynix Solution Research Center (S3RC),
and the National Research Foundation (NRF) of Korea (NRF-
2018R1A5A1060031, NRF-2020R1A6A3A03040573). (Co-
corresponding Authors: Sungjin Lee and Onur Mutlu)

13

References

[1] DeepSketch GitHub repository, 2018.
https://github.com/dgist-datalab/
deepsketch-fast2022.

[2] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer,
Radu Timofte, and Luc Van Gool. Generative adversar-
ial networks for extreme learned image compression. In
ICCV, October 2019.

[3] Miklos Ajtai, Randal Burns, Ronald Fagin, Darrell D. E.
Long, and Larry Stockmeyer. Compactly encoding un-
structured inputs with differential compression. JACM,
2002.

[4] Rahul Bera, Konstantinos Kanellopoulos, Anant Nori,
Taha Shahroodi, Sreenivas Subramoney, and Onur
Mutlu. Pythia: A customizable hardware prefetching
framework using online reinforcement learning. In MI-
CRO, 2021.

[5] Sanjiv K. Bhatia. Adaptive k-means clustering. In
FLAIRS, 2004.

[6] Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi
Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric
Shiu, and Onur Mutlu. Google neural network models
for edge devices: Analyzing and mitigating machine
learning inference bottlenecks. In PACT, 2021.

[7] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and
Michael Mitzenmacher. Min-wise independent permu-
tations. JCSS, 2000.

[8] Randal Burns, Larry Stockmeyer, and Darrell D. E.
Long. In-place reconstruction of version differences.
IEEE TKDE, 2003.

[9] Michael Burrows, Charles Jerian, Butler Lampson, and
Timothy Mann. On-line data compression in a log-
structured file system. In ASPLOS, 1992.

[10] Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang.
Deep cauchy hashing for hamming space retrieval. In
CVPR, 2018.

[11] Yue Cao, Mingsheng Long, and Jianmin Wang. Collec-
tive deep quantization for efficient cross-modal retrieval.
In AAAI, 2017.

[12] Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL:
A content-aware flash translation layer enhancing the
lifespan of flash memory based solid state drives. In
USENIX FAST, 2011.

[13] T. Chen, H. Liu, Q. Shen, T. Yue, X. Cao, and Z. Ma.
DeepCoder: a deep neural network based video com-
pression. In VCIP, 2017.

[14] Z. Chen, T. He, X. Jin, and F. Wu. Learning for video
compression. IEEE TCSVT, 30(2), 2020.

[15] Yann Collet. LZ4 – extemely fast compression algo-
rithm. http://lz4.github.io/lz4/.

[16] Yahoo! Japan Corp. Neighborhood graph and tree for in-
dexing high-dimensional data. https://github.com/
yahoojapan/NGT.

[17] Alvin Cox. JEDEC SSD endurance workloads. In FMS,
2011.

[18] Helen Custer. Inside the Windows NT File System. Mi-
crosoft Press, 1994.

[19] Per-Erik Danielsson. Euclidean distance mapping. Com-
puter Graphics and Image Processing, 1980.

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

[21] Wei Dong, Fred Douglis, Kai Li, R Hugo Patterson,
Sazzala Reddy, and Philip Shilane. Tradeoffs in scalable
data routing for deduplication clusters. In USENIX
FAST, 2011.

[22] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal
Kaczmarczyk, Wojciech Kilian, Przemyslaw Strzelczak,
Jerzy Szczepkowski, Cristian Ungureanu, and Michal
Welnicki. HYDRAstor: a scalable secondary storage.
In USENIX FAST, 2009.

[23] Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre
Moulin, and Jie Zhou. Deep hashing for compact binary
codes learning. In CVPR, 2015.

[24] Matt W. Gardner and Stephen R. Dorling. Artificial neu-
ral networks (the multilayer perceptron) – a review of
applications in the atmospheric sciences. Atmospheric
Environment, 1998.

[25] Jim Gray and Catharine Van Ingen. Empirical mea-
surements of disk failure rates and error rates. arXiv,
2007.

[26] Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and
Anand Sivasubramaniam. Leveraging value locality in
optimizing NAND flash-based SSDs. In USENIX FAST,
2011.

[27] Ramyad Hadidi, Jiashen Cao, Yilun Xie, Bahar Asgari,
Tushar Krishna, and Hyesoon Kim. Characterizing the
deployment of deep neural networks on commercial
edge devices. In IISWC, 2019.

[28] Greg Hamerly and Charles Elkan. Learning the k in
k-means. In NeurIPS, 2003.

14

https://github.com/dgist-datalab/deepsketch-fast2022
https://github.com/dgist-datalab/deepsketch-fast2022
http://lz4.github.io/lz4/
https://github.com/yahoojapan/NGT
https://github.com/yahoojapan/NGT

[29] Geoffrey E. Hinton, Terrence Joseph Sejnowski, et al.
Unsupervised Learning: Foundations of Neural Compu-
tation. MIT press, 1999.

[30] Daniel Reiter Horn, Ken Elkabany, Chris Lesniewski-
Lass, and Keith Winstein. The design, implementation,
and deployment of a system to transparently compress
hundreds of petabytes of image files for a file-storage
service. In USENIX NSDI, 2017.

[31] David A. Huffman. A method for the construction of
minimum-redundancy codes. Proc. IRE, 1952.

[32] Mohsen Imani, Yeseong Kim, and Tajana Rosing.
Nngine: Ultra-efficient nearest neighbor accelerator
based on in-memory computing. In ICRC, 2017.

[33] Stack Exchange Inc. Stack Exchange data dump. https:
//archive.org/details/stackexchange.

[34] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and
Santosh Vempala. Locality-preserving hashing in multi-
dimensional spaces. In STOC, 1997.

[35] Engin Ipek, Onur Mutlu, José F. Martínez, and Rich
Caruana. Self-optimizing memory controllers: A rein-
forcement learning approach. In ISCA, 2008.

[36] Navendu Jain, Michael Dahlin, and Renu Tewari. Taper:
Tiered approach for eliminating redundancy in replica
synchronization. In USENIX FAST, 2005.

[37] Daniel A. Jiménez. Fast path-based neural branch pre-
diction. In MICRO, 2003.

[38] Daniel A. Jiménez and Calvin Lin. Dynamic branch
prediction with perceptrons. In HPCA, 2001.

[39] Stephen C. Johnson. Hierarchical clustering schemes.
Psychometrika, 1967.

[40] Himanshu Kaul, Mark A. Anders, Sanu K. Mathew,
Gregory Chen, Sudhir K. Satpathy, Steven K. Hsu, Amit
Agarwal, and Ram K. Krishnamurthy. 14.4A 21.5M-
query-vectors/s 3.37 nJ/vector reconfigurable k-nearest-
neighbor accelerator with adaptive precision in 14nm
tri-gate CMOS. In ISSCC, 2016.

[41] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In ICLR, 2015.

[42] Alex Krizhevsky. Learning multiple layers of features
from tiny images, 2009.

[43] Brian Kulis and Trevor Darrell. Learning to hash with
binary reconstructive embeddings. In NeurIPS, 2009.

[44] Yann LeCun. The MNIST database of handwritten
digits, 1998.

[45] Sungjin Lee, Taejin Kim, Jisung Park, and Jihong Kim.
An integrated approach for managing the lifetime of
flash-based SSDs. In DATE, 2013.

[46] Sungjin Lee, Jihoon Park, Kermin Fleming, and Jihong
Arvind, Kim. Improving performance and lifetime of
solid-state drives using hardware-accelerated compres-
sion. IEEE TCE, 2011.

[47] Cong Leng, Jiaxiang Wu, Jian Cheng, Xi Zhang, and
Hanqing Lu. Hashing for distributed data. In ICML,
2015.

[48] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang,
Huawei Li, and Xiaowei Li. Cognitive SSD: A deep
learning engine for in-storage data retrieval. In USENIX
ATC, pages 395–410, 2019.

[49] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat,
Vinay Deolalikar, Greg Trezis, and Peter Camble. Sparse
indexing: Large scale, inline deduplication using sam-
pling and locality. In USENIX FAST, 2009.

[50] Kevin Lin, Huei-Fang Yang, Jen-Hao Hsiao, and Chu-
Song Chen. Deep learning of binary hash codes for fast
image retrieval. In CVPR, 2015.

[51] Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and
Grant Wallace. Migratory compression: Coarse-grained
data reordering to improve compressibility. In USENIX
FAST, 2014.

[52] Weiqiang Liu, Faqiang Mei, Chenghua Wang, Maire
O’Neill, and Earl E. Swartzlander. Data compression
device based on modified LZ4 algorithm. IEEE TCE,
2018.

[53] Stuart Lloyd. Least squares quantization in PCM. IEEE
TIT, 1982.

[54] William Lotter, Gabriel Kreiman, and David D. Cox.
Deep predictive coding networks for video prediction
and unsupervised learning. CoRR, abs/1605.08104,
2016.

[55] Jingwei Ma, Gang Wang, and Xiaoguang Liu.
DedupeSwift: Object-oriented storage system based on
data deduplication. In TrustCom, 2016.

[56] Josh MacDonald. Xdelta: Open-source binary diff, dif-
ferential compression tools, VCDIFF (RFC 3284) delta
compression. http://xdelta.org.

[57] Josh MacDonald. File system support for delta compres-
sion. PhD thesis, 2000.

[58] Thanos Makatos, Yannis Klonatos, Manolis Marazakis,
Michail D. Flouris, and Angelos Bilas. Using transpar-
ent compression to improve SSD-based I/O caches. In
EuroSys, 2010.

15

https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
http://xdelta.org

[59] Sonam Mandal, Geoff Kuenning, Dongju Ok, Varun
Shastry, Philip Shilane, Sun Zhen, Vasily Tarasov, and
Erez Zadok. Using hints to improve inline block-layer
deduplication. In USENIX FAST, 2016.

[60] Avantika Mathur, Mingming Cao, Suparna Bhat-
tacharya, Andreas Dilger, Alex Tomas, and Laurent
Vivier. The new ext4 filesystem: Current status and
future plans. In Proceedings of the Linux Symposium,
2007.

[61] Fabian Mentzer, George Toderici, Michael Tschannen,
and Eirikur Agustsson. High-fidelity generative image
compression. In NeurIPS, 2020.

[62] Dutch T. Meyer and William J. Bolosky. A study of
practical deduplication. In USENIX FAST, 2011.

[63] S. Ehsan Yasrebi Nayini, Somayeh Geravand, and Ali
Maroosi. A novel threshold-based clustering method to
solve k-means weaknesses. In ICECDS, 2017.

[64] Jisung Park, Sungjin Lee, and Jihong Kim. DAC: Dedup-
assisted compression scheme for improving lifetime of
NAND storage systems. In DATE, 2017.

[65] P. Jonathon Phillips, Amy N. Yates, Ying Hu, Ca-
rina A. Hahn, Eilidh Noyes, Kelsey Jackson, Jacque-
line G. Cavazos, Géraldine Jeckeln, Rajeev Ranjan,
Swami Sankaranarayanan, Jun-Cheng Chen, Carlos D.
Castillo, Rama Chellappa, David White, and Alice J.
O’Toole. Face recognition accuracy of forensic examin-
ers, superrecognizers, and face recognition algorithms.
Proc. NAS, 2018.

[66] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai,
Jingkuan Song, and Nicu Sebe. Binary neural networks:
A survey. Pattern Recognition, 2020.

[67] Sean Quinlan and Sean Dorward. Venti: A new approach
to archival storage. In USENIX FAST, 2002.

[68] Michael O. Rabin. Fingerprinting by random polynomi-
als. Technical Report, 1981.

[69] Ronald Rivest and S. Dusse. The MD5 message-digest
algorithm, 1992.

[70] Chaitanya K. Ryali, John J. Hopfield, Leopold Grinberg,
and Dmitry Krotov. Bio-inspired hashing for unsuper-
vised similarity search. In CVPR, 2020.

[71] Jyotishman Saikia, Shihui Yin, Zhewei Jiang, Mingoo
Seok, and Jae-sun Seo. K-nearest neighbor hardware
accelerator using in-memory computing SRAM. In
ISLPED, 2019.

[72] Ahamed Shafeeq and K. S. Hareesha. Dynamic cluster-
ing of data with modified k-means algorithm. In ICICN,
2012.

[73] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Ra-
jeev Balasubramonian, John Paul Strachan, Miao Hu,
R Stanley Williams, and Vivek Srikumar. ISAAC: a
convolutional neural network accelerator with in-situ
analog arithmetic in crossbars. In ISCA, 2016.

[74] Claude E. Shannon. A mathematical theory of commu-
nication. The Bell System Technical Journal, 1948.

[75] Philip Shilane, Mark Huang, Grant Wallace, and Wind-
sor Hsu. WAN optimized replication of backup datasets
using stream-informed delta compression. In USENIX
FAST, 2012.

[76] Kiran Srinivasan, Timothy Bisson, Garth R Goodson,
and Kaladhar Voruganti. iDedup: Latency-aware, inline
data deduplication for primary storage. In USENIX
FAST, 2012.

[77] Nitish Srivastava, Elman Mansimov, and Ruslan
Salakhutdinov. Unsupervised learning of video rep-
resentations using LSTMs. In ICML, 2015.

[78] Secure Hash Standard. FIPS Pub 180-1. National Insti-
tute of Standards and Technology, 1995.

[79] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian.
Greedy hash: Towards fast optimization for accurate
hash coding in cnn. In NIPS, pages 806–815, 2018.

[80] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe,
and Heng Tao Shen. A survey on learning to hash. IEEE
TPAMI, 2017.

[81] Guanying Wu and Xubin He. Delta-FTL: improving
SSD lifetime via exploiting content locality. In EuroSys,
2012.

[82] Wen Xia, Hong Jiang, Dan Feng, and Lei Tian. DARE:
A deduplication-aware resemblance detection and elim-
ination scheme for data reduction with low overheads.
IEEE TC, 2015.

[83] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank
Seide, Michael L. Seltzer, Andreas Stolcke, Dong Yu,
and Geoffrey Zweig. Achieving human parity in conver-
sational speech recognition. arXiv, 2016.

[84] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank
Seide, Michael L. Seltzer, Andreas Stolcke, Dong Yu,
and Geoffrey Zweig. Toward human parity in conversa-
tional speech recognition. IEEE/ACM TASLP, 2017.

[85] Qirui Yang, Runyu Jin, and Ming Zhao. SmartDedup:
optimizing deduplication for resource-constrained de-
vices. In USENIX ATC, 2019.

[86] Yucheng Zhang, Wen Xia, Dan Feng, Hong Jiang,
Yu Hua, and Qiang Wang. Finesse: Fine-grained fea-
ture locality based fast resemblance detection for post-
deduplication delta compression. In USENIX FAST,
2019.

16

[87] Xin Zheng, Qinyi Lei, Run Yao, Yifei Gong, and Qian
Yin. Image segmentation based on adaptive k-means
algorithm. EURASIP JIVP, 2018.

[88] Benjamin Zhu, Kai Li, and R. Hugo Patterson. Avoiding
the disk bottleneck in the data domain deduplication file
system. In USENIX FAST, 2008.

[89] Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao.
Deep hashing network for efficient similarity retrieval.
In AAAI, 2016.

[90] Jacob Ziv and Abraham Lempel. Compression of indi-
vidual sequences via variable-rate coding. IEEE TIT,
1978.

17

	Introduction
	Background
	Data Reduction in Storage Systems
	Combined Data-Reduction Technique

	Motivation
	Limitations of LSH-Based Sketching
	Learning-to-Hash Method

	DeepSketch
	Dynamic K-Means Clustering
	Neural-Network Training
	Reference Selection
	Hyper-Parameter Exploration

	Evaluation
	Methodology
	Overall Data Reduction
	Reference Search Pattern Analysis
	Combination with Existing Techniques
	Impact of Training Data-Set Quality
	Overhead Analysis

	Discussion
	Related Work
	Conclusion

