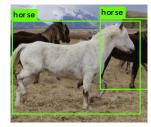
EDEN


Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM

Skanda Koppula Lois Orosa A. Giray Yaglikci Roknoddin Azizi Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu

Motivation

Deep neural networks (DNNs) are critical in computer vision, robotics, and many other domains

Motivation

Deep neural networks (DNNs) are critical in computer vision, robotics, and many other domains

Modern DNN inference platforms use DRAM

Mobile CPUs

GPUs

Data Center Accelerators

Edge-device Accelerators

Challenges of DNN Inference

DRAM has high energy consumption

• **25% to 70% of system energy** is consumed by DRAM in common DNN inference accelerators

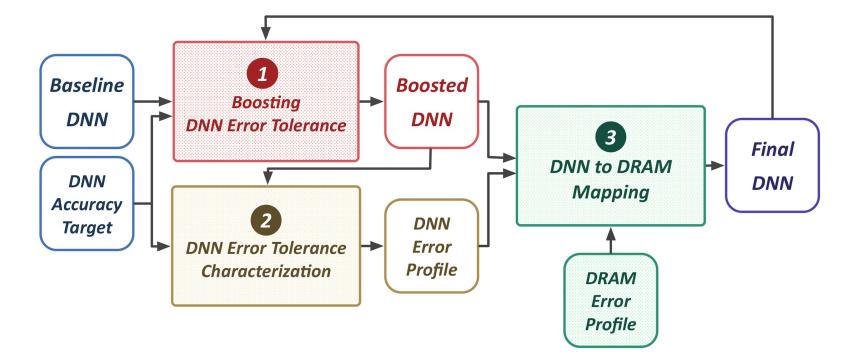
DRAM can bottleneck performance

Potential **19% speedup** by **reducing DRAM latency** on CPU for some DNNs

Observations

1. DNNs have an **intrinsic robustness to errors** in the input, weight, and output data types

2. We can **reduce DRAM energy consumption** and **latency** if we tolerate **more bit errors**



1. DNNs have an **intrinsic robustness to errors**

Approximate DRAM (voltage and latency-scaled DRAM) can provide **higher energy-efficiency** and **performance** for **error-tolerant DNN inference** workloads

We propose **EDEN**, a mechanism to enable **accurate DNN inference** on **approximate DRAM**

SAFARI

Key Results

- CPU: 21% DRAM energy reduction, 8% speedup
- GPU: 37% DRAM energy reduction
- DNN Accelerators: **31% DRAM energy reduction**

While maintaining a **user-specified accuracy target** within **1% of the original DNN accuracy**

EDEN

Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM

Skanda Koppula Lois Orosa A. Giray Yaglikci Roknoddin Azizi Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu

