
Coarse-Grained Mapping: A single DRAM 
partition with an error rate shown in yellow

Fine-Grained Mapping: Four DRAM partitions 
with error rates in yellow, red, green, blue

Enabling Energy-Efficient, High-Performance
DNN Inference Using Approximate DRAM

1: Summary 2: DNN Basics and DRAM Parameters

3: Overview of EDEN

Skanda Koppula     Lois Orosa       A. Giray Yağlıkçı      Roknoddin Azizi      

Taha Shahroodi      Konstantinos Kanellopoulos       Onur Mutlu

4: DNN Error Tolerance Boosting

5: DNN Characterization

8: Evaluation

6. DNN to DRAM Mapping

Other Results in the Paper
● Error resiliencies across different DNNs/ quantizations

● Validation of the boosting mechanism

● Support for error models using real DRAM modules

● Comparison of different DRAM error models

● Breakdown of energy savings on different workloads for 
GPU and TPU

    skoppula.github.io/pdfs/eden.pdf

Problem: Challenges of DNN inference:

- High DRAM energy consumption and latency

Goal: Reduce DRAM oltage/timing scaled DRAM for DNN 

inference to exploit error tolerant DNN workloads

EDEN: DNN Inference Using Approximate DRAM

- Techniques to maintain accuracy through error tolerance 
boosting, DNN characterization, DNN to DRAM mapping, 
and DRAM error modeling

Results:

- Average 21% DRAM energy savings, 8% speedup on CPU

- Average 37% DRAM energy savings on GPU

- Average 31% DRAM energy savings on DNN accelerators

EDEN is applicable to other parameters and technologies
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Accessing data follows a sequence 
of MC commands with standard 
timing parameters

DRAM operates at a standard 
voltage (e.g., DDR3 at 1.35V)

● Modern DNNs can have 100+ layers

● 3 main data types in a DNN layer:

Weights, Input Feature Maps (IFMs),

Output Feature Maps (OFMs)

● Large # weights/IFMs enable high 
learning capacity

● If weights/IFMs have bit errors, the 
DNN can still maintain accuracy

Two Key Observations:

1. DNNs have an intrinsic 
robustness to errors in the 
weights and feature maps

2. We can reduce DRAM energy 
consumption and latency if we 
tolerate more bit errors

1.   DNN error tolerance boosting

2.   DNN and DRAM characterization

3.   DNN to DRAM mapping

Three Step Mechanism:

Approximate DRAM (voltage/latency-scaled DRAM) can provide higher 
energy-efficiency and performance for error-tolerant DNN workloads

Goal:
Maintain accuracy when DNN is exposed to bit errors

Mechanism: 
1. Retrain the DNN with approximate memory to 

adapt the DNN to unreliable cells
2. Gradually increase the error rate of the 

approximate DRAM to build error tolerance
3. Filter out-of-range values (e.g., >1015) based on 

knowledge of the DNN weight and IFM 
distribution
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Goal: Find the highest tolerable error rates of the DNN 
and the corresponding DRAM parameters

Mechanism: Measure error resilience of each DNN 
data type on the approximate DRAM

Two ways to characterize:

1. Coarse-grained characterization:
Scale voltage/latency of all DNN data equally

2. Fine-grained characterization
     Different scaling of each DNN layer and data type

Goal:  match error tolerance of DNN with DRAM error rates
Coarse-grained: assign the single best voltage/latency value that meets the target DNN accuracy
Fine-grained: a greedy algorithm that matches the most error sensitive DNN data to the most 

reliable DRAM partitions first

Example

Characterization

and Mapping

of ResNet-50:

7: DRAM Error Models

Problem: Retraining is not always 
feasible on the approx. DRAM device 

Goal: Perform retraining and error 
characterization without use of the 
approximate DRAM device

1
1

1

Model 0: Uniform Random
Model 1: Bit Value Dependent
Model 3: Bitline Correlated
Model 4: Wordline Correlated

Modification 
to Retraining: 
Forward Pass 

with the DRAM 
Error Model

● 8 DNN workloads with int4, int8, int16, FP32 quantizations
○ ResNet101, MobileNetV2, VGG16, DenseNet201, 

SqueezeNet1.1, AlexNet, YOLO, YOLOTiny

● Custom PyTorch-based DNN framework to run DNN 
inference with error models

● SoftMC framework1 to run inference data accesses on real 
DDR3 DRAM modules

● Ramulator, ZSim, GPGPUSim, and SCALE-Sim used for 
DRAM, CPU, GPU, Eyeriss, and TPU simulation
○ Full configuration can be found in the paper

● Inference libraries from DarkNet, Intel OpenVINO, TVM

Tolerance BoostExample: Boosting Error 
Tolerance of ResNet101

DNN tolerance boosting 
improves 

a DNN’s bit error 
tolerance by 5-10x

Example: DNN Accuracy of 
LeNeT on SoftMC

Boosting with error models 
helps maintain accuracy while 
reducing voltage and latency 

on real DRAM modules

Sample of DNNs and their tolerable BERs

Hassan, Hasan, et al. "SoftMC: A flexible and practical open-source infrastructure 
for enabling experimental DRAM studies." HPCA  2017.

DRAM Energy Reductions on CPU Performance Improvements on CPU:

Average 21% DRAM energy reduction 
maintaining accuracy within 1% of original

Average 8% system speedup, with 
some achieving up to 17% speedup

● Average 31% on Eyeriss

● Average 32% on TPU

● Average 37%  on Titan X

DRAM Energy Reduction 
on GPU and Accelerators 

GPUs and accelerators are effective at hiding DRAM latency due to (1) effective pre-fetching and (2) 
large register banks and SRAM buffers (exploiting the fixed memory access patterns on DNN inference),
so we find little performance improvement reducing tRCD on GPU and DNN accelerators
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