
Coarse-Grained Mapping: A single DRAM
partition with an error rate shown in yellow

Fine-Grained Mapping: Four DRAM partitions
with error rates in yellow, red, green, blue

Enabling Energy-Efficient, High-Performance
DNN Inference Using Approximate DRAM

1: Summary 2: DNN Basics and DRAM Parameters

3: Overview of EDEN

Skanda Koppula Lois Orosa A. Giray Yağlıkçı Roknoddin Azizi

Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu

4: DNN Error Tolerance Boosting

5: DNN Characterization

8: Evaluation

6. DNN to DRAM Mapping

Other Results in the Paper
● Error resiliencies across different DNNs/ quantizations

● Validation of the boosting mechanism

● Support for error models using real DRAM modules

● Comparison of different DRAM error models

● Breakdown of energy savings on different workloads for
GPU and TPU

 skoppula.github.io/pdfs/eden.pdf

Problem: Challenges of DNN inference:

- High DRAM energy consumption and latency

Goal: Reduce DRAM oltage/timing scaled DRAM for DNN

inference to exploit error tolerant DNN workloads

EDEN: DNN Inference Using Approximate DRAM

- Techniques to maintain accuracy through error tolerance
boosting, DNN characterization, DNN to DRAM mapping,
and DRAM error modeling

Results:

- Average 21% DRAM energy savings, 8% speedup on CPU

- Average 37% DRAM energy savings on GPU

- Average 31% DRAM energy savings on DNN accelerators

EDEN is applicable to other parameters and technologies

Memory
Bus

CPU, GPU, or
DNN Accelerator

Memory
Controller

Accessing data follows a sequence
of MC commands with standard
timing parameters

DRAM operates at a standard
voltage (e.g., DDR3 at 1.35V)

● Modern DNNs can have 100+ layers

● 3 main data types in a DNN layer:

Weights, Input Feature Maps (IFMs),

Output Feature Maps (OFMs)

● Large # weights/IFMs enable high
learning capacity

● If weights/IFMs have bit errors, the
DNN can still maintain accuracy

Two Key Observations:

1. DNNs have an intrinsic
robustness to errors in the
weights and feature maps

2. We can reduce DRAM energy
consumption and latency if we
tolerate more bit errors

1. DNN error tolerance boosting

2. DNN and DRAM characterization

3. DNN to DRAM mapping

Three Step Mechanism:

Approximate DRAM (voltage/latency-scaled DRAM) can provide higher
energy-efficiency and performance for error-tolerant DNN workloads

Goal:
Maintain accuracy when DNN is exposed to bit errors

Mechanism:
1. Retrain the DNN with approximate memory to

adapt the DNN to unreliable cells
2. Gradually increase the error rate of the

approximate DRAM to build error tolerance
3. Filter out-of-range values (e.g., >1015) based on

knowledge of the DNN weight and IFM
distribution

Forward
Pass with

Approximate
DRAM

Backward
Pass with
Reliable

DRAM

Gradient
Update

Input

Output
and Loss

Goal: Find the highest tolerable error rates of the DNN
and the corresponding DRAM parameters

Mechanism: Measure error resilience of each DNN
data type on the approximate DRAM

Two ways to characterize:

1. Coarse-grained characterization:
Scale voltage/latency of all DNN data equally

2. Fine-grained characterization
 Different scaling of each DNN layer and data type

Goal: match error tolerance of DNN with DRAM error rates
Coarse-grained: assign the single best voltage/latency value that meets the target DNN accuracy
Fine-grained: a greedy algorithm that matches the most error sensitive DNN data to the most

reliable DRAM partitions first

Example

Characterization

and Mapping

of ResNet-50:

7: DRAM Error Models

Problem: Retraining is not always
feasible on the approx. DRAM device

Goal: Perform retraining and error
characterization without use of the
approximate DRAM device

1
1

1

Model 0: Uniform Random
Model 1: Bit Value Dependent
Model 3: Bitline Correlated
Model 4: Wordline Correlated

Modification
to Retraining:
Forward Pass

with the DRAM
Error Model

● 8 DNN workloads with int4, int8, int16, FP32 quantizations
○ ResNet101, MobileNetV2, VGG16, DenseNet201,

SqueezeNet1.1, AlexNet, YOLO, YOLOTiny

● Custom PyTorch-based DNN framework to run DNN
inference with error models

● SoftMC framework1 to run inference data accesses on real
DDR3 DRAM modules

● Ramulator, ZSim, GPGPUSim, and SCALE-Sim used for
DRAM, CPU, GPU, Eyeriss, and TPU simulation
○ Full configuration can be found in the paper

● Inference libraries from DarkNet, Intel OpenVINO, TVM

Tolerance BoostExample: Boosting Error
Tolerance of ResNet101

DNN tolerance boosting
improves

a DNN’s bit error
tolerance by 5-10x

Example: DNN Accuracy of
LeNeT on SoftMC

Boosting with error models
helps maintain accuracy while
reducing voltage and latency

on real DRAM modules

Sample of DNNs and their tolerable BERs

Hassan, Hasan, et al. "SoftMC: A flexible and practical open-source infrastructure
for enabling experimental DRAM studies." HPCA 2017.

DRAM Energy Reductions on CPU Performance Improvements on CPU:

Average 21% DRAM energy reduction
maintaining accuracy within 1% of original

Average 8% system speedup, with
some achieving up to 17% speedup

● Average 31% on Eyeriss

● Average 32% on TPU

● Average 37% on Titan X

DRAM Energy Reduction
on GPU and Accelerators

GPUs and accelerators are effective at hiding DRAM latency due to (1) effective pre-fetching and (2)
large register banks and SRAM buffers (exploiting the fixed memory access patterns on DNN inference),
so we find little performance improvement reducing tRCD on GPU and DNN accelerators

http://skoppula.github.io/pdfs/

