Enabling Energy-Efficient, High-Performance **DNN Inference Using Approximate DRAM**

Skanda Koppula A. Giray Yağlıkçı Lois Orosa Roknoddin Azizi Taha Shahroodi **Onur Mutlu** Konstantinos Kanellopoulos

1: Summary

<u>Problem</u>: Challenges of DNN inference:

- High DRAM energy consumption and latency
- **Goal:** Reduce **DRAM oltage/timing scaled DRAM** for DNN inference to exploit error tolerant DNN workloads

EDEN: DNN Inference Using Approximate DRAM

- Techniques to maintain accuracy through **error tolerance** boosting, DNN characterization, DNN to DRAM mapping, and **DRAM error modeling**

Results:

- Average **21% DRAM energy savings**, **8% speedup** on CPU
- Average 37% DRAM energy savings on GPU
- Average **31% DRAM energy savings** on DNN accelerators

EDEN is applicable to other parameters and technologies

2: DNN Basics and DRAM Parameters

- Modern DNNs can have **100+ layers**
- **3 main data types** in a DNN layer: Weights, Input Feature Maps (IFMs), **Output Feature Maps (OFMs)**
- Large # weights/IFMs enable **high** learning capacity
- If weights/IFMs have **bit errors**, the DNN can still maintain accuracy

CPU, GPU, or

DNN Accelerator

DRAM operates at a **standard**

voltage (e.g., DDR3 at 1.35V)

ETH zürich

SAFARI

4: DNN Error Tolerance Boosting

3: Overview of EDEN

Problem: Retraining is **not always feasible** on the approx. DRAM device • **8 DNN workloads** with int4, int8, int16, FP32 quantizations ResNet101, MobileNetV2, VGG16, DenseNet201, SqueezeNet1.1, AlexNet, YOLO, YOLOTiny

Example: Boosting Error Tolerance of **ResNet101**

DNN tolerance boosting

improves

a DNN's **bit error**

tolerance by 5-10x

Goal: Perform retraining and error characterization without use of the approximate DRAM device

Model 0: Uniform Random Model 1: Bit Value Dependent Model 3: Bitline Correlated Model 4: Wordline Correlated

Modification to Retraining: Forward Pass with the DRAM **Error Model**

- Custom **PyTorch**-based DNN framework to run DNN inference with error models
- **SoftMC** framework¹ to run inference data accesses on **real DDR3 DRAM modules**
- Ramulator, ZSim, GPGPUSim, and SCALE-Sim used for DRAM, CPU, GPU, Eyeriss, and TPU simulation
 - Full configuration can be found in the paper Ο
- Inference libraries from **DarkNet**, Intel OpenVINO, TVM

	FP32			int8		
Model	BER	ΔV_{DD}	Δt_{RCD}	BER	ΔV_{DD}	Δt_{RCD}
ResNet101	4.0%	-0.30V	-5.5ns	4.0%	-0.30V	-5.5ns
MobileNetV2	1.0%	-0.25V	-1.0ns	0.5%	-0.10V	-1.0ns
Sample of DNNs and their tolerable BERs						

DRAM Energy Reductions on CPU Performance Improvements on CPU:

Average 21% DRAM energy reduction maintaining accuracy within 1% of original

1.20
1.15 EDEN EDEN tRCD = 0
FP32 int8
YOLO-T YOLO ResNet VGG SqueezeNet DenseNet Gmean
YOLO-T YOLO ResNet VGG SqueezeNet DenseNet Gmean

Average 8% system speedup, with some achieving **up to 17% speedup**

DRAM Energy Reduction on GPU and Accelerators

- Average **31% on Eyeriss**
- Average **32% on TPU**
- Average **37% on Titan X**

1.35

2.5

5.0

tRCD (ns)

1.05

1.20

Voltage (V)

Example: DNN Accuracy of **LeNeT** on **SoftMC**

Boosting with error models helps maintain accuracy while reducing voltage and latency on real DRAM modules

Other Results in the Paper

acy (%)

- Error resiliencies across different DNNs/ quantizations
- Validation of the boosting mechanism

7.5 10.0 12.5

- Support for error models using real DRAM modules
- Comparison of different DRAM error models
- Breakdown of energy savings on different workloads for **GPU** and **TPU**

skoppula.github.io/pdfs/eden.pdf

GPUs and accelerators are **effective at hiding DRAM latency** due to (1) *effective pre-fetching* and (2) large register banks and SRAM buffers (exploiting the fixed memory access patterns on DNN inference), so we find little performance improvement reducing tRCD on GPU and DNN accelerators