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Motivation

Deep neural networks (DNNs) are critical
in computer vision, robotics, and many other domains

Modern platforms for DNN inference use DRAM

Mobile CPUs

GPUs     Data Center Accelerators Edge-device Accelerators 10
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How can we reduce DRAM energy and improve DRAM 
performance for DNN inference?
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● Modern DNNs can have hundreds of layers and between 105 and 109 weights

● Three main data types compose a DNN layer:

1. Weights
2. Input Feature Maps (IFMs)
3. Output Feature Maps (OFMs)

● Large DNN weight/IFM counts enable high learning capacity

● If the weights/IFMs have small bit errors, a DNN can still maintain accuracy
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DNN Inference Using DRAM
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DRAM Parameters

DRAM operates at a standard voltage

   (e.g., DDR3 at 1.35V)
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1. DNNs have an intrinsic robustness to errors
in the weight and feature map data types

Observations

2.   DNN inference systems can reduce DRAM energy 
consumption and latency if they tolerate more bit 
errors
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1. DNNs have an intrinsic robustness to errors
in input, weight, and output data types

Insight

2.   DRAM can be more energy-efficient and lower latency 
if we tolerate low bit reliability

Approximate DRAM (voltage and latency-scaled DRAM)
 can provide higher energy-efficiency and performance

for error-tolerant DNN inference workloads
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EDEN: Key Idea
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Enable accurate, efficient DNN inference using 

approximate DRAM through 3 key steps:

1.   DNN error tolerance boosting
2.   DNN and DRAM characterization
3.   DNN to DRAM mapping



EDEN: Inputs
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Inputs to EDEN:
 (1) user-specified DNN accuracy goal

       (2) pre-trained model 
       (3) target DRAM device 



Step 1: Boosting DNN Error Tolerance

Goal: Better maintain accuracy when the DNN is exposed to bit  
errors
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Forward Pass using Approximate DRAM

Backward Pass using Reliable DRAM

Gradient
Update

Input Output
and Loss



For high error rates, accuracy collapses at the start of retraining.

Backward pass becomes polluted with zero-information updates
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Step 1: Failures during Boosting

Backward Pass using Reliable DRAM

Bad/Zero
Gradient

Output
and High Loss



Goal: Avoid early retraining collapse
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Goal: Avoid early retraining collapse

Mechanism: Gradually increase the error rate of the 
approximate DRAM during retraining     
to build error tolerance
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Step 1: Mitigating Failures

Forward Pass using Approximate DRAM
with increasing BER

Input Output
and Loss



Goal: Avoid early retraining collapse

Mechanism: Gradually increase the error rate of the 
approximate DRAM during retraining     
to build error tolerance

Filter out-of-range values (e.g., >1015) based on 
knowledge of the DNN weight and IFM 
distribution
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Step 1: Mitigating Failures
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Goal: Find the highest tolerable error rates of the DNN
and the corresponding DRAM parameters
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Goal: Find the highest tolerable error rates of the DNN
      and the corresponding DRAM parameters

Mechanism: Systematically measure error resilience of 
each DNN data type on the approximate DRAM

Two ways to perform this testing:

1. Coarse-grained characterization
2. Fine-grained characterization

41
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Step 2: Coarse-Grained Characterization

   Reduce voltage/latency of all DNN data types equally

● Easy to perform on commodity DRAM

● Voltage and latency reduction is limited by the most 
error sensitive data in the DNN
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Step 2: Fine-Grained Characterization

Scale voltage and latency differently for each individual 
DNN data type and layer
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Step 2: Fine-Grained Characterization

Different reductions for each DNN data type and layer

● More aggressive voltage/latency reduction is possible

● Requires non-commodity DRAM to reduce some 
parameters (e.g., V

dd
)

● Takes more time than coarse-grained characterization
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Example ResNet-50 Characterization
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Example ResNet-50 Characterization

- Error tolerance of DNN layers varies greatly
- Weights exhibit greater error tolerance than IFMs
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Goal:  match error tolerance of DNN with DRAM error rates

Mechanism:

Coarse-grained: assign the single best voltage/latency value
 that meets the target DNN accuracy

Fine-grained: a greedy algorithm that matches first
                             the most error sensitive DNN data

  to the most reliable DRAM partitions
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Step 3: Mapping
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Example Coarse-Grained Mapping

Mapping of ResNet-50:
Single DRAM partition with error rate in yellow
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Example Fine-Grained Mapping

Mapping of ResNet-50:
4 DRAM partitions with error rates in yellow, red, green, blue
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Enabling EDEN Using Error Models

Problem: Retraining is not always feasible on the 
approximate DRAM device 

Goal: Perform retraining and error characterization 
without use of the approximate DRAM device



We use the closest fit of four probabilistic error models

1
1

1

Model 0:
Uniform Random

Model 1:
Wordline Correlated

Model 2:
Bitline Correlated

Model 3:
Bit Value Dependent

58

DRAM Error Models
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Use of a DRAM Error Model

Forward Pass using an Error Model 
in lieu of the Approximate DRAM

Backward Pass using Regular DRAM

Gradient
Update

Input Output
and Loss
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DNN Accuracy Evaluation: Methodology

● 8 DNN workloads across four quantization levels
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VGG-16        DenseNet201    ResNet-101          AlexNet
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DNN Accuracy Evaluation: Methodology

● 8 DNN workloads across four quantization levels
○ int4, int8, int16, FP32

○ YOLO            YOLO-Tiny          MobileNetV2       SqueezeNet1.1
VGG-16        DenseNet201    ResNet-101          AlexNet

● Custom PyTorch-based DNN framework to run DNN 
inference with error models

● SoftMC framework to run inference data accesses 
on real DDR3 DRAM modules
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Example: Boosting Error Tolerance of ResNet101
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Example: Boosting Error Tolerance of ResNet101
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Tolerance Boost

DNN tolerance boosting can
improve a DNN’s bit error tolerance by 5-10x



DNN Accuracy of LeNeT on SoftMC

Boosting with error models helps maintain 
accuracy while reducing voltage and latency

 on real DRAM modules
65



Energy and Performance Evaluation
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Energy and Performance Evaluation

● 6 DNN workloads with int8 and FP32 quantizations

● Inference libraries from DarkNet, Intel OpenVINO, TVM

● Ramulator, ZSim, GPGPUSim, and SCALE-Sim used for 
DRAM, CPU, GPU, Eyeriss, and TPU simulation

○ CPU: 4 Core @ 4.0 GHz, 8MB L3, 8GB DDR4 DRAM
○ GPU: 28 SMs, 12GB GDDR5 @ 2.5 GHz
○ Eyeriss: 12 x 18 PEs, 4GB LPDDR4 @ 1600MHz
○ TPU: 256 x 256 PEs, 4GB LPDDR4 @ 1600MHz
○ Full configuration can be found in the paper
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CPU Energy Evaluation
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Average 21% DRAM energy reduction 
maintaining accuracy within 1% of original



CPU Performance Evaluation

69

Average 8% system speedup
with some workloads achieving 17% speedup



CPU Evaluation
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EDEN achieves close to the ideal speedup 
possible via tRCD scaling



GPU, Eyeriss, and TPU Energy Evaluation
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● Using the previous DNN benchmarks:

○ Average 31% DDR4 energy reduction on Eyeriss

○ Average 32% DDR4 energy reduction on TPU

○ Average 37% GDDR5 energy reduction on Titan X



GPU, Eyeriss, and TPU Energy Evaluation
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● Using the previous DNN benchmarks:

○ Average 31% DRAM energy reduction on Eyeriss

○ Average 32% DRAM energy reduction on TPU

○ Average 37% DRAM energy reduction on GPU

● GPUs and accelerators are effective at hiding DRAM 
latency due to (1) effective pre-fetching and (2) large 
register banks and SRAM buffers (exploiting the fixed 
memory access patterns on DNN inference)



Other Results in the Paper

- Error resiliencies across different DNNs and quantizations

- Validation of the boosting mechanism

- Supporting data for error models using real DRAM modules

- Comparison of different DRAM error models

- Breakdown of energy savings on different workloads for 
GPU and TPU
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Coarse-Grained Scaling
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tRCD or voltage scaling that yields <1% accuracy 
degradation on a target DDR3 module
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DNN Workload List and Baseline Accuracies



Coarse-Grained Characterization Algorithm

Key Steps:

1. Decrease tRCD/V
dd

 of DRAM module
2. Run DNN inference
3. Measure accuracy on validation dataset
4. If accuracy < target: terminate.

Decreasing voltage and DNN accuracy
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Fine-Grained Characterization Algorithm

Key Steps:

1. Decrease parameter of DRAM/DNN partition
2. Run DNN inference
3. Measure accuracy on validation dataset
4. If accuracy < target: roll-back parameter decrease
5. Repeat for all DNN partitions, parameter levels
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