EDEN

Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM

Skanda Koppula Lois Orosa A. Giray Yaglikci Roknoddin Azizi Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu

Motivation: Deep Neural Networks (DNNs) are important in many domains (vision, robotics, ...)

Motivation: Deep Neural Networks (DNNs) are important in many domains (vision, robotics, ...) **Problem**: Challenges of DNN Inference:

- **High DRAM energy consumption** → high energy cost of DNN inference
- **High DRAM latency** → DNN inference slowdowns

Motivation: Deep Neural Networks (DNNs) are important in many domains (vision, robotics, ...) <u>Problem</u>: Challenges of DNN Inference:

- **High DRAM energy consumption** → high energy cost of DNN inference
- **High DRAM latency** → DNN inference slowdowns

<u>Goal</u>: Reduce **DRAM voltage and timing** for **error tolerant DNN inference workloads**, exploiting the trade-off between bit error rate and energy/performance

Motivation: Deep Neural Networks (DNNs) are important in many domains (vision, robotics, ...) <u>Problem</u>: Challenges of DNN Inference:

- **High DRAM energy consumption** → high energy cost of DNN inference
- **High DRAM latency** → DNN inference slowdowns

<u>Goal:</u> Reduce DRAM voltage and timing for error tolerant DNN inference workloads, exploiting the trade-off between bit error rate and energy/performance

EDEN: Deep Neural Network Inference Using Approximate DRAM

• Techniques to maintain accuracy through (1) **error tolerance boosting**, (2) **DNN characterization**, (3) **DNN to DRAM mapping**, and **DRAM error modeling**

Motivation: Deep Neural Networks (DNNs) are important in many domains (vision, robotics, ...) <u>Problem</u>: Challenges of DNN Inference:

- **High DRAM energy consumption** → high energy cost of DNN inference
- **High DRAM latency** → DNN inference slowdowns

<u>Goal:</u> Reduce **DRAM voltage and timing** for **error tolerant DNN inference workloads,** exploiting the trade-off between bit error rate and energy/performance

EDEN: Deep Neural Network Inference Using Approximate DRAM

• Techniques to maintain accuracy through (1) **error tolerance boosting**, (2) **DNN characterization**, (3) **DNN to DRAM mapping**, and **DRAM error modeling**

<u>Results</u>: Energy savings and performance improvements on 12 DNN benchmarks

- Average 21% DRAM energy savings and 8% speedup on CPU
- Average **37% DRAM energy savings** on GPU
- Average **31% DRAM energy savings** on DNN accelerators (Eyeriss and TPU)

Motivation: Deep Neural Networks (DNNs) are important in many domains (vision, robotics, ...) <u>Problem</u>: Challenges of DNN Inference:

- **High DRAM energy consumption** → high energy cost of DNN inference
- **High DRAM latency** → DNN inference slowdowns

<u>Goal:</u> Reduce **DRAM voltage and timing** for **error tolerant DNN inference workloads,** exploiting the trade-off between bit error rate and energy/performance

EDEN: Deep Neural Network Inference Using Approximate DRAM

• Techniques to maintain accuracy through (1) **error tolerance boosting**, (2) **DNN characterization**, (3) **DNN to DRAM mapping**, and **DRAM error modeling**

<u>Results</u>: Energy savings and performance improvements on 12 DNN benchmarks

- Average 21% DRAM energy savings and 8% speedup on CPU
- Average **37% DRAM energy savings** on GPU
- Average **31% DRAM energy savings** on DNN accelerators (Eyeriss and TPU)

EDEN is applicable to other DRAM parameters and memory technologies

SAFARI

Outline

1. Motivation and Problem

2. DNN Basics and DRAM Parameters

3. EDEN Mechanism

- i. Boosting DNN Error Tolerance
- ii. DNN Error Tolerance Characterization
- iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

4. Evaluation

5. Conclusion

Motivation

Deep neural networks (DNNs) are critical in computer vision, robotics, and many other domains

Motivation

Deep neural networks (DNNs) are critical in computer vision, robotics, and many other domains

Modern platforms for DNN inference use DRAM

Mobile CPUs

GPUs

Data Center Accelerators

Edge-device Accelerators

Challenges of DNN Inference

DRAM has high energy consumption

• **25% to 70% of system energy** is consumed by DRAM in common DNN inference accelerators

Challenges of DNN Inference

DRAM has high energy consumption

• **25% to 70% of system energy** is consumed by DRAM in common DNN inference accelerators

DRAM can bottleneck performance

Potential **19% speedup** by **reducing DRAM latency** on CPU for some DNNs

Challenges of DNN Inference

DRAM has high energy consumption

• **25% to 70% of system energy** is consumed by DRAM in common DNN inference accelerators

DRAM can bottleneck performance

Potential 19% speedup by reducing DRAM latency on CPU for some DNNs

How can we **reduce DRAM energy** and **improve DRAM performance** for DNN inference?

Outline

1. Motivation and Problem

2. DNN Basics and DRAM Parameters

3. EDEN Mechanism

- i. Boosting DNN Error Tolerance
- ii. DNN Error Tolerance Characterization
- iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

4. Evaluation

5. Conclusion

• Modern DNNs can have **hundreds of layers** and between **10⁵** and **10⁹** weights

- Modern DNNs can have **hundreds of layers** and between **10⁵** and **10⁹** weights
- Three main data types compose a DNN layer:
 - 1. Weights

- Modern DNNs can have **hundreds of layers** and between **10**⁵ and **10**⁹ weights
- Three main data types compose a DNN layer:
 - 1. Weights
 - 2. Input Feature Maps (IFMs)

- Modern DNNs can have **hundreds of layers** and between **10**⁵ and **10**⁹ weights
- Three main data types compose a DNN layer:
 - 1. Weights
 - 2. Input Feature Maps (IFMs)
 - 3. Output Feature Maps (OFMs)

- Modern DNNs can have **hundreds of layers** and between **10⁵** and **10⁹** weights
- Three main data types compose a DNN layer:
 - 1. Weights
 - 2. Input Feature Maps (IFMs)
 - 3. Output Feature Maps (OFMs)
- Large DNN weight/IFM counts enable high learning capacity

- Modern DNNs can have **hundreds of layers** and between **10⁵** and **10⁹** weights
- Three main data types compose a DNN layer:
 - 1. Weights
 - 2. Input Feature Maps (IFMs)
 - 3. Output Feature Maps (OFMs)
- Large DNN weight/IFM counts enable high learning capacity
- If the weights/IFMs have **small bit errors**, a DNN can **still maintain accuracy**

DNN Inference Using DRAM

DRAM Parameters

DRAM operates at a **standard voltage**

(e.g., DDR3 at 1.35V)

DRAM Parameters

Accessing data follows a **sequence of MC commands** with **standard timing**

parameters

DRAM Parameters

SAFARI

Outline

1. Motivation and Problem

2. DNN Basics and DRAM Parameters

3. EDEN Mechanism

- i. Boosting DNN Error Tolerance
- ii. DNN Error Tolerance Characterization

iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

Observations

1. DNNs have an **intrinsic robustness to errors** in the weight and feature map data types

Observations

1. DNNs have an **intrinsic robustness to errors** in the weight and feature map data types

 DNN inference systems can reduce DRAM energy consumption and latency if they tolerate more bit errors

1. DNNs have an **intrinsic robustness to errors**

Approximate DRAM (voltage and latency-scaled DRAM) can provide **higher energy-efficiency** and **performance** for **error-tolerant DNN inference** workloads

EDEN: Key Idea

Enable accurate, efficient DNN inference using approximate DRAM through 3 key steps:

- **1. DNN error tolerance boosting**
- 2. DNN and DRAM characterization
- 3. DNN to DRAM mapping

EDEN: Inputs

Inputs to EDEN:

- (1) user-specified DNN accuracy goal
- (2) pre-trained model
- (3) target DRAM device

Step 1: Boosting DNN Error Tolerance

Goal: Better maintain accuracy when the DNN is exposed to bit errors

Step 1: Boosting DNN Error Tolerance

Goal: Maintain accuracy when the DNN is exposed to bit errors

Mechanism: Retrain the DNN with **approximate memory** to adapt the DNN to unreliable cells

Forward Pass using Approximate DRAM

Step 1: Boosting DNN Error Tolerance

Goal: Maintain accuracy when the DNN is exposed to bit errors

Mechanism: Retrain the DNN with **approximate memory** to adapt the DNN to unreliable cells

Step 1: Failures during Boosting

For **high** error rates, **accuracy collapses** at the start of retraining. Backward pass becomes polluted with zero-information updates

Bad/Zero
Gradient
$$\theta \coloneqq \theta - \alpha \frac{d}{d\theta} J(\theta)$$
Output
and High LossBackward Pass using Reliable DRAMOutput

Step 1: Mitigating Failures

Goal: Avoid early retraining collapse

Step 1: Mitigating Failures

Goal: Avoid early retraining collapse

Mechanism: Gradually increase the error rate of the approximate DRAM during retraining to build error tolerance

Step 1: Mitigating Failures

Goal: Avoid early retraining collapse

Mechanism: Gradually **increase the error rate** of the approximate DRAM during retraining to build error tolerance

Filter out-of-range values (e.g., >10¹⁵) based on knowledge of the DNN weight and IFM distribution

Outline

- **1. Motivation and Problem**
- **2. DNN Basics and DRAM Parameters**
- **3. EDEN Mechanism**
 - i. Boosting DNN Error Tolerance
 - ii. DNN Error Tolerance Characterization

iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

SAFARI

Step 2: Error Tolerance Characterization

Goal: Find the highest tolerable error rates of the DNN and the corresponding DRAM parameters

Step 2: Error Tolerance Characterization

Goal: Find the highest tolerable error rates of the DNN and the corresponding DRAM parameters

Mechanism: Systematically measure error resilience of each DNN data type on the approximate DRAM

Step 2: Error Tolerance Characterization

Goal: Find the highest tolerable error rates of the DNN and the corresponding DRAM parameters

Mechanism: Systematically measure error resilience of each DNN data type on the approximate DRAM

Two ways to perform this testing:

- **1.** Coarse-grained characterization
- 2. Fine-grained characterization

Step 2: Coarse-Grained Characterization

Reduce voltage/latency of all DNN data types equally

Step 2: Coarse-Grained Characterization

Reduce voltage/latency of all DNN data types equally

• Easy to perform on commodity DRAM

Step 2: Coarse-Grained Characterization

Reduce voltage/latency of all DNN data types equally

- Easy to perform on commodity DRAM
- Voltage and latency reduction is **limited by the most** error sensitive data in the DNN

Step 2: Fine-Grained Characterization

Scale **voltage and latency differently** for each individual DNN data type and layer

Step 2: Fine-Grained Characterization

Different reductions for each DNN data type and layer

• More aggressive voltage/latency reduction is possible

Step 2: Fine-Grained Characterization

Different reductions for each DNN data type and layer

- More aggressive voltage/latency reduction is possible
- Requires non-commodity DRAM to reduce some parameters (e.g., V_{dd})
- Takes more time than coarse-grained characterization

Example ResNet-50 Characterization

Weights and IFMs of ResNet-50

Example ResNet-50 Characterization

- Error tolerance of DNN layers varies greatly
- Weights exhibit greater error tolerance than IFMs

Outline

- **1. Motivation and Problem**
- **2. DNN Basics and DRAM Parameters**
- **3. EDEN Mechanism**
 - i. Boosting DNN Error Tolerance
 - ii. DNN Error Tolerance Characterization

iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

4. Evaluation

Step 3: Mapping

Goal: match error tolerance of DNN with DRAM **error rates**

Goal: match error tolerance of DNN with DRAM **error rates**

Mechanism:

Coarse-grained: assign the single best voltage/latency value that **meets the target DNN accuracy**

Goal: match error tolerance of DNN with DRAM **error rates**

Mechanism:

Coarse-grained: assign the single best voltage/latency value that **meets the target DNN accuracy**

Fine-grained: a **greedy algorithm** that matches first the most error sensitive DNN data to the most reliable DRAM partitions

Example Coarse-Grained Mapping

Mapping of ResNet-50:

Single DRAM partition with error rate in yellow

Example Fine-Grained Mapping

Mapping of ResNet-50:

4 DRAM partitions with error rates in yellow, red, green, blue

Outline

- **1. Motivation and Problem**
- **2. DNN Basics and DRAM Parameters**
- **3. EDEN Mechanism**
 - i. Boosting DNN Error Tolerance
 - ii. DNN Error Tolerance Characterization
 - iii. DNN to DRAM Mapping

Enabling EDEN Using Error Models

4. Evaluation

Enabling EDEN Using Error Models

Problem: Retraining is **not always feasible** on the approximate DRAM device

Goal: Perform retraining and error characterization without use of the approximate DRAM device

DRAM Error Models

We use the closest fit of four probabilistic error models

Uniform Random

Wordline Correlated

Bitline Correlated

Bit Value Dependent

Use of a DRAM Error Model

Outline

- 1. Motivation and Problem
- **2. DNN Basics and DRAM Parameters**
- 3. EDEN Mechanism
 - i. Boosting DNN Error Tolerance
 - ii. DNN Error Tolerance Characterization
 - iii. DNN to DRAM Mapping
 - **Enabling EDEN Using Error Models**

4. Evaluation

5. Conclusion

DNN Accuracy Evaluation: Methodology

- 8 DNN workloads across four quantization levels
 - int4, int8, int16, FP32
 - YOLO YOLO-Tiny MobileNetV2 SqueezeNet1.1
 VGG-16 DenseNet201 ResNet-101 AlexNet

DNN Accuracy Evaluation: Methodology

- 8 DNN workloads across four quantization levels
 - int4, int8, int16, FP32
 - YOLO YOLO-Tiny MobileNetV2 SqueezeNet1.1
 VGG-16 DenseNet201 ResNet-101 AlexNet
- Custom **PyTorch**-based DNN framework to run DNN inference with error models
- **SoftMC** framework to run inference data accesses on **real DDR3 DRAM modules**

Example: Boosting Error Tolerance of ResNet101

Example: Boosting Error Tolerance of ResNet101

DNN tolerance boosting can **improve** a DNN's **bit error tolerance** by **5-10x**

DNN Accuracy of LeNeT on SoftMC

Boosting with error models helps maintain accuracy while reducing voltage and latency on real DRAM modules

Energy and Performance Evaluation

- 6 DNN workloads with int8 and FP32 quantizations
- Inference libraries from **DarkNet**, Intel OpenVINO, TVM

Energy and Performance Evaluation

- 6 DNN workloads with int8 and FP32 quantizations
- Inference libraries from **DarkNet**, Intel OpenVINO, TVM
- **Ramulator, ZSim, GPGPUSim**, and **SCALE-Sim** used for DRAM, CPU, GPU, Eyeriss, and TPU simulation
 - **CPU**: 4 Core @ 4.0 GHz, 8MB L3, 8GB DDR4 DRAM
 - **GPU:** 28 SMs, 12GB GDDR5 @ 2.5 GHz
 - **Eyeriss**: 12 x 18 PEs, 4GB LPDDR4 @ 1600MHz
 - **TPU:** 256 x 256 PEs, 4GB LPDDR4 @ 1600MHz
 - Full configuration can be found in the paper

CPU Energy Evaluation

Average 21% DRAM energy reduction maintaining accuracy within 1% of original

CPU Performance Evaluation

Average 8% system speedup with some workloads achieving **17% speedup**

SAFARI

CPU Evaluation

EDEN achieves close to the ideal speedup possible via tRCD scaling

GPU, Eyeriss, and TPU Energy Evaluation

- Using the previous DNN benchmarks:
 - Average **31% DDR4 energy reduction on Eyeriss**
 - Average **32% DDR4 energy reduction on TPU**
 - Average **37% GDDR5 energy reduction on Titan X**

GPU, Eyeriss, and TPU Energy Evaluation

- Using the previous DNN benchmarks:
 - Average **31% DRAM energy reduction on Eyeriss**
 - Average 32% DRAM energy reduction on TPU
 - Average **37% DRAM energy reduction on GPU**
- GPUs and accelerators are **effective at hiding DRAM latency** due to (1) *effective pre-fetching* and (2) *large register banks and SRAM buffers* (exploiting the fixed memory access patterns on DNN inference)
Other Results in the Paper

- Error resiliencies across different DNNs and quantizations
- Validation of the boosting mechanism
- Supporting data for error models using real DRAM modules
- Comparison of different DRAM error models
- Breakdown of energy savings on different workloads for GPU and TPU

Summary

Motivation: Deep Neural Networks (DNNs) are important in many domains (vision, robotics, ...) <u>Problem</u>: Challenges of DNN Inference:

- **High DRAM energy consumption** → high energy cost of DNN inference
- **High DRAM latency** → DNN inference slowdowns

<u>Goal</u>: Use voltage/timing scaled DRAM for DNN inference to exploit error tolerant DNN workloads, enabling a trade-off between bit error rate and energy/performance

EDEN: Deep Neural Network Inference Using Approximate DRAM

• Techniques to maintain accuracy through **error tolerance boosting**, **DNN characterization**, **DNN to DRAM mapping**, and **DRAM error modeling**

<u>Results</u>: Energy savings and performance improvements on 12 DNN benchmarks

- Average 21% energy savings and 8% speedup on CPU
- Average **37% energy savings** on GPU
- Average **31% energy savings** on DNN accelerators (Eyeriss and TPU)

EDEN is applicable to other DRAM parameters and memory technologies

EDEN

Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM

Skanda Koppula Lois Orosa A. Giray Yaglikci Roknoddin Azizi Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu

Coarse-Grained Scaling

	FP32			int8			
Model	BER	ΔV_{DD}	Δt_{RCD}	BER	ΔV_{DD}	Δt_{RCD}	
ResNet101	4.0%	-0.30V	-5.5ns	4.0%	-0.30V	-5.5ns	
MobileNetV2	1.0%	-0.25V	-1.0ns	0.5%	-0.10V	-1.0ns	
VGG-16	5.0%	-0.35V	-6.0ns	5.0%	-0.35V	-6.0ns	
DenseNet201	1.5%	-0.25V	-2.0ns	1.5%	-0.25V	-2.0ns	
SqueezeNet1.1	0.5%	-0.10V	-1.0ns	0.5%	-0.10V	-1.0ns	
AlexNet	3.0%	-0.30V	-4.5ns	3.0%	-0.30V	-4.5ns	
YOLO	5.0%	-0.35V	-6.0ns	4.0%	-0.30V	-5.5ns	
YOLO-Tiny	3.5%	-0.30V	-5.0ns	3.0%	-0.30V	-4.5ns	

tRCD or voltage scaling that yields <1% accuracy degradation on a target DDR3 module

DNN Workload List and Baseline Accuracies

Model	Dataset	Model Size	IFM+Weight Size	int4	int8	int16	FP32
ResNet101 [59]	CIFAR10 [4]	163.0MB	100.0MB	89.11%	93.14%	93.11%	94.20%
MobileNetV2 [146]	CIFAR10 [4]	22.7MB	68.5MB	51.00%	70.44%	70.46%	78.35%
VGG-16 [156]	ILSVRC2012 [140]	528.0MB	218.0MB	59.05%	70.48%	70.53%	71.59%
DenseNet201 [63]	ILSVRC2012 [140]	76.0MB	439.0MB	0.31%	74.60%	74.82%	76.90%
SqueezeNet1.1 [64]	ILSVRC2012 [140]	4.8MB	53.8MB	8.07%	57.07%	57.39%	58.18%
Alexnet [84]	CIFAR10 [4]	233.0MB	208.0MB	83.13%	86.04%	87.21%	89.13%
YOLO [137]	MSCOCO [104]	237.0MB	360.0MB		44.60%	_	55.30%
YOLO-Tiny [137]	MSCOCO [104]	33.8MB	51.3MB	-	14.10%	-	23.70%
LeNet* [89]	CIFAR10 [4]	1.65MB	2.30MB	-	61.30%	-	67.40%

Coarse-Grained Characterization Algorithm

Key Steps:

- 1. Decrease $tRCD/V_{dd}$ of DRAM module
- 2. Run DNN inference
- 3. Measure accuracy on validation dataset
- 4. If accuracy < target: terminate.

Decreasing voltage and DNN accuracy

Fine-Grained Characterization Algorithm

Key Steps:

- 1. Decrease parameter of DRAM/DNN partition
- 2. Run DNN inference
- 3. Measure accuracy on validation dataset
- 4. If accuracy < target: roll-back parameter decrease
- 5. Repeat for all DNN partitions, parameter levels