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Executive Summary

Motivation: Experimentally studying DRAM error mechanisms
provides insights for improving performance, energy, and reliability

Problem: on-die error correction (ECC) makes studying errors difficult
- Distorts true error distributions with unstandardized, invisible ECC functions
- Post-correction errors lack the insights we seek from pre-correction errors

Goal: Recover the pre-correction information masked by on-die ECC

Key Contributions:

1. Error INference (EIN): statistical inference methodology that:
* Infers the ECC scheme (i.e., type, word length, strength)
* Infers the pre-correction error characteristics beneath the on-die ECC mechanism
» Works without any hardware intrusion or insight into the ECC mechanism

2. EINSim: open-source tool for using EIN with real DRAM devices
 Available at: https.//github.com/CMU-SAFARI/EINSIm

3. Experimental demonstration: using 314 LPDDR4 devices
 EIN infers (i) the on-die ECC scheme and (ii) pre-correction error characteristics

We hope EIN and EINSim enable many valuable studies going forward
SAFARI




Presentation Outline

1. Error Characterization and On-Die ECC



What is DRAM Error Characterization?

Studying how DRAM behaves
when we deliberately induce bit-flips
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How Do We Characterize DRAM?

DRAM Device
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Why Study DRAM Errors?

* Errors provide insight into how a DRAM device works
- Error mechanisms are based on physical phenomena
- Patterns in errors can indicate opportunity for improvement

e.g., Reliably reducing e.g., Efficiently profiling for
conservative operating timings and mitigating errors
Performance Rellablllty

Characterlzatlon—Drlven In5|ghts

Energy Securlty
e.g., Reducing the cost e.g., Defending against
of refresh and other operations vulnerabilities (e.g., RowHammer)
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Three Key Types of DRAM

No ECC Rank-Level ECC On-Die ECC
(Standard) (Server-style) (or Integrated ECC)

Tester Tester Tester

J Raw Data Is J Raw Data Is ®ECC Modifies
Unmodified Unmodified Raw Data
-
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Three Key Types of DRAM

Unfortunately, the on-die ECC scheme:
1. Cannot be bypassed
2. Is unknown and proprietary
3. Is completely invisible
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ECC Complicates Error Characterization
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ECC Complicates Error Characterization

Observed errors can change
depending on the ECC scheme
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ECC Makes Error Characterization Difficult

Unknown

ECC Scheme A
Unknown

ECC Scheme B

Pre-ECC Error

Distribution Unknown

1 ECC Scheme C

Based on a physical ECC-scheme specific; Post-ECC Error

DRAM error mechanism Error mechanism influence lost Distribution

» ECC causes two key problems:

Prevents comparing error characteristics between devices

Obfuscates the well-studied error distributions we expect
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Example: Technology Scaling Study

 Goal: study how errors evolve over technology generations
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Example: Technology Scaling Study

Recover pre-correction error characteristics
obfuscated by on-die ECC
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2. EIN: Error INference
. The Inference Problem



Key Observation

DRAM error mechanisms have
predictable characteristics
that are intrinsic to DRAM technology

SAFARI
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Example: Data-Retention Errors

REF

o
T O I S R
Time
DRAM encodes data Leakage rates differ due Necessitates periodic
in leaky capacitors to process variation refresh operations

* By disabling refresh, we induce data-retention errors
» Well-studied and fundamental to DRAM technology

* Errors exhibit predictable statistical characteristics
- Exponential bit-error rate (BER) with respect to temperature
- Uniform-random spatial distribution
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Inferring the ECC Scheme

* Exploit error characteristics to infer the ECC scheme
- Works for any DRAM susceptible to the error mechanism
- Independent of any particular device or manufacturer

CPU
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Inferring the ECC Scheme

use predictable
error characteristics to infer:

(i) the ECC scheme
(ii) the pre-correction error rate

SAFARI
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2. EIN: Error INference

1. Formalization



Formalizing the Inference Problem

CPU Random variables DRAM <<0§
GEEER A
codeword
ECC Scheme > Data
&) < Store
codeword'’

 Model the entire DRAM transformation as a function:
Distribution

- ECC Scheme
Distribution of inputs ne
of outputs — | T Error Distribution

w = f(w]S,0)

We want to infer {§, 8} given observed {w,w'}
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Formalizing the Inference Problem

CPU

)
dataword «—w

<

. ) dataword’ — w'

w' = f(w|s,0)

\.

DRAM 0
( codeword i h
» ECC Scheme > Data
(S) » Store
codeword'’

* §: ECC encoding/decoding algorithms

* 0: Spatial distribution of errors (e.g., uniform-random)

* w,w': Probability of each value (i.e., 0x0, 0x1, ...)
- w is typically defined by the

SAFARI

we write



Formalizing the Inference Problem

CPU DRAM < BE
dataword «— w ( codeword h

» ECC Scheme > Data

< (S) » Store
. ) dataword’ — w' g codeword'’ )

w' = f(w|s,0)

» Unfortunately: w'is hard to measure

- 64-bit dataword — 2°* possible values
- Typical 8GiB DRAM only has ~23° datawords (<< 2%4)
- Hard to get a representative sample of w' even with all 8GiB

* wy': Probability that w' has N € [0, 1, ...,n] errors
- Easy to experimentally measure: simply count errors
- Meaningful in the context of ECC (e.g., n—error correction)

SAFARI



Inferring the ECC Scheme

Want the most likely ECC scheme given an experiment

Experiment
ECC SCheme ; ; 0: error distribution

argmax P[S | X] w,w,': inputs/outputs
Bayes’ S
Theorem

argmax P[X | PX | S] * P[S]

E

Likelihood / " Prior

Are these results reasonable? How likely is S?

* This Is a maximume-a-posteriori (MAP) estimation

» We provide a rigorous derivation in the paper
- Full optimization objective function

- Extension for inferring error distribution characteristics 6
SAFARI 23



Error INference (EIN) Methodology

Define experimental inputs
(i.e., data pattern, error mechanism)

Identify candidate ECC Schemes

Run Experiments

® OO

Compute MAP estimation

Most likely ECC scheme
SAFARI
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2. EIN: Error INference

I1l. EIN in Practice: EINSIim



MAP Estimation in Practice

Input
(i.e., data pattern, 3
error distribution)
Suspected I I I
ECC Schemes

B S Device to Test
Hard to (unknown ECC scheme)
calculate
analytically

e <4

Outputs — : Observations
(# errors per word) A B Cl DI (# errors per word)

SAFARI Likelihood per Scheme




EINSim: A Tool for Using EIN

* Evaluates MAP estimation via Monte-Carlo simulation
- Simulates the life of a dataword through a real experiment
- Configuration knobs to replicate the experimental setup

* Flexible and extensible to apply to a wide variety of:
- DRAM devices
- Error mechanisms
- ECC schemes

Open-source C++/Python project

» Example datasets provided (same as used in paper)
SAFARI


https://github.com/CMU-SAFARI/EINSim

EINSim: A Tool for Using EIN

Give EINSIim a try at:

o Why GitHub? ~~ Enterprise Explore ~ Marketplace Pricing - Search /. Signin

CMU-SAFARI / EINSIim ® Watch | 2 * Star | 2 Y Fork | 0

<> Code ssues 0 Pull requests 0 rojects Security Insights
Statistically inferring pre-correction memary error characteristics using only the post-correction errors in an ECC-enabled system.

Described in the 2019 DSN paper by Patel et al.: https://people.inf.ethz.ch/omutlu/pub/understanding-and-modeling-in-DRAM-
ECC_dsn19.pdf.

dram reliability error-correction error-correcting-codes rap-estimaticn statistical-inference simulator

SAFARI


https://github.com/CMU-SAFARI/EINSim
https://github.com/CMU-SAFARI/EINSim
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3. Demonstration Using LPDDR4 Devices



Methodology

* We experimentally test LPDDR4 DRAM devices
- 232 on-die ECC (one major manufacturer)
- 82 on-die ECC (three major manufacturers)

» Thermally controlled testing chamber
- 55°C - 70°C
- Tolerance of +1°C

* Precise control over the commands sent to DRAM
- Ability to enable/disable self-/auto-refresh
- Control over CAS (i.e., read/write) commands

SAFARI



Experimental Design

Goal: infer which ECC scheme is used
in real LPDDR4 devices with on-die ECC

Parameter Experiment Simulation (EINSim)
Word Size 256 bits 256 bits

Hamming (32, 64, 128, 256)
BCH-2EC (32, 64, 128, 256)

S VNKIOWNE e SEC (30 64, 128, 256)
Repetition (3, 5, 7)
Data Pattern RANDOM RANDOM, OxFF
SR Data-Retention Data-Retention
Mechanism

SAFARI



MAP Estimation Methodology

» Assume a uniform prior distribution
- Avoids biasing results towards our preconceptions
- Demonstrates EIN in the worst case

 Simulate 10° 256-bit words per ECC scheme

* Error estimation using bootstrapping (104 samples)

SAFARI



MAP Estimation Results

Lower is
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MAP Estimation Results
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MAP Estimation Results

EIN effectively infers the ECC scheme
in LPDDR4 devices with on-die ECC

to be a (128 + 8) Hamming Code

EIN infers the ECC scheme without:

- Visibility into the ECC mechanism
- Disabling ECC
- Tampering with the hardware



EIN Applies Beyond On-Die ECC

* EIN technically applies for any device for which:
- Communication channel protected by ECC
- Can induce uncorrectable errors
- Errors follow predictable statistical characteristics

DRAM Rank-Level ECC Flash Memory ECC

SAFARI



Other Contributions in our Paper

* Two error-characterization studies showing EIN's value
1. EIN enables comparing BERs of the DRAM technology itself
2. EIN recovers expected distributions that ECC obfuscates

 Using EIN to infer additional information:
- The data pattern written to DRAM
- The pre-correction error characteristics (e.g., pre-ECC BER)

 Formal derivation of EIN + discussion of its limitations

* Verify uniform-randomly spaced data-retention errors

- Reverse-engineering DRAM design characteristics that affect
uniformness (e.qg., true-/anti-cell layout)
SAFARI



Talk & Paper Recap

Motivation: Experimentally studying DRAM error mechanisms
provides insights for improving performance, energy, and reliability

Problem: on-die error correction (ECC) makes studying errors difficult
- Distorts true error distributions with unstandardized, invisible ECC functions
- Post-correction errors lack the insights we seek from pre-correction errors

Goal: Recover the pre-correction information masked by on-die ECC

Key Contributions:

1. Error INference (EIN): statistical inference methodology that:
* Infers the ECC scheme (i.e., type, word length, strength)
* Infers the pre-correction error characteristics beneath the on-die ECC mechanism
» Works without any hardware intrusion or insight into the ECC mechanism

2. EINSim: open-source tool for using EIN with real DRAM devices
 Available at: https.//github.com/CMU-SAFARI/EINSIm

3. Experimental demonstration: using 314 LPDDR4 devices
 EIN infers (i) the on-die ECC scheme and (ii) pre-correction error characteristics

We hope EIN and EINSim enable many valuable studies going forward
SAFARI
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EIN: 3 Concrete Use Cases

1. Rapid error profiling using statistical distributions
- Use properties of the error mechanisms to model errors
- Use EIN to determine model parameters at runtime
- Replacement for laborious, per-device characterization

2. Comparison studies (e.g., technology scaling)
- Use EIN to compare pre-correction error rates
- Study + predict industry and future technology trends

3. Reverse-engineering proprietary ECC schemes
- Applies beyond just DRAM with on-die ECC
- Can be useful for security research

- E.g., vulnerability evaluation, patent infringement,

competitive analysis, forensic analysis
SAFARI



Observed BER Depends on ECC

Assume errors occur independently, uniform-randomly
- Fixed per-bit P[error] = "bit error rate” (BER)

—N— BCH(64, 2) —®— Hamming(32, 1) Hamming(256, 1)
BCH(128, 2) == Hamming(64, 1) —&— 3-Repetition
—de— BCH(256, 2) —r— Hamming(128, 1) —3= None
0.03 ———
Ecc(k, t): A y
5 k = # data bits <
t = # correctable errors
0 0.02 -
©
Q
>
—
¢ 0.01
fo)
@)
0.00 = —

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Pre-Correction BER
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A Closer Look at On-Die ECC

DRAM with on-die ECC

InPUt — ECC Encoder
(writes) Data Storage
Output i
<+— [CC Decoder ECC Storage
(reads) :

Primarily mitigates technology scaling issues [1]
- Transparently mitigates random single-bit errors (e.g., VRT)
- Fully backwards compatible (no changes to DDRXx interface)

Unfortunately, has side-effects for error characterization
- Unspecified, black-box implementation

- Obfuscates errors in an ECC-specific manner
SAFAR| 111 ECC Brings Reliability and Power Efficiency to Mobile Devices,” Micron Technology, Inc, Whitepaper, 2017



On-Die ECC in Literature

« Two types of ECC mentioned
- (128 + 8) Hamming code
- (64 + 7) Hamming code

 Paper contains references to both of these

SAFARI



On-Die ECC Research Challenge

for DRAM manufacturers:
v Transparently improves reliability
v Decreases power required for data retention
v/ Low latency/power overhead
v No changes to DRAM interface (i.e., backwards compatible)

Bad for researchers studying DRAM errors:
X Hides errors in a black-box, device-specific way
X Distorts well-understood statistical distributions
X Prevents fairly comparing BER of the DRAM itself

SAFARI



EINSim Functional Description

 Simulates the dataflow through a real experiment
- Configuration parameters replicate experimental setup
- Simulate enough words to resolve the output distribution

Input Conftguratton Word
(e, w,§,0) '| Generator Ir—"l ECC Encoder |—>

Error
Injector

Output Distribution o__ _I Error |4__| |<_I
(e, W) Checker ECC Decoder
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EINSim Configuration + Features

Input Configuration \ Word ‘ ,\ d I_,
(e, w, S, 0) Generator ECC Encoder

Error
0 Distributi Injector
utput Distribution Error ‘l \ECC Decoder‘l
(l.e., wy) Checker
Module Parameters
Word length
Word Generator Data Pattern
ECC Encoder, ECC code {type, length, strength}
ECC Decoder code details (e.g., generator polynomial)
Error Injector Spatial error distribution
Error Checker Measurement (e.qg., #errors per word)
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Word Generator

Wora e W'Ord EI ECC Encoder | wdeword@%
Generator . |
dataword(s) Error
Error N-bit word I codeword(s) Injector
‘ r i ] ECC Decoder Ii
Checker ,
dataword(s)

* Creates an N-bit word
- Commonly used data patterns (e.g., 0OxFF, RANDOM)
- Effectively sampling the w distribution

* N may be multiple datawords long
- Useful if we don’t know how datawords are laid out
- Split into datawords according to a configurable mapping

- More details about this in the paper
SAFARI



ECC Encoder/Decoder

ECC Encoder

codeword(s)

B\

ECC Decoder

codeword(s)

Error
Injector

3

‘ Word |N—bltwlord E
Generator | .
dataword(s)
‘ e |‘N_blt wgd
Checker L
dataword(s)

* EINSim implements ECC algorithms
- Currently supports common codes (e.g.,, Hamming, BCH)

- Modularly designed and easily extensible to others

- Validated by hand + using unit tests (available on GitHub)

» Configurable parameters for:
- Number of data bits, correction capability
- Details of implementation (e.g., generator polynomials)
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Error Injector

_bi deword(s)gx
Word IN bit word !co
‘ Generator | 1 ECC Encoder i E&
dataword(s) Error
Error N-bit word | codeword(s) Injector
‘ ch r % | ECC Decoder Ii
ecker |
dataword(s)

* Injects errors according to a spatial error distribution
- Configurable parameters depend on particular distribution

- Extensible to many different error distributions

e Uniform-random for data-retention errors

- We experimentally validate this using real LPDDR4 devices
- Experiment and analysis discussed in detail in the paper
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Error Checker

‘ Word IN-bit W.Ord EI et ] | codeword(s)ﬁ\&
Generator | ' Neo eri
dataword(s) Error
) Injector
N-bit word I codeword(s) J
CError ) LY ) | ECC Decoder Ii
ecker 1

dataword(s)

« Computes a configurable output distribution
- Corresponds to the experimental measurement we make

- E.g., number of errors per dataword (i.e., wy)

SAFARI



Validating Uniform-Randomness

« We model data-retention errors as uniform random

- Well-studied throughout prior work
- Error count per N-bit word follows a binomial distribution

» We experimentally validate uniform-randomness
- 82 LPDDR4 devices without on-die ECC
- Disable refresh operations for 20s @ 60°C

L
o \“L”'“Th..\,_v,
E 10_3 ] .&\V\w\'
e
T 19-7| —7 Experimental (Measured) e,
Expected (Binomial Distribution)
10_9 1 1 1 1 I | I 1 I 1 1
0 2 4 6 8 10 12 14 16 18 20

SAFARI
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Anatomy of a DRAM Bank

* DRAM cells can encode data in two ways:
- Data ‘1" as ‘charged’ -> “True-cell”
- Data '1" as ‘'discharged’ -> "Anti-cell”

 Retention errors typically “charged” -> “discharged”

p
8192 Rows{ 1 824 Rows

824 Rows }2048 Rows
400 Rows

]7

‘ True-Cells
\
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Incidence of “Outlier Rows”

« Some rows do not follow the true-/anti-cell layout

 Appear to follow typical “remapped row” distributions
- Extra memory rows used for post-manufacturing repair

6 le—4
— EXxperimental Data
— NB(5.2157, 0.0026) Fit
2 41
E
©
O
0 2-
(a
0 -

0 1000 2000 3000 4000 5000
Number of Outlier Rows per Bank
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MAP Estimation Shown Graphically

Non-uniformities
i (details in paper)
10
| Low sample
E -4
© 1074\
ai'_ —— Experimental Data
106 - Maximum-a-Posteriori Model
Lower-Likelihood Models
0 5 10 15 20 25 30

Number of Bit Errors in a 256-bit Word
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Example Error-Characterization Studies

* We provide two studies to demonstrate EIN's value

- Measure data-retention error rates
- Have 314 LPDDR4 devices (with + without on-die ECC)

1. BER vs. refresh rates
- We compare devices with on-die ECC to those without it
- EIN infers the pre-correction BER beneath on-die ECC
- Enables comparing BER of the DRAM technology itself

2. BER vs. temperature
- On-die ECC distorts the expected exponential relationship
- EIN recovers the obfuscated statistical distribution

SAFARI



Finding the “Right” Answer

* MAP estimation selects between suspected models
- EIN cannot tell if the MAP estimate is “right”
- “Likelihood” is a relative measure

1. Techniques for gaining confidence in the answer:
- Using confidence intervals (e.g., statistical bootstrap)
- Testing across many different error conditions

2. Unlikely that the ECC scheme used is unknown

- ECC is a well-studied area
- Manufacturers are unlikely to a completely unknown code

3. Typically we may suspect some schemes already
- Academic/industry papers, datasheets, etc.

SAFARI



Control of Errors

* EIN requires knowledge and control of errors
1. Understand the spatial distribution of errors
2. Be able to induce uncorrectable errors

* Not a limitation in practice for DRAM

- Many well-studied easily-controlled error mechanisms exist
 E.g., data retention
 E.g., access-latency reduction (i.e., tRCD, tRP, etc.)
* E.g, RowHammer

SAFARI



Error Localization

 EIN cannot identify bit-exact error locations
- ECC decoding function is lossy (i.e., many-to-one)
- We are unaware of a way to reverse the decoding function

* Not a limitation in practice since we can still infer:
- The ECC scheme
- Pre-correction error rates

SAFARI



