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Executive	Summary
§ Problem:	DRAM	latency	is	a	performance	bottleneck	for	many	applications
§ Goal:	Reduce	DRAM	latency	via	in-DRAM	cache
§ Existing	in-DRAM	caches:

• Augment	DRAM	with	small-but-fast	regions	to	implement	caches
• Coarse-grained	(i.e.,	multi-kB)	in-DRAM	data	relocation
• Relocation	latency	increases	with	physical	distance	between	slow	and	fast	regions

§ FIGARO	Substrate:

• Key	idea:	use	the	existing	shared	global	row	buffer	among	subarrays	within	a	DRAM	
bank	to	provide support	for	in-DRAM	data	relocation

• Fine-grained (i.e.,	multi-byte)	in-DRAM	data	relocation	and	distance-independent	
relocation	latency

• Avoids	complex	modifications	to	DRAM	by	using	existing	structures
§ FIGCache:

• Key	idea:	cache	only	small,	frequently-accessed	portions	of	different	DRAM	rows	
in	a	designated	region	of	DRAM

• Caches	only	the	parts	of	each	row that	are	expected	to	be	accessed	in	the	near	future
• Increases	row	hits by	packing	more	frequently-accessed data	into	FIGCache	
• Improves	system	performance by	16.3% on	average
• Reduces	DRAM	energy	by	7.8% on	average

§ Conclusion:

• FIGARO	enables	fine-grained	data	relocation	in-DRAM	at	low	cost
• FIGCache outperforms	state-of-the-art	coarse-grained	in-DRAM	caches
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• Each	subarray	contains	512– 2048	rows	of	DRAM	cells
• DRAM	rows	are connected	to	a	local	row	buffer	(LRB)

• All	of	the	LRBs in	a	bank	are	connected	to	a	shared global	row	buffer	(GRB)

• The	GRB is	connected	to	the	LRBs using	a	set	of	global	bitlines

• The	GRB has	smaller	width	(e.g.,	8B)	than	the	LRBs (e.g.,	1kB)

• A	single	column	(i.e.,	a	small	number	of	bits)	of	the	LRB	is	selected	using	a	
column	decoder	to	connect	to	the	GRB
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DRAM	Operation
DRAM	controller	issues	4main	memory	commands
1) ACTIVATE:	activates	the	DRAM	row	containing	the	data
• Latches the	selected	DRAM	row	into	the	LRB

2) PRECHARGE: prepares	all	bitlines for	a	subsequent	ACTIVATE	
command	to	a	different	row

3) READ: reads	a	column	of	data
• One	column	of	the	LRB	is	selected	using	the	column	decoder
• The	GRB	then	drives	the	data	to	the	chip	I/O	logic

4) WRITE: writes	a	column	of	data	into	DRAM
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In-DRAM	Cache	Design
§ Key	idea:	Introduce	heterogeneity	in	DRAM

§ Slow	subarrays
• Same	latency and	capacity	as	regular	(i.e.,	slow)	DRAM

§ Fast	subarrays	(shorter	bitlines)
• Fast	access	latency	and small	capacity
• Used	as	in-DRAM	cache	for	hot	data
• Many	fast	subarrays	interleaved	among	slow	subarrays
• Inclusive	cache

§ Data	relocation	between	normal	and	fast	
subarrays
• DRAM	row	granularity	(multi-kilobyte)
• Relocation	latency	increases		as	the	physical	relocation	
distance increases

Common	in-DRAM	cache	
organization
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Inefficiencies	of	In-DRAM	Caches

1)		Coarse-grained:	
Caching	an	entire	row	at	a	time	

hinders	the	potential	of		in-DRAM	cache

2)		Area	overhead	and	complexity:	
Many	fast	subarrays	interleaved	

among	normal	subarrays
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Observations	and	Key	Idea
§ Observations:

1) All	local	row	buffers	(LRBs)	in	a	bank	
are	connected to	a	single	shared	
global	row	buffer (GRB)

2) The	GRB has smaller	width	(e.g.,	8B)	
than	the	LRBs (e.g.,	1kB)

§ Key	Idea:	use the	existing	shared	GRB
among	subarrays	within	a	DRAM	bank	to	
perform fine-grained	in-DRAM	data	
relocation
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FIGARO	Overview

§Relocates data	across	subarrays	within	a	bank
§Column	granularity	within	a	chip	
•Cache-block	granularity	within	a	rank

§New RELOC	command	to	relocate	data	between	LRBs	of	different	subarrays	via	the	GRB
13
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Transferring	Data	via	FIGARO
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• Selects	Column	3	in	Subarray	A
• Loads	A3	into	the	GRB
• Selects	Column	1	in	Subarray	B

• Copies	data	from	row	to	LRB

• Overwrites	A3	in	column	1
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Key	Features	of	FIGARO
§Fine-grained:	column/cache-block	level	data	relocation

§Distance-independent	latency
• The	relocation	latency depends	on	the	length	of	global	bitline
• Similar	to	the	latency	of	read/write	commands	

§Low	overhead
• Additional	column	address	MUX, row	address	MUX,	and	row	
address	latch per	subarray
• 0.3%	DRAM	chip	area	overhead

§Low	latency	and	low	energy	consumption
• Low	latency	(63.5ns)	to	relocate	one	column

»Two	ACTIVATEs,	one	RELOC,	and	one	PRECHARGE	commands
• Low	energy	consumption	(0.03uJ)	to	relocate	one	column
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More	FIGARO	Details	in	the	Paper

• Enabling	Unaligned	Data	Relocation

• Circuit-level	Operation	and	Timing

• SPICE	Simulations

• Other	Use	Cases	for	FIGARO
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FIGCacheOverview
§ Key	idea: Cache	only	small,	frequently-accessed	portions	of	
different	DRAM	rows in	a	designated	region	of	DRAM

§ FIGCache (Fine-Grained	In-DRAM	Cache)
• Uses	FIGARO	to	relocate data	into	and	out	of	the	cache	at	the	fine	granularity
of	a	row	segment
• Avoids the	need	for	a	large	number	of	fast	(yet	low	capacity)	subarrays	
interleaved	among	slow	subarrays
• Increases row	buffer	hit	rate

§ FIGCache Tag	Store	(FTS)
• Stores	information	about	which	row	segments	are	currently	cached
• Placed	in	the	memory	controller

§ FIGCache In-DRAM	Cache	Designs
• Using	1)	fast	subarrays,	2) slow	subarrays,	or	3)	fast	rows	in	a	subarray
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Benefits	of	FIGCache

Fine-grained	(cache-block)	
caching	granularity

Low	area	overhead	
and	manufacturing	complexity
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FIGCache Tag	Store	(FTS)
• The	memory	controller	stores	information	about	which	
row	segments	are	in	cache

• Fully	associative	cache
• FIGCache Tag	Store	(FTS)

• Benefit:	Benefit	counter	(used	for	cache	replacement)
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Insertion	and	Replacement
• FIGCache	insertion	policy
• Insert-any-miss:	every	FIGCache miss	triggers	a	row	segment	
relocation into	the	cache

• FIGCache replacement	policy
1) Sum	all	Benefit values	from	all	segments	of	the	row		
2) The	row	with	least	Benefit is	selected	for	eviction
• Row	granularity	replacement

• We	experimentally	find	that	FIGCache	insertion	and	
replacement	policies	are	rather	effective
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FIGCacheDesigns
FIGCache using	
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Experimental	Methodology
§ Simulator
• Ramulator open-source	DRAM	simulator	[Kim+,	CAL’15]	
[https://github.com/CMU-SAFARI/ramulator]
• Energy	model:	McPAT,	CACTI,	Orion	3.0,	and	DRAMPower

§ System	configuration
• 8	cores,	3-wide	issue,	256-entry	instruction	window
• L1	4-way	64KB,	L2	8-way	256KB,	L3 LLC	16-way	2MB	per	core	
• DRAM	DDR4 800MHz	bus	frequency

§ FIGCache default	parameters
• Row	segment	size:	1/8th of	a	DRAM	row	(16	cache	blocks)
• Fast	subarray	reduces	tRCD by	45.5%,	tRP by	38.2%,	and	tRAS by	62.9%
• In-DRAM	cache	size:	64	rows	per	bank

§Workloads
• 20	eight-core	multiprogrammed workloads	from	SPEC	CPU2006,	TPC,	
BioBench,	Memory	Scheduling	Championship
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Comparison	Points
§Baseline:	conventional	DDR4	DRAM

§LISA-VILLA:	State-of-the-art in-DRAM	Cache
[Chang+,	HPCA	’16]

§FIGCache-slow:	Our	in-DRAM	cache	with	cache	rows	
stored	in	slow	subarrays

§FIGCache-fast:	Our	in-DRAM	cache	with	cache	rows	
stored	in	fast	subarrays

§FIGCache-ideal:	An	unrealistic	version	of	FIGCache-Fast	
where	the	row	segment	relocation	latency	is	zero

§LL-DRAM:	System	where	all	subarrays	are	fast
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Multicore	System	Performance

Both	FIGCache-slow	and	FIGCache-fast	
outperform	LISA-VILLA

The	benefits	of	FIGCache-Fast	and	FIGCache-Slow	increase	
as	workload	memory	intensity	increases

FIGCache-Fast	approaches	the	ideal	performance	
improvement	of	both	FIGCache-Ideal	and	LL-DRAM

Memory	intensity

27.1%	

12.9%	

Average	across	all	workloads:	16.3%
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Multicore	System	Energy	Savings

FIGCache is	effective	at	
reducing	system	energy	consumption

• FIGCache-Slow and	FIGCache-
Fast consume	less	energy	than	
Base

• Energy	reduction	comes	from:
1) Improved	DRAM	row	buffer	

hit	rate
2) Reduced	execution	time	that	

saves	static	energy	across	
each	component

Memory	intensity
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FIGCacheReplacement	Policies

RowBenefit replacement	policy	
is	effective	at	

capturing	temporal	locality

+4.1%	

• RowBenefit:	FIGCache	replacement	
policy

• SegmentBenefit:	traditional	
benefit-based	policy	[Lee+,HPCA ’13]

• Observations:
1) FIGCache outperforms	Base	

with	all	replacement	policies
2) RowBenefit outperforms	all		

the	other	policies
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Different	Row	Segment	Sizes

Performance	highly	depends	on	
the	row	segment	size

FIGCache	1KB	
is	the	best	configuration
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More	Results	in	the	Paper
§More	Detailed	Results	
§Single-core	Workloads
§In-DRAM	Cache	Hit	Rate
§DRAM	Row	Buffer	Hit	Rate
§Performance	with	Different	Row	Segment	Insertion	Thresholds
§Performance	with	Different	Cache	Capacities
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