FIGARO: Improving System Performance via

Fine-Grained
In-DRAM Data Relocation and Caching

Yaohua Wang?, Lois OrosaZ, Xiangjun Peng>1, Yang Guo!,
Saugata Ghose*®, Minesh Patel?, Jeremie S. Kim?, Juan Gémez Luna?,
Mohammad Sadrosadati®, Nika Mansouri Ghiasi?, Onur Mutlu?»®

2 e 3 4 ' UniversiTY OF
ETH:zurich @& ILLINOIS

AAAAAA ~-CHAMPAIGN

TR LK S
5 . . . The Chinese University of Hong Kong 6 I]
Carnegie Mellon University

SAFAR’ MICRO 2020

Executive Summary

= Problem: DRAM latency is a performance bottleneck for many applications
= Goal: Reduce DRAM latency via in-DRAM cache

Existing in-DRAM caches:
* Augment DRAM with small-but-fast regions to implement caches

Coarse-grained (i.e., multi-kB) in-DRAM data relocation
Relocation latency increases with physical distance between slow and fast regions

FIGARO Substrate:

Key idea: use the existing shared global row buffer among subarrays within a DRAM
bank to provide support for in-DRAM data relocation

Fine-grained (i.e., multi-byte) in-DRAM data relocation and distance-independent
relocation latency

Avoids complex modifications to DRAM by using existing structures

FIGCache:

Key idea: cache only small, frequently-accessed portions of different DRAM rows
in a designated region of DRAM

Caches only the parts of each row that are expected to be accessed in the near future
Increases row hits by packing more frequently-accessed data into FIGCache
Improves system performance by 16.3% on average

Reduces DRAM energy by 7.8% on average

Conclusion:

FIGARO enables fine-grained data relocation in-DRAM at low cost
FIGCache outperforms state-of-the-art coarse-grained in-DRAM caches

SAFARI

Outline

Background

Existing In-DRAM Cache Designs
FIGARO Substrate

FIGCache: Fine-Grained In-DRAM Cache
Experimental Methodology

Evaluation

Conclusion

SAFARI

Outline

Background

Existing In-DRAM Cache Designs
FIGARO Substrate

FIGCache: Fine-Grained In-DRAM Cache
Experimental Methodology

Evaluation

Conclusion

SAFARI

DRAM Organization

Petealan? Yentesherteatertete oo Saplesbeabontusbanl Moy boala oo dui¥o b
valr S NI T = Yo
e .
5
H A}

|

..."‘ (‘* S 4GB 7R PL3-ES008-

Vil wl
Sirieireg il | B >

yueg

o/1diyn

Subarray

\ Global Row Buffer |

4

Local Row Buffer

SAFARI

Bank and Subarray Organization

subarray 0 cqumn

DRAM o | % %
PR

sense” _local row buffer (LRB) |
amplifier - <«--global bitline

subarray n-1

il
?I

global row buffer (GRB)--+ " to chip 1/0 logic

* Each subarray contains 512~ 2048 rows of DRAM cells
* DRAM rows are connected to a local row buffer (LRB)

* All of the LRBs in a bank are connected to a shared global row buffer (GRB)
* The GRB is connected to the LRBs using a set of global bitlines
* The GRB has smaller width (e.g., 8B) than the LRBs (e.g., 1kB)

* Asingle column (i.e., a small number of bits) of the LRB is selected using a
to connect to the GRB

SAFARI

DRAM Operation

DRAM controller issues 4 main memory commands

1) ACTIVATE: activates the DRAM row containing the data
* Latches the selected DRAM row into the LRB

2) PRECHARGE: prepares all bitlines for a subsequent ACTIVATE
command to a different row

3) READ: reads a column of data

* One column of the LRB is selected using the column decoder
* The GRB then drives the data to the chip I/0 logic

4) WRITE: writes a column of data into DRAM

SAFARI

Outline

Background

Existing In-DRAM Cache Designs
FIGARO Substrate

FIGCache: Fine-Grained In-DRAM Cache
Experimental Methodology

Evaluation

Conclusion

SAFARI

In-DRAM Cache Design

* Key idea: Introduce heterogeneity in DRAM

Common in-DRAM cache

* Slow subarrays organization
DRAM Bank

e Same latency and capacity as regular (i.e,, slow) DRAM Slow Subarray

"

= Fast subarrays (shorter bitlines)
* Fast access latency and small capacity
e)

* Used as in-DRAM cache for hot data ‘E‘_ast Subarray (cach

* Many fast subarrays interleaved among slow subarrays

L 4
L]
]
L
a
.

* Inclusive cache Slow Sub
ow oubarray

e

-

- DRAM (multi-kilobyte) ast Subarray (cache) F

as the physical relocation m

Increases

SAFARI

Inefficiencies of In-DRAM Caches

1) Coarse-grained:
Caching an entire row at a time
hinders the potential of in-DRAM cache

e
2) Area overhead and complexity:

Many fast subarrays interleaved
among normal subarrays

SAFARI

Outline

Background

Existing In-DRAM Cache Designs
FIGARO Substrate

FIGCache: Fine-Grained In-DRAM Cache
Experimental Methodology

Evaluation

Conclusion

SAFARI

Observations and Key Idea

SRC: Subarray A)
1) All local row buffers in a bank @
are to a single shared
global row buffer Local Row Buffer |
(LRB) -
2) The GRB has smaller width (e.g., 8B) 1kB
than the LRBs (e.g., 1kB) DST: Subarray B)
GRB
the a5
among subarrays within a DRAM bank to
perform Local Row Buffer [| |
(LRB) _

SAFARI

FIGARO Overview

FIGARO:

Fine-Grained
In-DRAM Data Relocation Substrate

"Relocates data across subarrays within a bank

“Column granularity within a chip
* Cache-block granularity within a rank

s New RELOC command to relocate data between
LRBs of different subarrays via the GRB

SAFARI

Transferring Data via FIGARO

0 ACTIVATE SubaI‘I‘ayA [SRC: Subarray A)

* Copies data from row to LRB @ @ @ @
LRB
® RELOC A col 3 > B ol 1|FIRIDIE: $-
* Selects Column 3 in Subarray A) ’
Loads A3 into the GRB

_ [DST: Sub B
Selects Column 1 in Subarray B ey m_ —» GRB

@

SO0l

® ACTIVATE subarray B

Overwrites A3 in column 1

SAFARI

Key Features of FIGARO

" Fine-grained: column/cache-block level data relocation

* Distance-independent latency
* The relocation latency depends on the length of global bitline
 Similar to the latency of read /write commands

= Low overhead

» Additional column address MUX, row address MUX, and row
address latch per subarray

* 0.3% DRAM chip area overhead

(63.5ns) to relocate one column
» Two ACTIVATESs, one RELOC, and one PRECHARGE commands
(0.03u]) to relocate one column

SAFARI

More FIGARO Details in the Paper

- Enabling Unaligned Data Relocation
* Circuit-level Operation and Timing
* SPICE Simulations

e Other Use Cases for FIGARO

SAFARI

Outline

Background

Existing In-DRAM Cache Designs
FIGARO Substrate

FIGCache: Fine-Grained In-DRAM Cache
Experimental Methodology

Evaluation

Conclusion

SAFARI

FIGCache Overview

» Key idea: Cache only small, frequently-accessed portions of
different DRAM rows in a designated region of DRAM

(Fine-Grained In-DRAM Cache)

e Uses FIGARO to data into and out of the cache at the fine
of a

the need for a
interleaved among slow subarrays

row buffer

» FIGCache Tag Store (FTS)

* Stores information about which row segments are currently cached
 Placed in the memory controller

» FIGCache In-DRAM Cache Designs

 Using 1) fast subarrays, 2) slow subarrays, or 3) fast rows in a subarray

SAFARI

Benefits of FIGCache

Fine-grained (cache-block)
caching granularity

Low area overhead
and manufacturing complexity

SAFARI 19

FIGCache Tag Store (FTS)

 The memory controller stores information about which
row segments are in cache

 Fully associative cache

* FIGCache Tag Store (FTS)

Bank 0 Bank 1 Bank n-1
Slot | Tag (Original Address) - D | Benefit

=

511

Benefit counter (used for cache replacement)

SAFARI

Insertion and Replacement

FIGCache insertion policy

* [nsert-any-miss: every FIGCache miss triggers a row segment
relocation into the cache

FIGCache replacement policy
1) Sum all Benefit values from all segments of the row
2) The row with least Benefit is selected for eviction
* Row granularity replacement

* We experimentally find that FIGCache insertion and
replacement policies are rather effective

SAFARI

FIGCache Designs

FIGCache using FIGCache using
Fast Subarrays Slow Subarrays
(i.e., existing DRAM chips)
DRAM Bank DRAM Bank
— Slow Subarray
% M
": % ::;‘
.:M :"
“‘ ast Subarray (cache :.
W Reserved Row
(cache)

SAFARI

Outline

Background

Existing In-DRAM Cache Designs
FIGARO Substrate

FIGCache: Fine-Grained In-DRAM Cache
Experimental Methodology

Evaluation

Conclusion

SAFARI

Experimental Methodology

= Simulator
* Ramulator open-source DRAM simulator [Kim+, CAL'15]
[https://github.com/CMU-SAFARI/ramulator]
* Energy model: McPAT, CACTI, Orion 3.0, and DRAMPower

= System configuration
* 8 cores, 3-wide issue, 256-entry instruction window
* L1 4-way 64KB, L2 8-way 256KB, L.3 LLC 16-way 2MB per core
« DRAM DDR4 800MHz bus frequency

« Row segment size: 1/8% of a DRAM row (16 cache blocks)
 Fast subarray reduces
* In-DRAM cache size:

= Workloads

20 eight-core multiprogrammed workloads from SPEC CPU2006, TPC,
BioBench, Memory Scheduling Championship

SAFARI

https://github.com/CMU-SAFARI/ramulator

Comparison Points
= Baseline: conventional DDR4 DRAM

= LISA-VILLA: State-of-the-art in-DRAM Cache
|Chang+, HPCA "16]

= FIGCache-slow: Our in-DRAM cache with cache rows
stored in slow subarrays

= FIGCache-fast: Our in-DRAM cache with cache rows
stored in fast subarrays

An unrealistic version of FIGCache-Fast
where the row segment relocation

* LL-DRAM: System where all subarrays are fast
SAFARI

Outline

Background

Existing In-DRAM Cache Designs
FIGARO Substrate

FIGCache: Fine-Grained In-DRAM Cache
Experimental Methodology

Evaluation

Conclusion

SAFARI

1.45

Multicore System Performancw

O LISA-VILLA 8135 - —

M FIGCache-Slow
3 i
@ FIGCache-Fast 3 ;.5

O FIGCache-Ideal §1_15 l

O LL-DRAM 2110 -
9105 -
1.00 -

The benefits of FIGCache-Fast and FIGCache-Slow increase
as workload memory intensity increases

Both FIGCache-slow and FIGCache-fast
outperform LISA-VILLA
FIGCache-Fast approaches the ideal performance

improvement of both FIGCache-Ideal and LL-DRAM
SAFARI

Multlcore System Energy Savings

 FIGCache-Slow and FIGCache-

[72]
(C
(2] o
oLgl = 33 Fast consume less energy than
- 7
@O CPU & 60% - Base

OLLC 50% -

O Off-Chip S 40% - .
B DRAM z 30% 4 [0 O ° Energy reduction comes from:

@20 1 || [1[] H

ormali

HEn 1) Improved DRAM row buffer
E o hit rate
53R | 835 2) Reduced execution time that
jg § zl: § saves static energy across
2 2 2 each component
Memory intensity— 50% 100%

FIGCache is effective at

reducing system energy consumption
SAFARI

FIGCache Replacement Policies

m Random 0O LRU RowBenefit: FIGCache replacement
130 O SegmentBenefit O RowBenefit pohcy
2’; 1.23 * SegmentBenefit: traditional
5 1.20 benefit-based policy [Lee+ HPCA "13]
2_ 1.15 _
2.1 m * Observations:
é’ [1) FIGCache outperforms Base
»n'1.05 with all replacement policies
1.00 2) RowBenefit outperforms all
25% 50% ‘ 75% ‘ 100% the other policies

RowBenefit replacement policy

is effective at

capturing temporal locality
SAFARI

Different Row Segment Sizes

O0512B DO1kB m®W2kB mW4kB @O 8kB

L 3o DLISA-VILLA
8-core

@ 1.25
T
(aa]
+ 1.20
>
8115 . FIGCache .1KB .
S is the best configuration
8 1.10
v
& 1.05

1.00 -

25% 50% 75% ‘ 100%

Performance highly depends on

the row segment size

SAFARI

More Results in the Paper
sMore Detailed Results

=Single-core Workloads
*"In-DRAM Cache Hit Rate
"DRAM Row Buffer Hit Rate

"Performance with Different Row Segment
Insertion Thresholds

"Performance with Different Cache Capacities

SAFARI

Outline

Background

Existing In-DRAM Cache Designs
FIGARO Substrate

FIGCache: Fine-Grained In-DRAM Cache
Experimental Methodology

Evaluation

Conclusion

SAFARI

Executive Summary

= Problem: DRAM latency is a performance bottleneck for many applications
= Goal: Reduce DRAM latency via in-DRAM cache

Existing in-DRAM caches:
* Augment DRAM with small-but-fast regions to implement caches

Coarse-grained (i.e., multi-kB) in-DRAM data relocation
Relocation latency increases with physical distance between slow and fast regions

FIGARO Substrate:

Key idea: use the existing shared global row buffer among subarrays within a DRAM
bank to provide support for in-DRAM data relocation

Fine-grained (i.e., multi-byte) in-DRAM data relocation and distance-independent
relocation latency

Avoids complex modifications to DRAM by using existing structures

FIGCache:

Key idea: cache only small, frequently-accessed portions of different DRAM rows
in a designated region of DRAM

Caches only the parts of each row that are expected to be accessed in the near future
Increases row hits by packing more frequently-accessed data into FIGCache
Improves system performance by 16.3% on average

Reduces DRAM energy by 7.8% on average

Conclusion:

FIGARO enables fine-grained data relocation in-DRAM at low cost
FIGCache outperforms state-of-the-art coarse-grained in-DRAM caches

SAFARI

FIGARO: Improving System Performance via

Fine-Grained
In-DRAM Data Relocation and Caching

Yaohua Wang?, Lois OrosaZ, Xiangjun Peng>1, Yang Guo!,
Saugata Ghose*®, Minesh Patel?, Jeremie S. Kim?, Juan Gémez Luna?,
Mohammad Sadrosadati®, Nika Mansouri Ghiasi?, Onur Mutlu?»®

2 e 3 4 ' UniversiTY OF
ETH:zurich @& ILLINOIS

AAAAAA ~-CHAMPAIGN

TR LK S
5 . . . The Chinese University of Hong Kong 6 I]
Carnegie Mellon University

SAFAR’ MICRO 2020

