
FIGARO:	Improving	System	Performance	via	
Fine-Grained	

In-DRAM	Data	Relocation	and	Caching

Yaohua Wang1,	Lois	Orosa2,	Xiangjun Peng3,1,	Yang	Guo1,	
Saugata Ghose4,5,	Minesh Patel2,	Jeremie S.	Kim2,	Juan	Gómez	Luna2,	
Mohammad	Sadrosadati6,	Nika	Mansouri	Ghiasi2,	Onur Mutlu2,5

MICRO	2020

1 2 3 4

5 6

Executive	Summary
§ Problem:	DRAM	latency	is	a	performance	bottleneck	for	many	applications
§ Goal:	Reduce	DRAM	latency	via	in-DRAM	cache
§ Existing	in-DRAM	caches:

• Augment	DRAM	with	small-but-fast	regions	to	implement	caches
• Coarse-grained	(i.e.,	multi-kB)	in-DRAM	data	relocation
• Relocation	latency	increases	with	physical	distance	between	slow	and	fast	regions

§ FIGARO	Substrate:

• Key	idea:	use	the	existing	shared	global	row	buffer	among	subarrays	within	a	DRAM	
bank	to	provide support	for	in-DRAM	data	relocation

• Fine-grained (i.e.,	multi-byte)	in-DRAM	data	relocation	and	distance-independent	
relocation	latency

• Avoids	complex	modifications	to	DRAM	by	using	existing	structures
§ FIGCache:

• Key	idea:	cache	only	small,	frequently-accessed	portions	of	different	DRAM	rows	
in	a	designated	region	of	DRAM

• Caches	only	the	parts	of	each	row that	are	expected	to	be	accessed	in	the	near	future
• Increases	row	hits by	packing	more	frequently-accessed data	into	FIGCache	
• Improves	system	performance by	16.3% on	average
• Reduces	DRAM	energy	by	7.8% on	average

§ Conclusion:

• FIGARO	enables	fine-grained	data	relocation	in-DRAM	at	low	cost
• FIGCache outperforms	state-of-the-art	coarse-grained	in-DRAM	caches

2

Outline

Background
Existing	In-DRAM	Cache	Designs
FIGARO	Substrate
FIGCache:	Fine-Grained	In-DRAM	Cache
Experimental	Methodology
Evaluation
Conclusion

3

Outline

Background
Existing	In-DRAM	Cache	Designs
FIGARO	Substrate
FIGCache:	Fine-Grained	In-DRAM	Cache
Experimental	Methodology
Evaluation
Conclusion

4

DRAM	Organization

DRAM	Chip

BankChip	I/O

DRAM	Bank

Global	Row	Buffer

Subarray

. . .

DRAM	Subarray

Bitline
Wordline
…

…

DRAM	Cell

Local	Row	Buffer

… … …

…

5

subarray	0
. . .
. . .
. . .

subarray	n-1

. . .

Bank	and	Subarray	Organization

column	decoder

. . .
global	row	buffer	(GRB) to	chip	I/O	logic

global	bitline

• Each	subarray	contains	512– 2048	rows	of	DRAM	cells
• DRAM	rows	are connected	to	a	local	row	buffer	(LRB)

• All	of	the	LRBs in	a	bank	are	connected	to	a	shared global	row	buffer	(GRB)

• The	GRB is	connected	to	the	LRBs using	a	set	of	global	bitlines

• The	GRB has	smaller	width	(e.g.,	8B)	than	the	LRBs (e.g.,	1kB)

• A	single	column	(i.e.,	a	small	number	of	bits)	of	the	LRB	is	selected	using	a	
column	decoder	to	connect	to	the	GRB

sense
amplifier

local row buffer (LRB)

column
DRAM	row

6

DRAM	Operation
DRAM	controller	issues	4main	memory	commands
1) ACTIVATE:	activates	the	DRAM	row	containing	the	data
• Latches the	selected	DRAM	row	into	the	LRB

2) PRECHARGE: prepares	all	bitlines for	a	subsequent	ACTIVATE	
command	to	a	different	row

3) READ: reads	a	column	of	data
• One	column	of	the	LRB	is	selected	using	the	column	decoder
• The	GRB	then	drives	the	data	to	the	chip	I/O	logic

4) WRITE: writes	a	column	of	data	into	DRAM

7

Outline

Background
Existing	In-DRAM	Cache	Designs
FIGARO	Substrate
FIGCache:	Fine-Grained	In-DRAM	Cache
Experimental	Methodology
Evaluation
Conclusion

8

DRAM Bank

Fast Subarray (cache)

Fast Subarray (cache)

Slow Subarray

Slow Subarray

In-DRAM	Cache	Design
§ Key	idea:	Introduce	heterogeneity	in	DRAM

§ Slow	subarrays
• Same	latency and	capacity	as	regular	(i.e.,	slow)	DRAM

§ Fast	subarrays	(shorter	bitlines)
• Fast	access	latency	and small	capacity
• Used	as	in-DRAM	cache	for	hot	data
• Many	fast	subarrays	interleaved	among	slow	subarrays
• Inclusive	cache

§ Data	relocation	between	normal	and	fast	
subarrays
• DRAM	row	granularity	(multi-kilobyte)
• Relocation	latency	increases		as	the	physical	relocation	
distance increases

Common	in-DRAM	cache	
organization

9

Inefficiencies	of	In-DRAM	Caches

1)		Coarse-grained:	
Caching	an	entire	row	at	a	time	

hinders	the	potential	of		in-DRAM	cache

2)		Area	overhead	and	complexity:	
Many	fast	subarrays	interleaved	

among	normal	subarrays

10

Outline

Background
Existing	In-DRAM	Cache	Designs
FIGARO	Substrate
FIGCache:	Fine-Grained	In-DRAM	Cache
Experimental	Methodology
Evaluation
Conclusion

11

Observations	and	Key	Idea
§ Observations:

1) All	local	row	buffers	(LRBs)	in	a	bank	
are	connected to	a	single	shared	
global	row	buffer (GRB)

2) The	GRB has smaller	width	(e.g.,	8B)	
than	the	LRBs (e.g.,	1kB)

§ Key	Idea:	use the	existing	shared	GRB
among	subarrays	within	a	DRAM	bank	to	
perform fine-grained	in-DRAM	data	
relocation

DST: Subarray B

B0 B1 B2 B3

B4 B5 B6 B7

SRC: Subarray A

A4 A5 A6 A7

A0 A1 A2 A3

Local	Row	Buffer
(LRB)

Local	Row	Buffer
(LRB)

GRB

A3

1kB

8B

12

FIGARO	Overview

§Relocates data	across	subarrays	within	a	bank
§Column	granularity	within	a	chip	
•Cache-block	granularity	within	a	rank

§New RELOC	command	to	relocate	data	between	LRBs	of	different	subarrays	via	the	GRB
13

FIGARO:	
Fine-Grained	

In-DRAM	Data	Relocation	Substrate

Transferring	Data	via	FIGARO

LRB

GRB

column
decoder

SRC: Subarray A

A4 A5 A6 A7

DST: Subarray B

B0 B1 B2 B3

B4 B5 B6 B7

A0 A1 A2 A3A0 A1 A2 A3

A0 A1 A2 A3

A3 1

A0 A1 A2 A3

A0 A1 A2 3

A3

ACTIVATE subarray	A1

2 RELOC A	col	3	à B	col	1

ACTIVATE subarray	B3

B0 A3 B2 B3

B0 A3 B2 B3

• Selects	Column	3	in	Subarray	A
• Loads	A3	into	the	GRB
• Selects	Column	1	in	Subarray	B

• Copies	data	from	row	to	LRB

• Overwrites	A3	in	column	1

14

Key	Features	of	FIGARO
§Fine-grained:	column/cache-block	level	data	relocation

§Distance-independent	latency
• The	relocation	latency depends	on	the	length	of	global	bitline
• Similar	to	the	latency	of	read/write	commands	

§Low	overhead
• Additional	column	address	MUX, row	address	MUX,	and	row	
address	latch per	subarray
• 0.3%	DRAM	chip	area	overhead

§Low	latency	and	low	energy	consumption
• Low	latency	(63.5ns)	to	relocate	one	column

»Two	ACTIVATEs,	one	RELOC,	and	one	PRECHARGE	commands
• Low	energy	consumption	(0.03uJ)	to	relocate	one	column

15

More	FIGARO	Details	in	the	Paper

• Enabling	Unaligned	Data	Relocation

• Circuit-level	Operation	and	Timing

• SPICE	Simulations

• Other	Use	Cases	for	FIGARO
16

Outline

Background
Existing	In-DRAM	Cache	Designs
FIGARO	Substrate
FIGCache:	Fine-Grained	In-DRAM	Cache
Experimental	Methodology
Evaluation
Conclusion

17

FIGCacheOverview
§ Key	idea: Cache	only	small,	frequently-accessed	portions	of	
different	DRAM	rows in	a	designated	region	of	DRAM

§ FIGCache (Fine-Grained	In-DRAM	Cache)
• Uses	FIGARO	to	relocate data	into	and	out	of	the	cache	at	the	fine	granularity
of	a	row	segment
• Avoids the	need	for	a	large	number	of	fast	(yet	low	capacity)	subarrays	
interleaved	among	slow	subarrays
• Increases row	buffer	hit	rate

§ FIGCache Tag	Store	(FTS)
• Stores	information	about	which	row	segments	are	currently	cached
• Placed	in	the	memory	controller

§ FIGCache In-DRAM	Cache	Designs
• Using	1)	fast	subarrays,	2) slow	subarrays,	or	3)	fast	rows	in	a	subarray

18

Benefits	of	FIGCache

Fine-grained	(cache-block)	
caching	granularity

Low	area	overhead	
and	manufacturing	complexity

19

FIGCache Tag	Store	(FTS)
• The	memory	controller	stores	information	about	which	
row	segments	are	in	cache

• Fully	associative	cache
• FIGCache Tag	Store	(FTS)

• Benefit:	Benefit	counter	(used	for	cache	replacement)

Bank 0
Slot Tag (Original Address) V D Benefit

0
1. . .

. . .

. . .

. . .

. . .
511

Bank 1
. . .

. . .
. . .
.

Bank n-1

. . .

. . .
. . .
. . .

20

Insertion	and	Replacement
• FIGCache	insertion	policy
• Insert-any-miss:	every	FIGCache miss	triggers	a	row	segment	
relocation into	the	cache

• FIGCache replacement	policy
1) Sum	all	Benefit values	from	all	segments	of	the	row		
2) The	row	with	least	Benefit is	selected	for	eviction
• Row	granularity	replacement

• We	experimentally	find	that	FIGCache	insertion	and	
replacement	policies	are	rather	effective

21

FIGCacheDesigns
FIGCache using	

Slow	Subarrays	
(i.e.,	existing	DRAM	chips)

DRAM	Bank

Slow	Subarray

Slow	Subarray

FIGCache using	
Fast	Subarrays	

DRAM	Bank
Slow	Subarray

Slow	Subarray

Fast	Subarray (cache)
Reserved	Row

(cache)

22

Outline

Background
Existing	In-DRAM	Cache	Designs
FIGARO	Substrate
FIGCache:	Fine-Grained	In-DRAM	Cache
Experimental	Methodology
Evaluation
Conclusion

23

Experimental	Methodology
§ Simulator
• Ramulator open-source	DRAM	simulator	[Kim+,	CAL’15]	
[https://github.com/CMU-SAFARI/ramulator]
• Energy	model:	McPAT,	CACTI,	Orion	3.0,	and	DRAMPower

§ System	configuration
• 8	cores,	3-wide	issue,	256-entry	instruction	window
• L1	4-way	64KB,	L2	8-way	256KB,	L3 LLC	16-way	2MB	per	core	
• DRAM	DDR4 800MHz	bus	frequency

§ FIGCache default	parameters
• Row	segment	size:	1/8th of	a	DRAM	row	(16	cache	blocks)
• Fast	subarray	reduces	tRCD by	45.5%,	tRP by	38.2%,	and	tRAS by	62.9%
• In-DRAM	cache	size:	64	rows	per	bank

§Workloads
• 20	eight-core	multiprogrammed workloads	from	SPEC	CPU2006,	TPC,	
BioBench,	Memory	Scheduling	Championship

24

https://github.com/CMU-SAFARI/ramulator

Comparison	Points
§Baseline:	conventional	DDR4	DRAM

§LISA-VILLA:	State-of-the-art in-DRAM	Cache
[Chang+,	HPCA	’16]

§FIGCache-slow:	Our	in-DRAM	cache	with	cache	rows	
stored	in	slow	subarrays

§FIGCache-fast:	Our	in-DRAM	cache	with	cache	rows	
stored	in	fast	subarrays

§FIGCache-ideal:	An	unrealistic	version	of	FIGCache-Fast	
where	the	row	segment	relocation	latency	is	zero

§LL-DRAM:	System	where	all	subarrays	are	fast

25

Outline

Background
Existing	In-DRAM	Cache	Designs
FIGARO	Substrate
FIGCache:	Fine-Grained	In-DRAM	Cache
Experimental	Methodology
Evaluation
Conclusion

26

Multicore	System	Performance

Both	FIGCache-slow	and	FIGCache-fast	
outperform	LISA-VILLA

The	benefits	of	FIGCache-Fast	and	FIGCache-Slow	increase	
as	workload	memory	intensity	increases

FIGCache-Fast	approaches	the	ideal	performance	
improvement	of	both	FIGCache-Ideal	and	LL-DRAM

Memory	intensity

27.1%	

12.9%	

Average	across	all	workloads:	16.3%

27

Multicore	System	Energy	Savings

FIGCache is	effective	at	
reducing	system	energy	consumption

• FIGCache-Slow and	FIGCache-
Fast consume	less	energy	than	
Base

• Energy	reduction	comes	from:
1) Improved	DRAM	row	buffer	

hit	rate
2) Reduced	execution	time	that	

saves	static	energy	across	
each	component

Memory	intensity

28

-14%	

FIGCacheReplacement	Policies

RowBenefit replacement	policy	
is	effective	at	

capturing	temporal	locality

+4.1%	

• RowBenefit:	FIGCache	replacement	
policy

• SegmentBenefit:	traditional	
benefit-based	policy	[Lee+,HPCA ’13]

• Observations:
1) FIGCache outperforms	Base	

with	all	replacement	policies
2) RowBenefit outperforms	all		

the	other	policies

29

Different	Row	Segment	Sizes

Performance	highly	depends	on	
the	row	segment	size

FIGCache	1KB	
is	the	best	configuration

30

More	Results	in	the	Paper
§More	Detailed	Results	
§Single-core	Workloads
§In-DRAM	Cache	Hit	Rate
§DRAM	Row	Buffer	Hit	Rate
§Performance	with	Different	Row	Segment	Insertion	Thresholds
§Performance	with	Different	Cache	Capacities

31

Outline

Background
Existing	In-DRAM	Cache	Designs
FIGARO	Substrate
FIGCache:	Fine-Grained	In-DRAM	Cache
Experimental	Methodology
Evaluation
Conclusion

32

Executive	Summary
§ Problem:	DRAM	latency	is	a	performance	bottleneck	for	many	applications
§ Goal:	Reduce	DRAM	latency	via	in-DRAM	cache
§ Existing	in-DRAM	caches:

• Augment	DRAM	with	small-but-fast	regions	to	implement	caches
• Coarse-grained	(i.e.,	multi-kB)	in-DRAM	data	relocation
• Relocation	latency	increases	with	physical	distance	between	slow	and	fast	regions

§ FIGARO	Substrate:

• Key	idea:	use	the	existing	shared	global	row	buffer	among	subarrays	within	a	DRAM	
bank	to	provide support	for	in-DRAM	data	relocation

• Fine-grained (i.e.,	multi-byte)	in-DRAM	data	relocation	and	distance-independent	
relocation	latency

• Avoids	complex	modifications	to	DRAM	by	using	existing	structures
§ FIGCache:

• Key	idea:	cache	only	small,	frequently-accessed	portions	of	different	DRAM	rows	
in	a	designated	region	of	DRAM

• Caches	only	the	parts	of	each	row that	are	expected	to	be	accessed	in	the	near	future
• Increases	row	hits by	packing	more	frequently-accessed data	into	FIGCache	
• Improves	system	performance by	16.3% on	average
• Reduces	DRAM	energy	by	7.8% on	average

§ Conclusion:

• FIGARO	enables	fine-grained	data	relocation	in-DRAM	at	low	cost
• FIGCache outperforms	state-of-the-art	coarse-grained	in-DRAM	caches

33

FIGARO:	Improving	System	Performance	via	
Fine-Grained	

In-DRAM	Data	Relocation	and	Caching

Yaohua Wang1,	Lois	Orosa2,	Xiangjun Peng3,1,	Yang	Guo1,	
Saugata Ghose4,5,	Minesh Patel2,	Jeremie S.	Kim2,	Juan	Gómez	Luna2,	
Mohammad	Sadrosadati6,	Nika	Mansouri	Ghiasi2,	Onur Mutlu2,5

MICRO	2020

1 2 3 4

5 6

