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Video Recordings are Ubiquitous

Massive video recordings are happening
everywhere




Key Application: Querying Objects in Videos

 Find all trucks among traffic videos in a city last week
 Find all people in garage videos in a company last night
- Query execution requires running detector & classifier CNNs

- It is slow and costly on massive videos




Ingest Time Analysis: Too Costly

* Analyzing live videos at ingest time can make query fast
* But it is costly
 Potentially wasteful (ingest all garage cameras vs. query one)
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Query Time Analysis: Too Slow

* Analyzing videos at query time can save cost
* Frame down-sampling / skipping
* CNN specialization / cascading

 But it still very slow (5 hr for a month-long video [1])
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Our Goal

Enable low-latency and low-cost querying over
large historical video datasets
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Background: Convolutional Neural Networks

» A Convolutional Neural Network (CNN) outputs the
probability of each class

» Based on the extracted features (high-level representation)
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Focus System: Low-latency query with
low-cost ingest

» Approximate indexing via cheap ingest
» Redundancy elimination for fast query
» Trading off ingest cost vs. query latency



Focus System: Low-latency query with
low-cost ingest
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Low-Cost Ingestion: Cheaper CNNs

* Process video frames with a cheap CNN at ingest time

« Compressed and Specialized CNN: fewer layers / weights
and are specialized for each video stream
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Low-Cost Ingestion: Cheaper CNNs

* Process video frames with a cheap CNN at ingest time

« Compressed and Specialized CNN: fewer layers / weights
and are specialized for each video stream
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Challenge: Cheap CNNs are Less Accurate

* Cheaper CNNs are less accurate than
the expensive CNNs

4(=) The best result from the expensive CNN is within the
) top-K results of the cheaper CNN
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Recall, Precision and Top-K Results

Recall: Fraction of relevant objects that are selected
Precision: Fraction of selected objects that are relevant

Ground-truth CNN: YOLOv2
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Solution: Split Ingest- and Query-time Work

*
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Focus System: Low-latency query with
low-cost ingest
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Low-Latency Query: Redundancy Elimination

» Approximate indexing => non-trivial work at query time
» Alarger K = more query-time work

 Images with similar feature vectors are visually similar
« Minimize the work at query time = clustering similar objects
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Adding Feature-based Clustering
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Adding Feature-based Clustering
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Focus System: Low-latency query with
low-cost ingest
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Ingest Cost vs. Query Latency

« Parameter selection — trading off ingest cost vs. query latency

* The cheap CNN at ingest time
» K in the top-K approximate indexing
» Clustering threshold for feature-based clustering
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Experimental Setup

* Video Datasets
* 11 live traffic and enterprise videos
* Each video stream is evaluated for 12 hours

» Accuracy Targets
* 99% recall and 99% precision w.r.t. YOLOv2

- Baselines
* Ingest-heavy: Analyzes all frames with YOLOvZ2 at ingest time and
stores the inverted index for query
* NoScope vioes171: A query-optimized system that analyzes frames
only at query time
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Average End-to-End Performance
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Effect of Different Components
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Demo

Available at: https://youtu.be/MNCsplm9U38
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https://youtu.be/MNCspIm9U38

More in the Paper

e Characterization of real-world videos
* Implementation details

« Other applications
* Process large and growing data with CNNs,

such as audio, bioinformatics, geoinformatics
* More results
* Trade-off alternatives
« Sensitivity studies
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Key Takeaways

* Problem: Querying objects in massive videos is challenging
* Our Approach: Low-latency query with low-cost ingest
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* Key Results

« 57X (up to 92X) cheaper than ingest-time-only solutions
« 162X (up to 607X) faster than state-of-the-art, query-time-only solutions
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Ingest Cost by Video
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Query Latency by Video
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Improvements (factor)

Trade-off Alternatives

1000

100

=
o

O Ingest Cheaper by

B Query Faster by

+—
o
@

Opt-Q

auburn_c

z ¢
2 B8
© 5

pellevue_d

Opt-| oo

Opt-Q

bend

+—
o
o

Opt-Q oo

jackson_ts

4
o
O

Opt-Q

coral

T O
o g
©C 5
lausanne

z ¢
2 B
© 5
oxford

Opt-Q

sittard




Sensitivity — Number of Classes

» We study the sensitivity to the number of object class using
1,000 ImageNet classes

* The results show that Focus is
« 15x faster in query latency
« 57% cheaper in ingest cost than the baseline systems
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Implementation Architecture
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