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Abstract—Text analytics directly on compression (TADOC) has
proven to be a promising technology for big data analytics. GPUs
are extremely popular accelerators for data analytics systems.
Unfortunately, no work so far shows how to utilize GPUs to
accelerate TADOC. We describe G-TADOC, the first framework
that provides GPU-based text analytics directly on compression,
effectively enabling efficient text analytics on GPUs without
decompressing the input data.

G-TADOC solves three major challenges. First, TADOC
involves a large amount of dependencies, which makes it difficult
to exploit massive parallelism on a GPU. We develop a novel
fine-grained thread-level workload scheduling strategy for GPU
threads, which partitions heavily-dependent loads adaptively in a
fine-grained manner. Second, in developing G-TADOC, thousands
of GPU threads writing to the same result buffer leads to
inconsistency while directly using locks and atomic operations
lead to large synchronization overheads. We develop a memory
pool with thread-safe data structures on GPUs to handle such
difficulties. Third, maintaining the sequence information among
words is essential for lossless compression. We design a sequence-
support strategy, which maintains high GPU parallelism while
ensuring sequence information.

Our experimental evaluations show that G-TADOC provides
31.1× average speedup compared to state-of-the-art TADOC.

Index Terms—TADOC, GPU, parallelism, analytics on
compressed data

I. INTRODUCTION

Text analytics directly on compression (TADOC) [1]–
[4] has proven to be a promising technology for big
data analytics. Since TADOC processes compressed data
without decompression, a large amount of space can be
saved. Meanwhile, TADOC reuses both data and intermediate
computation results, which results in that the same contents
in different parts of original files can be processed only once,
thus saving significant computation time. Recent studies show
that TADOC can save up to half of the processing time
and 90.8% storage space [1], [2]. On the other hand, GPU
as a heterogeneous processor shows promising performance
in many real applications, such as artificial intelligence. It
is popular to use heterogeneous processors, such as GPU,
to accelerate data analytics systems [5]–[9]. Therefore, it is

essential to enable efficient data analytics on GPUs without
decompression.

Applying GPUs to accelerate TADOC brings three key
benefits. First, GPU performance is much higher than CPU
performance, so applying GPUs with proper designs can
greatly accelerate TADOC performance, which means that
users can feel no delay in data analytics towards massive
data. Second, previous TADOC mainly focuses on distributed
systems. If we develop a GPU-based solution on a single
HPC server while achieving higher performance, tremendous
resources, including equipment cost and electricity cost, can
be significantly saved. Third, many data analytics applications,
such as latent Dirichlet allocation (LDA) [10] and term
frequency-inverse document frequency (TFIDF) [11], have
been ported to GPUs, while TADOC has proven to be
suitable for these advanced data analytics applications. Hence,
providing a GPU solution would remove the last barrier to
apply TADOC to a wide range of applications.

Although it is both beneficial and essential to develop
TADOC on GPUs, building efficient GPU-based TADOC is
very challenging. Applying GPUs to accelerate TADOC faces
three challenges. First, TADOC organizes data into rules,
which can further be represented as a DAG. Unfortunately,
the amount of dependencies among the rule-structured DAG
of TADOC is extremely large, which is unfriendly for GPU
parallelism. For example, in our experiments, the generated
DAG for each file has 450,704 dependent middle-layer nodes
on average, which greatly limits its parallelism. Even worse, a
node in the DAG of TADOC can have multiple parents, which
makes this problem more complicated. Second, a large number
of GPU threads writing to the same result buffer inevitably
cause tremendous write conflicts. A straightforward solution is
to lock the buffer for threads, but such atomicities lose partial
performance. In the worst case, the parallel performance
is lower than that of the CPU sequential TADOC. Third,
maintaining and utilizing the sequence information on GPUs is
another difficulty: the original TADOC adopts a recursive call
to complete sequential traversal on compressed data, which is
similar to a depth-first search (DFS) and is extremely hard to
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solve in parallel.
Currently, none of the TADOC solutions can solve the

challenges of enabling TADOC on GPUs mentioned above.
Zhang et al. [2] first proposed TADOC solution but it is
designed in a sequential manner. Although TADOC can be
applied in a distributed environment, TADOC adopts coarse-
grained parallelism and the processing for each compressed
unit is still sequential. Zhang et al. next developed a domain
specific language (DSL), called Zwift, to present TADOC [1],
and further realized random accesses on compressed data [3].
However, the parallelism problems still exist. Zhang et al. [4]
then provided a parallel TADOC design, which provides much
better performance than the sequential TADOC. Unfortunately,
such parallelism is still coarse-grained: it only divides the
original file into several sub-files, processes different files
separately, and then follows a merge process, which cannot
be utilized by GPUs efficiently.

We design G-TADOC, the first framework that provides
GPU-based text analytics directly on compression,
effectively enabling efficient text analytics on GPUs without
decompressing input data. G-TADOC involves three novel
features that can address the above three challenges. First,
to utilize the GPU parallelism, we develop a fine-grained
thread-level workload scheduling strategy on GPUs, which
allocates thread resources according to the load of different
rules adaptively and uses masks to describe the relations
between rules (Section IV-B). Second, to solve the challenge
of write conflict from multiple threads, we enable G-TADOC
to maintain its own memory pool and design thread-safe data
structures. We use a lock buffer when multiple threads update
the global results simultaneously (Section IV-C). Third, to
support sequence sensitive applications in G-TADOC, we
develop head and tail data structures in each rule to store the
contents at the beginning and end of the rule, which requires
a light-weight DAG traversal (detailed in Section IV-D).

We evaluate G-TADOC on three GPU platforms, which
involve three generations of Nvidia GPUs (Pascal, Volta, and
Turing micro-architectures), and use five real-world datasets
of varying lengths, structures, and content. Compared to
TADOC on CPUs, G-TADOC achieves 31.1× speedup. In
detail, TADOC can be divided into two phases: initialization
and DAG traversal. For the initialization phase, G-TADOC
achieves 76.5% time saving, while for the DAG traversal
phase, G-TADOC achieves 82.2% time saving.

As far as we know, this is the first work enabling efficient
text analytics on GPU without decompression. In summary,
we have made the following contributions in this work.

• We present G-TADOC, which is the first framework
enabling efficient GPU-based text analytics directly on
compressed data.

• We unveil the challenges for developing TADOC on
GPUs and provide a set of solutions to these challenges.

• We evaluate G-TADOC on three GPU platforms, and
demonstrate its significant benefits compared to state-of-
the-art TADOC.

II. BACKGROUND

In this section, we introduce TADOC and GPUs, which are
the background and premises of our work.

A. TADOC
TADOC [1]–[4] is a novel lossless compression technique

that enables data analytics directly on compressed data
without decompression. In detail, TADOC adopts dictionary
conversion to encode original input data with numbers, and
then uses context-free grammar (CFG) to recursively represent
the numerical transformed data after conversion into rules.
Repeated pieces of data are transformed into different rules
in CFG, and the data analytics tasks are then represented
as rule interpretations. To leverage redundant information
between files, TADOC inserts unique splitting symbols for
file boundaries. Moreover, the CFG can be represented as
a directed acyclic graph (DAG), so the interpretation of the
rules for data analytics can be regarded as a DAG traversal
problem. Currently, TADOC extends Sequitur [12]–[14] as its
core algorithm.

We use Figure 1 to show how TADOC compresses data
by CFG representation, which is an example used in [2].
Figure 1 (a) shows the original input data, which consists of
two files: file A and file B, and “wi” represents a unique word.
Figure 1 (b) shows the dictionary conversion, which uses an
integer to represent an element. Note that the rules “Ri” and
file splitters “spti” are also transformed into numerical forms.
Figure 1 (c) shows the TADOC compressed data, which are
sequences of numbers. The TADOC compressed data can be
viewed as CFG shown in Figure 1 (d), which can be further
organized as a DAG shown in Figure 1 (e) for traversals.

R2:

R1:

R0:

R0 :  R1  R1 spt1 R2 w1
R1 : R2 w3    R2 w4
R2 : w1    w2

file A: w1 w2 w3 w1 w2 w4     
w1 w2 w3 w1 w2 w4

file B: w1 w2 w1 

file A

(a) Original input.

(d) CFG. (e) DAG Representation.

R1 R1 spt1

R2 w3 R2 w4

w1 w2

w1: 0 w2: 1 w3: 2
w4: 3 R0: 4    R1: 5    
R2: 6   spt1: 7

(b) Dictionary conversion.

4 : 5  5  7 6 0
5 : 6 2 6 3
6 : 0 1

(c) TADOC compressed data.

R2 w1

file B

Fig. 1. A compression example with TADOC.

We use Figure 2 to show how to utilize the TADOC
compressed data to perform a simple data analytics application
– word count. In Step 1, R2 transmits its accumulated local
word frequencies to its parents, which are R0 and R1. In
Step 2, R1 receives the word frequencies from R2 and merges
these frequencies to R1’s local frequency table. In Step 3, R1
transmits its accumulated word frequencies to its parent R0.
After R0 receives the word frequencies from all its children,
which are R1 and R2, R0 merges all received word frequencies
into R0’s word count results, which are also the final word
counts.

B. GPU
GPU is a specialized device targeting graphics and

image processing originally. Due to its high parallelism
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R0: R1 R1 R2 w1

R1: R2 w3 R2 w4

R2: w1 w2

<w1,6>, <w2,5>, <w3,2>, <w4,2>
CFG Relation
Information Propagation

spt1

Step 1

Step 2

Step 3

<w1,1>, <w2,1>

<w3,1>, <w4,1>, <w1,2>, <w2,2>

<w1,1>, <w2,1>

<w1,2>, <w2,2>, 
<w3,1>, <w4,1>

<w1,1>,
<w2,1>

Fig. 2. Word count example using TADOC.

design, GPUs have now been applied to a wide range
of applications, including data management systems [5]–
[9]. A server equipped with GPUs can offer unprecedented
computing power within a single machine. Previous TADOC
mainly targets distributed environments without GPUs. If we
provide a GPU solution for TADOC, enabling efficient GPU-
based data analytics without decompression, not only the
number of machines, but also the electricity budget can all
be saved.

GPUs are different from CPUs in various aspects. First,
different from CPUs, GPUs include a large number of
light-weight cores, grouped into different streaming multi-
processors (SM). GPUs utilize high throughput to hide
memory access latency. Second, each SM has controllable
shared memory, which has similar performance to caches.
Therefore, good use of shared memory is critical for GPU
performance. Third, the execution model on GPUs is also quite
different from that on CPUs. The basic thread scheduling unit
is a warp, which includes 32 threads for Nvidia GPUs. The
threads within the same warp execute the same instructions in a
lock-step manner, so called single instruction, multiple threads
(SIMT). Developing GPU-based TADOC needs to adapt to the
GPU execution model.

III. MOTIVATION

A. Revisiting Previous Techniques

In this part, we revisit previous traversal-based techniques
to show our motivation of a new GPU-based TADOC design.

Why GPU-based BFS does not apply? The DAG traversal
in TADOC is unique and cannot be replaced by a BFS
traversal. First, many data analytics tasks require sequence
maintenance of words, where BFS cannot be used directly [2].
Second, TADOC involves complicated data processing and
complex data structures during traversal. For example, each
rule, which is a node in DAG, needs to maintain a local
word table and a rule table, and all rules write to the same
global buffer, which generates write conflicts in G-TADOC
among GPU threads. Third, the DAG traversal in TADOC
involves dynamic data transmission. For example, the traversal
can transmit accumulated word frequencies among rules.
Unfortunately, the amount of data transferred between nodes

cannot be obtained in advance, which has not been involved
in BFS on GPUs.

Why existing DAG traversal on GPUs does not apply?
The uniqueness of TADOC is that each node requires
complicated text-related intra- and inter-node operations. This
uniqueness does not need to be considered in previous GPU
traversal solutions. In detail, within a node, a dynamic buffer
needs to be maintained to receive intermediate results from
parents and to transmit data to children. Between different
nodes, cross-rule sequence needs to be considered.

B. Challenges

In this section, we mainly discuss the challenges of enabling
efficient text analytics on GPUs without decompression.

Challenge 1: GPU parallelism for TADOC. The high
performance of GPU relies on the high throughput from
thread-level parallelism. First, as presented in [2], there exist
massive dependencies among the DAG, which leads TADOC
difficult to be parallel. Accordingly, TADOC utilizes coarse-
grained parallelism that mainly processes different compressed
files in parallel: each CPU thread handles a separate file [4].
We cannot apply such coarse-grained parallelism on GPUs
because a GPU supports thousands of threads and it is
inefficient to split the compressed data into that large number
of partitions. Second, if we use one GPU thread for one rule,
there is a workload unbalancing problem because the numbers
of elements in different rules vary significantly. GPUs launch
threads in warp level, and the threads within a warp have
to release resources simultaneously. The workload imbalance
problem decreases the parallelism degrees. Third, we cannot
simply decide the number of threads for rules, because of the
various rule length.

Challenge 2: TADOC final result update conflict of
massive GPU threads. The update conflict is a serious
problem when we develop TADOC on GPUs. First, the update
conflict of multiple threads writing to the same result buffer
is not a serious problem on CPUs because the number of
CPU threads is limited. However, on a GPU server, when a
large number of GPU threads write to the same result buffer,
we have to use atomic operations to guarantee correctness,
which incurs massive conflicts. Second, the complicated
data structures used in TADOC cannot be applied in GPU
environment. For example, TADOC uses an unordered map
data structure for results such as word counts; we need
to develop our own similar data structures on GPUs with
atomicity and consistency considered. Third, the amount of
memory required by TADOC is unknown until runtime. Even
worse, for TADOC on GPUs, the memory sizes of different
threads are also various, which makes the update problem with
thread conflicts more difficult.

Challenge 3: sequence maintenance of TADOC
compressed data on GPUs. How to keep the sequence
information on GPUs is also challenging. Sequence
maintenance is essential for sequence sensitive applications,
such as counting three continuous word sequences. First, to
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keep the sequence information, TADOC originally traverses
the DAG in a DFS order [2], which is hard to be parallel.
Second, a word sequence can span several rules and these
rules can be controlled by different GPU threads. Currently,
threads across different GPU blocks have no mechanism for
synchronization. Third, TADOC uses map data structures to
store sequence counts. For these sequence-based applications,
we need to develop special data structures in GPU memories
to store sequences and perform basic comparisons between
threads.

Based on the analysis, designing a GPU-based TADOC is
very rewarding, but full of challenges.

IV. G-TADOC

In this section, we show our G-TADOC framework. G-
TADOC consists of three components, a module for data
structures, a parallel execution module, and a sequence support
module. We first show the G-TADOC overview and then the
different modules.

A. Overview

We show the overview of G-TADOC in Figure 3. The
inputs are TADOC compressed data and user program, and
the outputs are the results, which are similar to previous non-
GPU TADOC implementations [1], [2].

Modules. G-TADOC consists of three major modules. The
parallel execution module is responsible for the G-TADOC
parallel execution on GPUs, which decides how to partition
workloads for thread parallelism. The data structure module
provides necessary data structures for G-TADOC execution,
including a self-controlled memory pool, thread-safe data
structures, and head and tail structures for sequences. The
sequence support module is used for applications that are
sensitive to sequence orders.

Phases. After receiving the TADOC compressed data
and program, G-TADOC execution mainly consists of two
phases: initialization phase and graph traversal phase. In
the initialization phase, G-TADOC prepares necessary data
structures according to the user program and launches a light-
weight scanning to fulfill related values. In the graph traversal
phase, G-TADOC analyzes different traversal strategies and
chooses the most suitable one based on both data and tasks.
Before the end of the graph traversal, G-TADOC performs a
merging process for final results.

Solutions to challenges. G-TADOC can handle the
challenges mentioned in Section III-B. To address the first
GPU parallelism challenge, G-TADOC adopts a thread-
level workload scheduling strategy for GPU threads, which
partitions the DAG in a fine-grained manner for parallelism
(Section IV-B). To address the second TADOC update conflict
challenge, we develop a memory pool on GPUs and maintain
necessary data structures so that all threads manage the same
memory objects with consistency guaranteed (Section IV-C).
To address the third challenge of sequence sensitivities on
GPUs, G-TADOC scans the DAG for recording the cross-rule

parallel 
execution 

engine

sequence 
support

data structures

modules phases

TADOC 
compressed 

data

results

G-TADOC

G-TADOC 
program graph traversal

initialization

data structure 
preparation

light-weight scanning

top-down traversal / 
bottom-up traversal

result merging

Fig. 3. G-TADOC overview.

content in a light-weight manner in the initialization phase.
Then, G-TADOC performs a rule-level processing and result
merging process in the graph traversal phase (Section IV-D).

B. Fine-Grained Thread-Level Execution Engine

We show our G-TADOC parallel execution engine in this
part. In developing our parallel partitioning strategy, we
consider two possible designs, as shown in Figure 4. The
first design is to partition the DAG vertically from the root:
different parts are traversed by different threads, as shown in
Figure 4 (a). This design can leverage the GPU parallelism,
but at the same time, some rules can be scanned by different
threads. For example, R2 and R4 are scanned by both thread0
and thread1. Even worse, when the DAG is very deep and
complicated, the problem that massive rules are repeatedly
scanned by different threads can be serious. Hence, we
abandon this design. The second design is fine-grained thread-
level scheduling: we assign a thread for each node except the
root; the root rule usually includes a large number of elements
so we allocate a group of threads based on the rule length to
handle it. Note that when a rule includes a large number of
elements (the default threshold is 16 times the average number
of elements per thread), such as R4, more threads should
be allocated for the rule. To traverse the DAG, each rule is
associated with a mask to indicate whether a rule is ready to
be traversed or not. This design ensures the dependency for
correctness in the DAG traversal and retains great parallelism
simultaneously. Therefore, we adopt this fine-grained design.
Moreover, as discussed in [4], the optimal traversal strategy
depends on both input data and analytics tasks, so we develop
both top-down and bottom-up traversals and use the strategy
selector in [4] for such decisions.

Next, we show our detailed top-down and bottom-up designs
in G-TADOC.

Top-down traversal. We show our top-down traversal
design in this part.

1) General design. The general design of top-down traversal
transmits required data, such as file information, from the root
to sub-nodes for processing. Then, G-TADOC gathers local
results from different nodes as the final result. First, in root,
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R1 R2 w1 spt1 R2 w2 spt2 R3root … w4 …

…

thread0 thread3

w5 R4R1: R2:

w6 w7R4: w8

w2 R5R3:

w9 w6R5: w8

…

…

w5

thread1 thread2

R1 R2 w1 spt1 R2 w2 spt2 R3root … w4 …

…

thread0 thread3

w5 R4R1: R2:

w6 w7R4: w8

w2 R5R3:

w9 w6R5: w8

…

…

w5

thread1 thread2

thread4 thread5 thread6

thread7 thread8

(a) Workload vertical partitioning design.

(b) Fine-grained thread-level partitioning design.

R4

R4

Fig. 4. Workload partitioning design exploration.

different consecutive parts are controlled by different threads,
which can be processed in parallel. Second, during traversal,
multiple parents can write to the same local buffer of a rule,
which relates to data consistency. To handle this problem,
a self-maintained memory pool is introduced, detailed in
Section IV-C. Third, G-TADOC reduces intermediate results
from rules to the final output in a global buffer in parallel.

2) Detailed algorithm. We show our top-down DAG
traversal design in Algorithm 1. The general control is
performed on the CPU side by the topDown function,
as shown in Lines 1 to 8, which calls different GPU
kernels, including initTopDownMaskKernel, topDownKernel,
and reduceResultKernel.

The initTopDownMaskKernel is executed on GPUs, which
initializes the nodes whose in-edges are from only the root. In
detail, we consider the topology of the rules except the root,
and accordingly, the initial weights of these rules are their
frequencies in the root. Additionally, rule.numInEdge stores
the number of in-edges of each rule, and only the rules with
zero numInEdge can start the DAG traversal initially. In G-
TADOC, we mark the masks of the rules that can be processed
as true.

The topDownKernel is the main body of the top-down
traversal and is executed on GPUs. We set the devStopFlag
to true in Line 4. If the devStopFlag is still true after the
topDownKernel execution, which means that the DAG has no
update and has been fully traversed, then G-TADOC stops
traversal. In topDownKernel, for different applications, only
the for-loop from Lines 15 to 17 is different. Here, we take
word count as an example. For a given rule, it first transmits
its accumulated weights to all its subrules (Line 17). If the
number of current in-edges subRule.curInEdge is equal to a
subrule’s full number of in-edges subRule.numInEdge, then we
mark the subrule’s mask to true, indicating that the subrule is
ready to be traversed in the next round (Line 20). Note that

when any masks are changed, stopFlag shall be set to false.
Moreover, rule.mask should be set to false in Line 22 so that
the rule will not be involved in the next round.

The reduceResultKernel merges the word frequencies from
all rules multiplied by their corresponding accumulated rule
weights on GPUs.

Algorithm 1 Top-Down Traversal
1: function topDown(rules) . Executed by host; use word count as an

example
2: initTopDownMaskKernel(rules) with at least rules.size threads
3: do . Repeated top-down traverse until all rules’ weight generated
4: cudaMemSet devStopF lag ← true
5: topDownKernel(rules, devStopF lag) with at least rules.size

threads
6: cudaMemCpy devStopF lag to stopF lag
7: while stopF lag is false
8: reduceResultKernel(rules) with at least rules.size threads .

Reduce results from all rules

9: function topDownKernel(rules, devStopF lag) . GPU kernel
10: if tid not in 1 to rules.size− 1 then
11: return
12: rule← rules[tid]
13: if rule.mask is false then
14: return
15: for each subRuleId, subRuleFreq in rule.subRules do
16: subRule← rules[subRuleId]
17: atomicAdd(subRule.weight, subRuleFreq ∗ rule.weight)
18: atomicAdd(subRule.curInEdge, 1)
19: if subRule.curInEdge is full then
20: subRule.mask ← true . Sub-rule then can be traversed
21: devStopF lag ← false

22: rule.mask ← false

3) Complexity analysis. Algorithm 1 can be divided into
three stages. The first stage is mask initialization (Line 2), in
which each thread checks the corresponding rule’s number of
in-edges and then sets its mask. Assuming sufficient parallel
resources, the complexity is O(1). The second stage is top-
down traversal (Lines 3 to 7). Assuming that the DAG has k
layers, the number of loops is not greater than k. Then each
thread in topDownKernel traverses the corresponding rule’s
sub-rules. Suppose in the ith loop, the maximum number of
sub-rules of a rule is ei,max, then the total complexity of
this stage is O(

∑k
i=1 ei,max), which can be represented as

O(kēmax). The third stage is to reduce results (Line 8). Each
thread needs to merge the corresponding rule’s local words
from the local table to the global table, so the complexity
is O(wmax), where wmax is the maximum number of local
words among all rules. Therefore, the overall complexity of
Algorithm 1 is O(kēmax + wmax).

Bottom-up traversal. We show our bottom-up traversal
design in this part.

1) General design. The bottom-up traversal transmits
required data, such as local word counts, from leaves to
upper-level nodes. After transmission, the root and its directly
connected nodes (called 2nd-layer nodes) store the gathered
result. Note that we do not accumulate the results to the
root because the root contains file information. In detail, first,
each leaf transmits the required data from its local tables to
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its parents. Second, during traversal, each node accumulates
the transmitted data from children and then transmits the
accumulated results to its parents. Note that data consistency
needs to be guaranteed since different rules are controlled by
different threads. Third, after traversal, G-TADOC analyzes
the local buffers in the root and 2nd-layer nodes in parallel to
generate the final results.

2) Detailed algorithm. We show our bottom-up DAG
traversal design in Algorithm 2. The general control is
performed by the function bottomUp from the CPU side,
which calls different GPU kernels. Different from Algorithm 1,
the bottom-up design in Algorithm 2 first generates the
pointers from children to parents (Lines 2 to 3), initializes
masks (Line 4), and generates the local tables’ bound in a
light-weight bottom-up manner (Lines 5 to 9), so that the
local tables in rules can be allocated (Line 10). Then, it
initializes masks again (Line 11) and traverses the graph in
a comprehensive bottom-up direction with a result merging
process (Lines 12 to 17).

The initBottomUpMaskKernel set the rule masks. The leaves
are set to true so that they can be traversed initially.

The genLocTblBoundKernel is used to calculate the memory
size limit for local tables, and is called by the bottomUp
function repeatedly. Its kernel execution is similar to that
of topDownKernel in Algorithm 1, except the use of out-edge
rather than in-edge during traversal. When a rule is traversed,
G-TADOC sums the upper limits of its local words and all its
children’s local tables as the amount of space that should be
allocated. Then, the rule increases all its parents’ out-edges.
When a parent’s number of current out-edges is equal to its
number of subrules, G-TADOC sets its mask to true for the
next-iteration execution. After calculating the memory limit of
each node, we uniformly allocate the corresponding buffer for
each rule in rules.locTbl (Line 10).

The genLocTblKernel is used for DAG traversal with the
allocated memory space from the bottomUp function. Its
traversal order is controlled by the traversed out-edges, which
is the same as genLocTblBoundKernel. However, the kernel’s
computation task is much heavier. Here, we use the word
count example for illustration. When a rule is traversed, it
first reduces its local word frequencies, and then merges all
its subrules’ local word frequencies into its own local table.

The reduceResultKernel merges the word frequencies from
the root and its children where the root is directly connected
(called level-2 nodes in [2]) on GPUs. In detail, G-TADOC
merges 1) the word frequencies in the root, and 2) the
frequencies in the local tables of the root’s direct children
multiplied by their corresponding rule frequencies in the root.
This is different from the reduceResultKernel in Algorithm 1.

3) Complexity analysis. Different from Algorithm 1,
Algorithm 2 consists of five stages. The first stage is to
generate the parents of rules (Lines 2 to 3). Each thread in
genRuleParentsKernel stores the corresponding rule’s ID in
all its sub-rules’ parent table. The complexity is O(emax),
where emax is the maximum number of sub-rules of all rules.
The second stage is mask initialization (Line 4 and 11).

Algorithm 2 Bottom-Up Traversal
1: function bottomUp(rules) . word count
2: allocate device memory to rules.parentIds
3: genRuleParentsKernel(rules) with at least rules.size threads

4: initBottomUpMaskKernel(rules) with at least rules.size threads
5: do
6: cudaMemSet devStopF lag ← true
7: genLocTblBoundKernel(rules, devStopF lag) with at least

rules.size threads
8: cudaMemCpy devStopF lag to stopF lag
9: while stopF lag is false

10: allocate device memory to rules.locTbl

11: initBottomUpMaskKernel(rules) with at least rules.size threads
12: do
13: cudaMemSet devStopF lag ← true
14: genLocTblKernel(rules, devStopF lag) with at least rules.size

threads
15: cudaMemCpy devStopF lag to stopF lag
16: while stopF lag is false
17: reduceResultKernel(rules) with at least root.size threads

Similar with the mask initialization in Algorithm 1, the
complexity is also O(1). The third stage is to generate
rules’ local table bound (Lines 5 to 9). Each thread in
genLocTblBoundKernel traverses the corresponding rule’s sub-
rules and parents. Suppose in the ith loop, the maximum
numbers of sub-rules and parents of these rules are ei,max and
pi,max respectively. Then, the complexity is O(

∑k
i=1(ei,max+

pi,max)) = O(k(ēmax + p̄max)), where k is the number of
layers in the DAG. The fourth stage is to generate rules’ local
table (Lines 5 to 9). Besides traversing corresponding rule’s
sub-rules and parents, each thread in genLocTblKernel also
merges all sub-rules’ local tables and its own words. For a
given rule i, suppose its local table size is ti and its number of
words is wi, then its computation load is wi+

∑
j∈i.subRules tj .

The complexity of this stage is O(
∑k

i=1 Ci,max), which is
O(kC̄max). Ci,max is the maximum computation load among
rules in the ith loop. The fifth stage is to reduce results
(Line 8). This stage scans the root and merges all level-2
nodes. In detail, each thread is responsible for one level-2
node, so the complexity is O(tlv2,max), where tlv2,max is the
maximum size of level-2 nodes’ local tables. Therefore, the
overall complexity of Algorithm 2 is O(k(ēmax + p̄max +
C̄max) + tlv2,max).

Parameter selection. G-TADOC involves a few parameters
to adjust, such as the threshold of GPU thread resources
allocated to a rule. The current solution is to extract a sample
set of input and then use a greedy strategy to set each
parameter in turns. If the input is unavailable until runtime,
then the parameters are set according to our training set (a
small extracted dataset from Wikipedia [15]).

C. G-TADOC Data Structures

The data structures in G-TADOC include a self-maintained
memory pool, thread-safe structures, and sequence support.

G-TADOC maintained memory pool. As discussed in
Section IV-B, we need to provide each thread a separate
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memory space during DAG traversal. Because 1) the required
memory size is unknown until runtime, and 2) allocating
memory dynamically for all threads is inefficient, we develop
a global memory pool to manage the GPU memory by G-
TADOC itself. First, each rule calculates its own required
memory size for necessary data structures. Second, with data
transmission in the initialization phase in Figure 1, each rule
transmits its memory requirement to its parents in a bottom-
up traversal, or to its children in a top-down traversal. This
memory requirement transmission process can be recursive.
Third, after the whole range transmission in the initialization
phase, each rule determines its maximum memory requirement
and we can allocate related resources of different rules from
the memory pool.

Thread-safe data structures. After we introduce the
memory pool in G-TADOC, we next describe the thread-safe
data structures used in the memory pool for GPU threads.
The most important data structure in TADOC is the hash
structure [2], which can be used to store the results both locally
and globally. Hence, we use the hash structure for illustration
in G-TADOC thread-safe design, as shown in Figure 5. The
original state of the hash table is shown in Figure 5 (a). The
lock buffer is for locking entries (1 means locked, and 0 means
unlocked). The entry buffer is for hashing (default -1). The
key and value buffers are for the key-value pairs. The next
buffer is for the next entry if multiple key-value pairs are
mapped into the same entry. Figure 5 (b) shows the state after
inserting <126,1>, assuming the key-value pair is hashed to 1.
Because there is no conflict in this insertion, the related value
in the next buffer is -1. Figure 5 (c) shows the hash table state
after inserting <163,1>, assuming the key-value pair is hashed
to 3. Accordingly, G-TADOC just stores the key-value pair
<163, 1> after the first <126,1>. Figure 5 (d) shows a hash
conflict situation: the hash table state after inserting <78,1>,
assuming the key-value pair is hashed to 1. Because <126, 1>
has already been inserted to the first entry, we update its “next”
buffer pointing to a new place for the newly inserted <78,1>.
Note that the lock buffer is used only when all threads writing
to the same buffer location. Moreover, if the hash table is
private and owned by one thread, we do not need to create
the locks.

Head and tail structures for sequence support. The
head and tail structures are used to support sequence sensitive
applications, such as sequence count [2]. Because G-TADOC
traverses the DAG in parallel, some rules may involve cross-
rule sequence (a word sequence spanning multiple nodes in
the DAG). We design head and tail data structures for each
rule to store the content of the beginning and end of the rule,
which are provided to the parents. We show an example in
Figure 6. In the root, the first sequence, <w1,w2,w3>, is a
sequence that does not span across rules. However, for the
next three-word sequence, <w2,w3,w4>, it spans across the
root and R1. For this sequence, we store the partial content
of <w4,w5> in the head buffer of R1, so that this cross-rule
sequence can be processed by the parent, which is the root.

Keys

0 0 0 0 0Values

Next

-1 -1 -1 -1 -1Entries

0 0 0 0 0Locks

-1 0 -1 -1 -1Entries

126Keys

1 0 0 0 0Values

-1Next

0 1 0 0 0Locks

(a) Original hash table. (b) Add key = 126 (suppose 
hash to 1), and value = 1.

-1 0 -1 1 -1Entries

126 163Keys

1 1 0 0 0Values

-1 -1Next

-1 0 -1 1 -1Entries

126 163 78Keys

1 1 1 0 0Values

2 -1 -1Next

0 0 0 1 0Locks 0 1 0 0 0Locks

(c) Add key = 163 (suppose 
hash to 3), and value = 1.

(d) Add key = 78 (suppose 
hash to 1), and value = 1.

Fig. 5. Illustration for thread-safe hash tables.

Similarly, we store <w6,w7> in the tail buffer of R1 so that
R1’s parent can quickly process the sequences containing the
words in R1’s tail buffer. Note that the first few elements and
the last few elements in the subrule can also be a rule. For
example, in Figure 4, the first element of R2 is also a rule,
so the sequence from the root can span more than two rules,
which is complicated. In our design, each rule can be handled
by different threads. If we can provide the head and tail buffers
of all rules, we can avoid multi-rule scanning by looking into
only the head and tail buffers of different subrules directly.
In summary, the parents are responsible to process cross-rule
sequences, and the problem can be solved by scanning the
head and tail buffers of the direct children. More details are
presented in Section IV-D.

R1 R2 w1 spt1 R2 w2 spt2 R3

root

… w4 …

…

thread0 thread3

w5 R4

R1:

w1R2:

w6 w7R4: w8

w2 R5R3:

w9 w6R5: w8

…

…

w5

thread1 thread2

w1 w2 w3 R1 w8 w9 w10 ……

w4 w5 …… …
head tail

w6 w7

Fig. 6. Head and tail data structures for sequences.

D. Sequence Support in G-TADOC

In this part, we discuss the sequence support in G-TADOC
for sequence sensitive applications. The sequence support in
TADOC [2] is developed by function recursive calls, which
is inefficient and hard to be parallel on GPUs. To improve
the sequence support of TADOC and parallelize it on GPUs,
we have the following insights. First, to fully parallelize the
rule processing, each rule needs to include the head and tail
buffers mentioned in Section IV-B to remove the sequence
dependency across rules. Second, a first-round initialization
phase is required to fulfill the head and tail buffers for all rules.
Third, the original recursive design in TADOC [2] is inefficient
and thus shall be abandoned; a more efficient parallel graph
traversal needs to be developed.
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Based on the analysis, we develop a two-phase sequence
support design for sequence sensitive applications.

Initialization phase. The first initialization phase is to
prepare the head and tail buffers for each rule with a light-
weight scanning. The upper limit of memory space for each
rule is shown in Equation 1, where wordSize denotes the size
of the word elements, l denotes the sequence length, and
subRuleSize denotes the number of subrules.

upperLimit = wordSize + (l − 1) × subRuleSize− (l − 1)

(1)
The detailed process to generate the head and tail buffers of

each rule is shown in Figure 7. The CPU side uses a while-
loop to continuously check whether all the head and tail buffers
have been fulfilled. To generate the head buffers, G-TADOC
traverses the rules, and puts a given number of continuous
words at the beginning of the rule in the head buffer. Within
such a process, if G-TADOC encounters a subrule, G-TADOC
first checks the related mask. If the mask is set, which implies
that the subrule’s head buffer is ready, then G-TADOC can
put the content from the subrule’s head buffer to the current
rule’s head buffer; otherwise, the calculation fails and needs
to be conducted in the next round. The generation of the tail
buffers is similar to the generation of the head buffers.

CPU

stop_flag = true

generate head/tail

wait synchronization

stop_flag

GPU

mask

calculate
head/tail

mask = true stop_flag = false

return
true

…

false

succeed

sub_rule.mask == false

fail

threads

true

Fig. 7. Phase 1: initialization for head and tail buffers.

Graph traversal phase. The second phase of sequence
support is shown in Figure 8. Similar to the first phase shown
in Figure 7, the CPU part uses a while-loop to control the DAG
traversal process. We use sequence count [2] as an example,
which uses the hash tables described in Figure 5. For sequence
support, we need to reduce the intermediate results in the local
tables from the rules. We use parallel hash tables to merge
these results, as discussed in Section IV-C. First, we distribute
each key-value pair a mask, and each entry a lock. Second,
each thread is responsible for one key-value pair. Third, each
thread needs to justify whether it is necessary to insert a key-
value pair. If not, G-TADOC returns directly; otherwise, G-
TADOC obtains the entry based on hash functions, and then

verifies if the same key already exists on this entry. If the
key exists, G-TADOC uses atomic additions directly, and then
sets the mask to true; otherwise, G-TADOC tries to obtain
the lock of the entry. If the lock is occupied by other threads,
G-TADOC sets the stop flag to false and returns directly; if G-
TADOC obtains the lock, G-TADOC needs to verify whether
the same key coexists. If the same key coexists, G-TADOC
uses atomic additions to avoid this issue; otherwise, G-TADOC
obtains a new node and sets the entry accordingly. Finally, G-
TADOC unlocks the table, sets the mask to true, and returns.
Note that the CPU part continuously launches this process
until the stop flag is set to true.
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Fig. 8. Phase 2: graph traversal with sequence support.

V. IMPLEMENTATION

We integrate our G-TADOC into the CompressDirect
(CD) [2] library, which is an implementation of TADOC.
G-TADOC in CD includes two parts: 1) the CPU part that
is used to input data and program, and to handle the GPU
module, and 2) the GPU part that is used for GPU-based
TADOC acceleration. We use the same interfaces as TADOC
in CD, including word count, sort, inverted index, term vector,
sequence count, and ranked inverted index, so users do not
need to change any code in this GPU support.

VI. EVALUATION

In this section, we measure the performance of G-TADOC
and compare it with TADOC [2] for evaluation.

A. Experimental Setup

We show our experimental setup in this part.

Methodology. The baseline in our evaluation is TADOC [2],
which is the state-of-the-art data analytics directly on
compression, denoted as “TADOC”. Our method that enables
TADOC on GPUs is denoted as “G-TADOC”. In our
evaluation, we measure TADOC [2] performance and G-
TADOC performance for comparison. Moreover, we assume
that small datasets can be stored and processed in GPU
memory directly without PCIe data transmission; large
datasets are stored on disk with PCIe data transmission
required to be involved in time measurement.
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Fig. 9. Performance speedups.

Platforms. We use three GPU platforms and a 10-node
Amazon EC2 cluster in our evaluation, as shown in Table I.
We evaluate G-TADOC on three generations of Nvidia GPUs
(Pascal, Volta, and Turing micro-architectures), which are
used to prove the adaptability of G-TADOC. Since GPU
architectures are constantly changing, if we can achieve high
performance on all these platforms, then it is very likely
that G-TADOC can achieve promising results for future GPU
products. The 10-node cluster is a Spark cluster on Amazon
EC2 [16] for large datasets of TADOC.

TABLE I
PLATFORM CONFIGURATION.

Platform Pascal Volta Turing 10-node cluster
GPU GTX 1080 V100 RTX 2080 Ti NULL

GPU Memory GDDR5X HBM2 GDDR6 DDR3
CPU i7-7700K E5-2670 i9-9900K E5-2676v3
OS Ubuntu 16.04.4 Ubuntu 16.04.4 Ubuntu 18.04.5 Ubuntu 16.04.1

Compiler CUDA 8 CUDA 10.1 CUDA 11.0 GCC 5.4.0

Datasets. The datasets used in our evaluation are shown
in Table II, which include various real-world workloads.
Datasets A, B, and C are used in [1]–[4]. Dataset A is
NSF Research Award Abstracts (NSFRAA) downloaded from
UCI Machine Learning Repository [17], and is composed of
a large number of small files. Dataset B is a collection of four
web documents downloaded from Wikipedia [15]. Dataset C
is a large Wikipedia dataset [15]. To increase the diversity
of test data, we add datasets D and E compared to previous
works [1]–[4]. Dataset D is COVID-19 data from Yelp [18],
and dataset E is a collection of DBLP web documents [19].
Note that only dataset C is evaluated on the 10-node cluster.

TABLE II
DATASETS (“SIZE”: ORIGINAL UNCOMPRESSED SIZE).

Dataset Size File # Rule # Vocabulary Size
A 580MB 134,631 2,771,880 1,864,902
B 2.1GB 4 2,095,573 6,370,437
C 50GB 109 57,394,616 99,239,057
D 62MB 1 36,882 240,552
E 2.9GB 1 8,821,630 23,959,913

B. Performance

In this part, we measure the speedups of G-TADOC over
TADOC and show their time breakdowns.

Overall speedups. We show the speedups that G-TADOC
achieves over TADOC [2] in five datasets in Figure 9. In
detail, Figure 9 (a) shows the speedups on Pascal platform,
Figure 9 (b) shows the speedups on Volta platform, and
Figure 9 (c) shows the speedups on Turing platform. We have
the following observations.

First, G-TADOC achieves significant performance speedups
over TADOC in all cases. On average, G-TADOC achieves
31.1× speedup over TADOC. The reason is that the GPU
device for G-TADOC provides much higher computing power
and bandwidth than the CPU device for TADOC. For example,
on the Pascal platform, the theoretical peak performance of the
GPU is about 185.3× over the theoretical peak performance
of the CPU. Moreover, the bandwidth provided by the GPU
memory is about 8.3× over the memory bandwidth provided
by the CPUs. The performance speedups achieved by G-
TADOC further prove the effectiveness of our solutions to
handle the dependencies in our parallel design for GPUs.

Second, the speedups of G-TADOC over TADOC on
single nodes for processing small datasets are higher than
the speedups of G-TADOC over TADOC on clusters for
processing large dataset C. The average speedup of G-
TADOC over TADOC on a single node is 57.5×, while
the average speedup of G-TADOC over TADOC on a ten-
node cluster is 2.7×. The reason is that when processing
the large dataset, TADOC adopts coarse-grained parallelism
in distributed environments to improve the data processing
efficiency. However, due to the data exchange overhead
between nodes in the distributed environment of TADOC, our
G-TADOC is still more efficient than TADOC.

Third, the speedups G-TADOC achieves for sequence count
and ranked inverted index are much higher than the speedups
of the other applications in most cases. In detail, the average
speedups of sequence count and ranked inverted index are
111.3× and 112.0×, which are much higher than the full range
average speedup. The reason is that sequence count and ranked
inverted index of TADOC in [2] is of low performance: as
described in [2], the performance behaviors of sequence count
and ranked inverted index of TADOC are close to those of
the original implementations on uncompressed data without
compression. As to G-TADOC, sequence count and ranked
inverted index reuse the partial results of duplicate data and
execute in parallel on GPUs.
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C. Optimization Analysis

We analyze G-TADOC acceleration in different phases and
the traversal strategies on GPUs in this part.

Speedups in different phases. We show the separate
speedups of G-TADOC over TADOC in different phases in
Figure 10. First, the average speedup in the second phase
is 64.1×, which implies that most G-TADOC performance
benefits come from the acceleration in the second phase
of DAG traversal. The second phase also has a relatively
long execution time in TADOC [2], which provides more
parallel optimization opportunities. Second, for the first phase,
although the execution time is relatively short, G-TADOC still
achieves clear performance speedups: on average, G-TADOC
is 9.5× faster than TADOC on CPUs. Third, in large dataset C,
the speedups in the first initialization phase are extremely high,
which shows that the data structure preparation for massive
large files is time-consuming in TADOC [2] and is essential
to be accelerated by G-TADOC.

Top-down vs. bottom-up traversals. We develop top-
down and bottom-up traversals in G-TADOC, but the optimal
traversal strategy for each application can be input dependent.
For example, for term vector in dataset A, the top-down
traversal takes 14.04 seconds, but the bottom-up traversal takes
only 1.56 seconds. In contrast, for term vector in dataset
B, the bottom-up traversal takes 0.43 seconds, but the top-
down traversal takes only 0.11 seconds. In detail, dataset B
involves only four files. If we traverse the DAG in a top-down
strategy, we only need to maintain a small buffer of 16 bytes in
each rule indicating its file information, and the transmission
for file information in DAG traversal is also marginal. In
contrast, for dataset A, which involves a large number of
small files, the top-down traversal with file information would
be time-consuming and drags down the overall performance.
Therefore, we should select the bottom-up traversal strategy
in dataset A, and top-down strategy in dataset B. We apply
the TADOC adaptive traversal strategy selector on GPUs, as
discussed in Section IV-B, which can help select the optimal
traversal strategy.

D. Summary of Findings

We summarize our findings and insight as follows.
First, we find that GPUs are very suitable for text analytics

directly on compression, but need special optimizations. For
example, G-TADOC needs fine-grained thread-level workload
scheduling for GPU threads, thread-safe data structures for
parallel updates, and head and tail structures for sequence
sensitive applications.

Second, the GPU platform is both cost-effective and energy-
efficient, which can be applied to a wide range of data analytics
applications directly on compression, especially in large data
centers. Experiments show that a GPU server can have much
higher performance on data analytics directly on compressed
data than a ten-node cluster does.

Third, although the GPU memory is limited, our work
can help put much larger content directly in GPU memory.

The frequent data transmission between the CPU and GPU
drags down the performance advantages of GPUs when large
workloads fail to be loaded to the GPU memory at once. Our
work sheds light on the GPU acceleration design for such big
data applications.

E. Discussion

We next show the importance of our paper and future work.

Importance of our work. As the first work enabling
efficient GPU-based text analytics without decompression,
G-TADOC provides the insights that are of interests to a
wide range of readers. Currently, G-TADOC involves only
the applications in TADOC [2], but other data analytics tasks
can all benefit from G-TADOC. Furthermore, the series of
optimizations on GPUs for TADOC can be directly applied to
other advanced data analytics scenarios.

Comparison with GPU-accelerated uncompressed
analytics. In our evaluation for the six data analytics tasks
with the five datasets, G-TADOC reaches 31.1× of the
performance of the state-of-the-art TADOC on CPUs. A
common question is how the G-TADOC performance differs
from the performance of GPU-accelerated uncompressed
analytics. Currently, there is no implementation about
the six analytics tasks on GPUs, so we develop efficient
GPU-accelerated uncompressed analytics for comparison.
Experiments show that G-TADOC still achieves an average
of 2× speedup.

Applicability. G-TADOC has the same applicability as
TADOC [4]. In general, G-TADOC targets the analytics tasks
that can be expressed as a DAG traversal problem, which
involves scanning the whole DAG.

How far is the performance from the optimal? Although
G-TADOC already achieves high performance, it still has
room for performance improvement. The reasons include 1)
dependencies in DAG traversal, 2) random accesses on large
memory space, and 3) atomic operations on global buffers.
When these issues are solved, G-TADOC can achieve at least
20% extra performance improvement.

Future work. Currently, G-TADOC supports data analytics
directly on compression on GPUs. This research is headed
for high-performance and efficient data analytics methods.
The future possible avenues of exploration include architecture
optimizations or multi-GPU environments, which can further
accelerate G-TADOC.

VII. RELATED WORK

As far as we know, G-TADOC is the first work that enables
efficient GPU-based text analytics without decompression.
In this section, we show the related work of grammar
compression, compression-based data analytics, and GPU data
analytics.

Grammar compression. There are plenty of works on
grammar compression [1]–[4], [20]–[28]. The closest work
to G-TADOC is TADOC, which is the text analytics
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Fig. 10. Separate speedups for different phases.

directly on compression in single-node and distributed
environments [2]. TADOC extends Sequitur [12]–[14] as
its compression algorithm for data analytics. After TADOC
being proposed, Zhang et al. [1] proposed Zwift, which the
first TADOC programming framework, including a domain
specific language, TADOC compiler and runtime, and a
utility library. Then, Zhang et al. [4] applied TADOC as the
storage to support advanced document analytics, such as word
co-occurrence [29], [30], term frequency-inverse document
frequency (TFIDF) [11], word2vec [31], [32], and latent
Dirichlet allocation (LDA) [10]. Furthermore, Zhang et al. [3]
enabled random accesses to TADOC compressed data, and at
the same time, supported insert and append operations. In
this work, we enable TADOC on GPUs, which improves the
performance of TADOC significantly.

Index compression. The compression-based data analytics
is an active research domain in recent years. However, typical
approaches mainly use suffix trees and indexes [33]–[38],
[38]–[41]. Suffix trees are traditional representations for data
compression [33], [42] but incur huge memory usage [43],
[44]. Suffix arrays [45] and Burrows-Wheeler Transform [35],
[36] are the development of these compression formats, but
still generate high memory consumption [43]. Compressed
suffix arrays [46]–[50] and FM-indexes [36], [51]–[54] are
more efficient than the previous compression techniques.
Furthermore, Agarwal et al. proposed Succinct [34], which
targets queries on compressed data. Moreover, there are
many works about inverted index compression [55]–[61]. For
example, Petri and Moffat [55] developed compression tools
for compressed inverted indexes. Different from these works,
G-TADOC targets text analytics directly on compressed data
on GPUs.

GPU data analytics. GPUs have been applied to various
aspects of data analytics, including structured data analytics,
stream data analytics, graph analytics, and machine learning
analytics [5]–[9], [62]–[66]. For example, MapD (Massively
Parallel Database) [5] is a popular big data analytics platform
powered by GPUs. Most current analytics frameworks, such
as Spark, have supported GPUs [6]. SABER [7] is a
stream system that schedules queries on both CPUs and

GPUs, and Zhang et al. [9] further developed FineStream,
which enables fine-grained stream analytics on CPU-GPU
integrated architectures. Gunrock [8] is an efficient graph
library for graph analytics on GPUs, and for large graphs,
multi-GPU graph analytics have been explored [62]. For
machine learning data analytics, parallel technologies have
been extensively applied to various aspects, especially for deep
learning applications [63]. Currently, most machine learning
frameworks, such as TensorFlow [64], support GPU.

VIII. CONCLUSION

In this paper, we have presented G-TADOC enabling
efficient GPU-based text analytics without decompression. We
show the challenges of parallelism, result update conflicts
from multi-threads, and sequence sensitivities in developing
TADOC on GPUs, and present a series of solutions in solving
these challenges. By developing an efficient parallel execution
engine with data structures and sequence support on GPUs,
G-TADOC achieves 31.1× speedup on average compared to
state-of-the-art TADOC.
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