
A Compiler Framework for Optimizing
Dynamic Parallelism on GPUs

Mhd Ghaith Olabi1, Juan Gómez Luna2, Onur Mutlu2, Wen-mei Hwu3,4, Izzat El Hajj1

1American University of Beirut 2ETH Zurich 3NVIDIA 4University of Illinois at Urbana-Champaign

Dynamic Parallelism on GPUs

• Dynamic parallelism enables executing GPU threads to launch other
grids of threads

• Useful for implementing computations with nested parallelism

Dynamic launch Parameters and launch
configurations

Parent threads

Child grids

Dynamic Parallelism Overhead

• Using dynamic parallelism may cause many small grids to be launched

• Launching many small grids causes performance degradation due to:
• Congestion

• Limited number of grids can execute simultaneously (others need to wait)
• Hardware underutilization

• If grids are small, their may not be enough threads launched to fully utilize hardware
resources

• Solution: launch fewer grids of larger sizes

Prior Work: Aggregation
• Aggregation is an optimization where:

• Multiple child grids are consolidated into a single aggregated grid
• One parent thread launches the aggregated grid on behalf of the rest

• I. El Hajj, J. Gomez-Luna, C. Li, L.-W. Chang, D. Milojicic, and W.-m. ´ Hwu, “KLAP: Kernel launch aggregation and promotion for optimizing dynamic parallelism,” in Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on. IEEE, 2016, pp. 1–12

• D. Li, H. Wu, and M. Becchi, “Exploiting dynamic parallelism to efficiently support irregular nested loops on GPUs,” in Proceedings of the 2015 International Workshop on Code Optimisation
for Multi and Many Cores. ACM, 2015, p. 5.

• Li, D., Wu, H., & Becchi, M., “Nested parallelism on GPU: Exploring parallelization templates for irregular loops and recursive computations,” in Parallel Processing (ICPP), 2015 44th
International Conference on. IEEE, 2015, pp. 979– 988.

• H. Wu, D. Li, and M. Becchi, “Compiler-assisted workload consolidation for efficient dynamic parallelism on GPU,” arXiv preprint arXiv:1606.08150, 2016.

Prior Work: Aggregation
• Aggregation is an optimization where:

• Multiple child grids are consolidated into a single aggregated grid
• One parent thread launches the aggregated grid on behalf of the rest

In memory

Memory access

Aggregated child grid

+ Reduces congestion by reducing the number of launched grids

+ Improves utilization because aggregated child grids have more threads then original ones

Contributions

• Thresholding (as a compiler optimization)
• Prior work relies on programmers to apply it manually

• Coarsening of child thread blocks
• Prior work on compiler-based coarsening not specialized for dynamic parallelism

• Aggregation of child grids at multi-block granularity
• Prior work only compiler-based aggregation only considers warp, block, and grid granularity

• One compiler framework that combined the three optimizations

Thresholding

• Thresholding is an optimization where:
• A grid is launched dynamically only if the number of child threads exceeds a

certain threshold
• Otherwise, work is executed sequentially by the parent thread

Thresholding

• Thresholding is an optimization where:
• A grid is launched dynamically only if the number of child threads exceeds a

certain threshold
• Otherwise, work is executed sequentially by the parent thread

Child thread serialized in parent thread

+ Reduces congestion by reducing the number of launched grids

+ Improves utilization by only allowing grids with many threads to be launched

Coarsening

• Coarsening is a transformation where:
• The work of multiple child blocks is assigned to a single child block

Coarsening

• Coarsening is a transformation where:
• The work of multiple child blocks is assigned to a single child block

Coarsened child grids

Original thread block before
coarsening

+ When applied before aggregation, amortizes the cost of disaggregation (incurred once per child blocks)

Multi-block Granularity Aggregation

• Multi-block granularity aggregation is an optimization where:
• The child grids of multiple parent blocks are consolidated into a single

aggregated grid

Multi-block Granularity Aggregation

• Multi-block granularity aggregation is an optimization where:
• The child grids of multiple parent blocks are consolidated into a single

aggregated grid

+ Compared to block granularity, launches fewer and larger grids

+ Compared to grid granularity, launches child grids more eagerly

Overall Speedup

We evaluate all combinations of optimizations for 7 benchmarks with 2 datasets each

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

KR
O

N

CN
R

T3
2-

C1
6

T2
04

8-
C6

4

KR
O

N

CN
R

KR
O

N

CN
R

RA
N

D
-3

5-
SA

T

KR
O

N

CN
R

KR
O

N

CN
R

BFS BT MSTF MSTV SP SSSP TC Geomean

Sp
ee

du
p

ov
er

 C
DP

No CDP CDP KLAP (CDP+A) CDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A

Overall Speedup

We report speedup (higher is better) over the baseline that uses CUDA dynamic parallelism (CDP)

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

KR
O

N

CN
R

T3
2-

C1
6

T2
04

8-
C6

4

KR
O

N

CN
R

KR
O

N

CN
R

RA
N

D
-3

5-
SA

T

KR
O

N

CN
R

KR
O

N

CN
R

BFS BT MSTF MSTV SP SSSP TC Geomean

Sp
ee

du
p

ov
er

 C
DP

No CDP CDP KLAP (CDP+A) CDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A

Overall Speedup

Observation #1: Not using CDP performs better than naïve CDP (same observation as prior work).

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

KR
O

N

CN
R

T3
2-

C1
6

T2
04

8-
C6

4

KR
O

N

CN
R

KR
O

N

CN
R

RA
N

D
-3

5-
SA

T

KR
O

N

CN
R

KR
O

N

CN
R

BFS BT MSTF MSTV SP SSSP TC Geomean

Sp
ee

du
p

ov
er

 C
DP

No CDP CDP KLAP (CDP+A) CDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A

Overall Speedup

Observation #2: Aggregation improves performance of naïve CDP (same observation as prior work).

KLAP(CDP+A) is 12.1× faster than CDP on average (geomean).

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

KR
O

N

CN
R

T3
2-

C1
6

T2
04

8-
C6

4

KR
O

N

CN
R

KR
O

N

CN
R

RA
N

D
-3

5-
SA

T

KR
O

N

CN
R

KR
O

N

CN
R

BFS BT MSTF MSTV SP SSSP TC Geomean

Sp
ee

du
p

ov
er

 C
DP

No CDP CDP KLAP (CDP+A) CDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A

Overall Speedup

Observation #3: Thresholding alone improves the performance over CDP.

CDP+T is 13.4× faster than CDP on average (geomean).

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

KR
O

N

CN
R

T3
2-

C1
6

T2
04

8-
C6

4

KR
O

N

CN
R

KR
O

N

CN
R

RA
N

D
-3

5-
SA

T

KR
O

N

CN
R

KR
O

N

CN
R

BFS BT MSTF MSTV SP SSSP TC Geomean

Sp
ee

du
p

ov
er

 C
DP

No CDP CDP KLAP (CDP+A) CDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A

Overall Speedup

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

KR
O

N

CN
R

T3
2-

C1
6

T2
04

8-
C6

4

KR
O

N

CN
R

KR
O

N

CN
R

RA
N

D
-3

5-
SA

T

KR
O

N

CN
R

KR
O

N

CN
R

BFS BT MSTF MSTV SP SSSP TC Geomean

Sp
ee

du
p

ov
er

 C
DP

No CDP CDP KLAP (CDP+A) CDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A

Observation #4: Thresholding and Aggregation together improve the performance over CDP even more.

Despite both targeting the same source of inefficiency, one optimization does not obviate the other.

Overall Speedup

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

KR
O

N

CN
R

T3
2-

C1
6

T2
04

8-
C6

4

KR
O

N

CN
R

KR
O

N

CN
R

RA
N

D
-3

5-
SA

T

KR
O

N

CN
R

KR
O

N

CN
R

BFS BT MSTF MSTV SP SSSP TC Geomean

Sp
ee

du
p

ov
er

 C
DP

No CDP CDP KLAP (CDP+A) CDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A

Observation #5: Coarsening alone does not improve performance substantially over CDP.

CDP+C is 1.01× faster than CDP.

Overall Speedup

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

KR
O

N

CN
R

T3
2-

C1
6

T2
04

8-
C6

4

KR
O

N

CN
R

KR
O

N

CN
R

RA
N

D
-3

5-
SA

T

KR
O

N

CN
R

KR
O

N

CN
R

BFS BT MSTF MSTV SP SSSP TC Geomean

Sp
ee

du
p

ov
er

 C
DP

No CDP CDP KLAP (CDP+A) CDP+T CDP+C CDP+T+C CDP+T+A CDP+C+A CDP+T+C+A

Observation #6: Coarsening does improve performance when combined with the other optimizations.

Recall: main benefit was amortizing overhead of aggregation. CDP+T+C+A is 1.22× faster than CDP+T+A.

Summary

• We present a compiler framework for optimizing the use of dynamic
parallelism on GPUs in applications with nested parallelism
• The framework includes three key optimizations:
• Thresholding
• Coarsening
• Aggregation

• Our evaluation shows that our compiler framework substantially
improves performance of applications with nested parallelism that
use dynamic parallelism
• 43.0× faster than CDP.
• 8.7× faster than No CDP
• 3.6× faster than prior aggregation work (KLAP)

Thank you!
A Compiler Framework for Optimizing

Dynamic Parallelism on GPUs
Mhd Ghaith Olabi1, Juan Gómez Luna2, Onur Mutlu2, Wen-mei Hwu3,4, Izzat El Hajj1

1American University of Beirut 2ETH Zurich 3NVIDIA 4University of Illinois at Urbana-Champaign

Contact: moo02@mail.aub.edu

