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Abstract—Dynamic parallelism on GPUs allows GPU threads to
dynamically launch other GPU threads. It is useful in applications
with nested parallelism, particularly where the amount of nested
parallelism is irregular and cannot be predicted beforehand.
However, prior works have shown that dynamic parallelism may
impose a high performance penalty when a large number of small
grids are launched. The large number of launches results in high
launch latency due to congestion, and the small grid sizes result
in hardware underutilization.

To address this issue, we propose a compiler framework for
optimizing the use of dynamic parallelism in applications with
nested parallelism. The framework features three key optimiza-
tions: thresholding, coarsening, and aggregation. Thresholding
involves launching a grid dynamically only if the number of child
threads exceeds some threshold, and serializing the child threads
in the parent thread otherwise. Coarsening involves executing the
work of multiple thread blocks by a single coarsened block to
amortize the common work across them. Aggregation involves
combining multiple child grids into a single aggregated grid.

Thresholding is sometimes applied manually by programmers in
the context of dynamic parallelism. We automate it in the compiler
and discuss the challenges associated with doing so. Coarsening
is sometimes applied as an optimization in other contexts. We
propose to apply coarsening in the context of dynamic parallelism
and automate it in the compiler as well. Aggregation has been
automated in the compiler by prior work. We enhance aggregation
by proposing a new aggregation technique that uses multi-block
granularity. We also integrate these three optimizations into
an open-source compiler framework to simplify the process of
optimizing dynamic parallelism code.

Our evaluation shows that our compiler framework improves
the performance of applications with nested parallelism by a
geometric mean of 43.0× over applications that use dynamic
parallelism, 8.7× over applications that do not use dynamic par-
allelism, and 3.6× over applications that use dynamic parallelism
with aggregation alone as proposed in prior work.

I. INTRODUCTION

Dynamic parallelism on GPUs allows threads running on

the GPU to launch grids of threads to also run on the GPU. It

is useful for programming applications with nested parallelism,

particularly where the amount of nested parallelism is irregular

and cannot be predicted at the beginning of the computation.

An example of such an application is graph processing where

a thread visiting a vertex may want to perform some work for

each of its neighbors. In this case, the parent thread visiting

the vertex may launch a grid with many child threads, one for

each neighbor, to work on the neighbors concurrently.

Prior work has shown that using dynamic parallelism in this

way imposes a high performance penalty [14, 38, 40]. The

key problem is that when a massive number of small grids are

launched, the launch latency is high because of the congestion

caused by the large number of launches, and the device is

underutilized because the grids are small in size. To address

this issue, various hardware and software optimizations have

been proposed to reduce the overhead of dynamic parallelism.

Hardware techniques that have been proposed for reducing

the overhead of dynamic parallelism include adding thread

blocks to existing grids rather than launching new grids [38]

or providing a hardware controller that advises programmers

on whether a launch is profitable [34]. Further hardware opti-

mizations include locality-aware scheduling of parent and child

grids [35, 39]. However, these techniques require hardware

changes so they are not available on current GPUs [30], which

motivates the need for software techniques.

One category of software techniques is to have threads

in the parent grid perform the nested parallel work without

performing a dynamic launch [9, 42]. These techniques mitigate

the overhead of dynamic parallelism by avoiding it entirely, but

require parent threads to be on standby regardless of whether or

not there is work available for them to do. Another category of

techniques is to consolidate or aggregate the child grids being

launched by multiple parent threads into a single grid [14, 24,

25, 41]. These techniques mitigate the overhead of dynamic

parallelism by reducing the number of grids launched, hence

the congestion, and increasing the sizes of the grids to ensure

better hardware utilization.

In this paper, we propose a compiler framework for op-

timizing the use of dynamic parallelism that features three

key optimizations: thresholding, coarsening, and aggregation.

The first optimization, thresholding, involves launching a grid

dynamically only if the number of child threads exceeds

a certain threshold, and serializing the work in the parent

thread otherwise. This optimization reduces the number of

grids launched, thereby reducing congestion, and ensures

that only large grids are launched that properly utilize the

hardware. Some prior works assume that thresholding is applied

manually by the programmer [24, 25, 34, 41]. However,

manual application of thresholding complicates the launch

code, requires code duplication, and hurts code readability.

We propose to automate the thresholding optimization in the

compiler and discuss the challenges associated with doing so.

The second optimization, coarsening, involves combining

multiple child thread blocks into a single one. This optimization
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reduces the number of child thread blocks that need to be

scheduled, and interacts with the aggregation optimization

to amortize the overhead of aggregation across the work of

multiple original child blocks. While coarsening is a common

optimization applied in various contexts [22, 26, 32], we

propose to apply it in the context of dynamic parallelism

and observe its benefit in combination with aggregation.

The third optimization, aggregation, is similar to prior

works [14, 24, 25, 41] that aggregate child grids launched

by multiple parent threads into a single grid. However, the

granularity of aggregation in prior work has been limited to

launches by parent threads in either the same warp, the same

thread block, or the entire grid. We further enhance aggregation

by proposing a new aggregation technique that uses multi-block

granularity. In this technique, launches are aggregated across

parent threads in a group of thread blocks as opposed to the

two extremes used in prior work of a single thread block or

the entire grid.

In summary, we make the following contributions:

• We present a compiler transformation that automates

thresholding for dynamic parallelism (Section III).

• We propose to apply coarsening in the context of dynamic

parallelism, and present a compiler transformation for

doing so (Section IV).

• We propose to apply aggregation at multi-block granularity

and present a compiler transformation for doing so

(Section V).

• We combine thresholding, coarsening, and aggregation in

one open-source compiler framework (Section VI).

Our evaluation (Section VIII) shows that our compiler frame-

work improves the performance of applications with nested

parallelism by a geometric mean of 43.0× over applications

that use dynamic parallelism, 8.7× over applications that do

not use dynamic parallelism, and 3.6× over applications that

use dynamic parallelism with aggregation alone as proposed

in prior work.

II. BACKGROUND

A. Dynamic Parallelism

Fig. 1(a) shows an example of how dynamic parallelism can

be used in practice. In this example, parent threads executing

on the GPU each discover some nested work that can be

parallelized. Each parent thread launches a child grid to perform

the nested work in parallel, and each parent thread provides

its child grid with a different set of launch configurations

and parameters. The amount of nested work may vary across

threads. Hence, the child grids have different sizes. One source

of inefficiency that may arise when using dynamic parallelism

in this way is that a massive number of child grids may be

launched, and many of them may be small in size [40]. In this

case, the large number of child grid launches causes congestion,

and the small size of the child grids causes the device to be

underutilized.

Grid Thread block Thread

Dynamic launch Parameters and launch configurations

(a) Dynamic Parallelism Example

Parent threads

Child grids

(b) Dynamic Parallelism Example with Aggregation

In memory

Memory access

Aggregated child grid

Fig. 1. Background on Dynamic Parallelism

B. Aggregation

Aggregation is an optimization that consolidates or aggre-

gates child grids that are launched by multiple parent threads

into a single grid. Various works [14, 24, 25, 41] apply this

optimization either manually or in the compiler. Fig. 1(b)

shows how aggregation can be applied to the example in

Fig. 1(a). In this example, the parent threads coordinate to find

the cumulative size of all their child grids in order to launch a

single aggregated grid. In prior work, the scope of coordination

has been across parent threads in the same warp, block, or grid.

If the scope is across a warp or a block, one of the participating

parent threads launches the aggregated grid on behalf of the

others. If the scope is across a grid, the aggregated grid is

launched from the host. The scope of coordination is referred

to as the aggregation granularity.

In the original code, each parent thread may provide different

parameters and launch configurations to its child grid. However,

in the transformed code, only one set of parameters and

launch configurations can be provided. For this reason, before

launching the aggregated grid, the parent threads each store

their original parameters and launch configurations in memory,

and a pointer to this memory is passed to the aggregated

grid. The child threads must then identify who their original

parent thread is in order for them to load the right parameters

and configurations from memory. To do so, each child thread

block executes a search operation. The work done by the parent

threads to identify the size of the aggregated grid and store their

individual parameters and launch configurations in memory is

referred to as the aggregation logic. The work done by the

child threads to identify their original parent thread and load

their original parameters and configurations from memory is

referred to as the disaggregation logic.
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The advantage of aggregation is that it reduces the number

of child grids launched, thereby reducing congestion, and it

increases the sizes of the child grids to ensure better hardware

utilization. The disadvantage of aggregation is that it incurs

overhead due to the aggregation and disaggregation logic,

and it delays the child grid launches until all parent threads

are ready to launch. The choice of aggregation granularity

(warp, block, or grid) involves making a trade-off between

these advantages and disadvantages. Using a larger granularity

reduces congestion and increases utilization, but incurs higher

overhead from the aggregation and disaggregation logic and

delays the child grids longer before launching them.

III. THRESHOLDING

A. Optimization Overview

Thresholding is an optimization where a child grid is

only launched dynamically if the number of child threads

exceeds a certain threshold. Otherwise, the child threads are

executed sequentially by the parent thread. Fig. 2 illustrates

how thresholding can be applied to the example in Fig. 1(a).

In this example, two of the parent threads have a small number

of child threads. The benefit gained from parallelizing these

child threads is unlikely to be worth the launch overhead. For

this reason, the parent threads instead execute the work of the

child threads sequentially.

Child thread serialized in parent thread

Fig. 2. Dynamic Parallelism Example with Thresholding

Thresholding is commonly applied manually by program-

mers [24, 25, 34, 41]. However, manual application of threshold-

ing complicates the launch code, requires code duplication, and

hurts code readability. For this reason, we propose to automate

thresholding via a compiler transformation (Section III-B) and

discuss the challenges associated with doing so (Sections III-C

and III-D).

B. Code Transformation

Fig. 3 shows an example of how our compiler applies the

thresholding transformation. The original code in Fig. 3(a)

consists of a parent kernel (lines 04-08) and a child kernel

(lines 01-03). The parent kernel calls the child kernel using

dynamic parallelism (line 06) and configures it with a grid

dimension gDim and a block dimension bDim.

Fig. 3(b) shows the code after the thresholding transformation

is applied. The transformation consists of two key parts:

constructing a serial version of the child to be executed by the

parent thread (lines 09-15) and applying a threshold to either

perform the launch or call the serial version (lines 21-26).

01  __global__ child(params) {

02      child body

03  }

04  __global__ parent(...) {

05      ...

06      child <<< gDim, bDim >>> (args);

07      ...

08  }

09  __device__ child_serial(params, dim3 _gDim, dim3 _bDim) {

10    for(_bx = 0; _bx < _gDim.x; ++_bx) {

11      for(_tx = 0; _tx < _bDim.x; ++_tx) {

12          child body // Replace uses of blockIdx.x with _bx,

13      } // threadIdx.x with _tx, gridDim with

14    }               // _gDim, and blockDim with _bDim

15  }

16  __global__ child(params) {

17      child body

18  }

19  __global__ parent(...) {

20      ...

21      _threads = ...; // Extracted from gDim expression

22      if(_threads >= _THRESHOLD) {

23          child <<< gDim, bDim >>> (args);

24      } else {

25          child_serial (args, gDim, bDim);

26      }

27      ...

28  }

(a) Original Code

(b) Code after Thresholding Transformation

Fig. 3. Thresholding Code Transformation Example

To construct the serial version, the child kernel is replicated

and its attribute is changed to __device__ so that it becomes

a device function (line 09). Two parameters are appended to

the parameter list: _gDim, which represents the original grid

dimension of the parallel version, and _bDim, which represents

the original block dimension. Loops are inserted around the

child body (lines 10-11) to serialize the child threads. The first

loop (line 10) iterates over the child thread blocks while the

second loop (line 11) iterates over the child threads in each

child block, using the bounds passed as parameters. Finally, all

uses of the reserved index and dimension variables are replaced

with the corresponding loop indices and bounds. The example

shows a 1-dimensional child kernel for simplicity, however, if

the child kernel is multi-dimensional, loops would be inserted

for each dimension.

To apply the threshold, the number of child threads is first

identified and stored in the _threads variable (line 21).

Section III-D discusses how the number of child threads is

identified. Next, an if-statement is inserted around the child

kernel call (line 22) to ensure that the dynamic launch is
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performed only if the number of child threads is greater than

or equal to _THRESHOLD. Here, _THRESHOLD is a macro

variable that can be overridden at compile time for tuning

purposes. If the threshold is not met, then the device function

implementing the serial version is called instead (line 25),

thereby serializing the child work in the parent thread.

C. Non-Transformable Kernels

Not all child kernels are amenable to the kind of transfor-

mation described in Section III-B. In particular, there are two

kinds of child kernels that we do not transform: (1) child

kernels that perform barrier synchronization across threads via

__syncthreads() or warp-level primitives, and (2) child

kernels that use shared memory.

For child kernels that perform barrier synchronization,

serializing GPU threads while supporting such synchronization

has been done in the literature [12, 18, 20, 21, 33]. The key

strategy is to divide the code into regions separated by the

barriers and insert loops around each region. However, these

techniques target serializing multiple GPU threads in one CPU

thread. Extending them to serialize multiple GPU threads in

one GPU thread is not practical for two reasons. The first

reason is that these techniques perform scalar expansion of all

local variables to preserve the state of all threads across barriers.

Such a scalar expansion on the GPU would convert all register

accesses to memory accesses which would be prohibitively

expensive. The second reason for not serializing child threads

that perform barrier synchronization is that code that includes

barrier synchronizations often implements a parallel algorithm

that is not efficient when serialized. For example, a parallel

reduction operation uses a reduction tree and leverages barriers

to synchronize between levels of the tree. However, reduction

trees are not an efficient way to perform sequential reductions.

It is more efficient to use a simple reduction loop. In this

case, it is better to let the programmer apply the thresholding

optimization manually because the best sequential and parallel

algorithms are different.

For child kernels that use shared memory, we do not construct

a serial version of the kernel because every parent thread

would require as much shared memory as an entire child block

which would make the shared memory requirements of a parent

block too high. Besides, kernels that use shared memory most

often use __syncthreads() to coordinate access to shared

memory across threads. Hence, these kernels will most likely

not be transformable anyway for the reasons related to barrier

synchronization previously mentioned.

D. Identifying the Number of Child Threads

The transformation described in Section III-B needs to

identify the desired number of child threads in order to

compare it with the threshold. Identifying the desired number

of child threads is challenging because this information is not

what the programmer provides in the kernel call. Instead, the

programmer provides the grid dimension (number of blocks)

and the block dimension (number of threads per block). The

programmer uses the desired number of child threads in

calculating the grid dimension.

One way to identify the desired number of child threads

is to multiply the grid dimension with the block dimension.

However, this approach gives the total number of threads in the

child grid including threads that will not be used. This value is

not a representative value to compare with the threshold. For

example, consider a kernel with a nested kernel call where the

child block dimension is configured to 1024 threads. One of

the parent threads identifies 2 units of nested parallel work to

be processed by the child. This parent thread will configure

its child kernel with 1 block. In this case, multiplying the grid

dimension with the block dimension gives 1024 total threads

which is much larger than the actual number of threads desired

(2 threads). Ideally, the value that should be compared to the

threshold is 2, not 1024. Hence, multiplying the grid dimension

with the block dimension is not a good approach.

The approach we use to identify the desired number of child

threads is based on the observation that programmers usually

calculate the grid dimension as a ceiling-division of the desired

number of threads by the block dimension. There are arbitrary

ways in which a ceiling-division can be expressed so it is not

possible to have a static analysis that always determines the

desired number of threads with certainty. Instead, we identify

the most common patterns used by programmers to calculate

ceiling-division and employ a simple static analysis based on

these patterns.

Fig. 4 shows common expressions that programmers write for

calculating the grid dimension using ceiling-division. Options

(a)-(c) use integer arithmetic, while options (d)-(e) convert to

floating point and use the ceil function. Option (f) is used

in multi-dimensional blocks, where the operands to the dim3

constructor could each be an expression that resembles options

(a)-(e). For all options, the expression may be expressed as a

whole, or it may be expressed in parts where subexpressions

are stored in intermediate variables. Note that N and b can be

arbitrary expressions.

(a)  (N – 1)/b + 1 N: desired number of threads

(b)  (N + b – 1)/b b: block dimension

(c)   N/b + (N%b == 0)?0:1

(d)   ceil((float)N/b)

(e)   ceil(N/(float)b)

(f)   dim3(..., ..., ...)// dim3 args could be one of the above expressions

Fig. 4. Common Expressions for Calculating the Grid Dimension

We observe from the examples in Fig. 4 that N is usually

in the subexpression on the left hand side of the division.

Moreover, the subexpression containing N may also contain

constants such as 1 or b (which is usually a constant). Based

on this observation, our analysis pass looks for a division

operation, takes the subexpression on the left hand side, and

removes additions and subtractions of constants, considering

the remaining subexpression as the desired number of threads.

This analysis is heuristic by nature and is not guaranteed to find
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the true desired number of threads. However, using a heuristic

is acceptable in this context because the result will only be

used to choose whether to serialize or parallelize the work.

This choice does not impact program correctness in any way.

The subexpression that is found is assigned to _threads in

Fig. 3 on line 21. The occurrence of the subexpression in gDim

is then replaced with _threads to ensure that the expression

is not duplicated in the code just in case the expression has

side effects.

IV. COARSENING

A. Optimization Overview

Coarsening is an optimization where the work of multiple

thread blocks in the original code is assigned to a single thread

block. The number of original thread blocks assigned to each

coarsened thread block is referred to as the coarsening factor.

When the GPU hardware is oversubscribed with more thread

blocks than it can accommodate simultaneously, the hardware

serializes these thread blocks, scheduling a new one whenever

an old one has completed. There are multiple advantages of

serializing these thread blocks in the code rather than letting

the hardware do it. First, it reduces the number of thread

blocks that need to be scheduled, and allows some warps

in the coarsened block to proceed to executing the work of

the next original block before other warps have completed

their part in the previous original block. Second, if there is

common work across the original thread blocks, that work can

be factored out and executed once by the coarsened thread

block, allowing its cost to get amortized. The disadvantage of

coarsening is that it reduces parallelism, thereby underutilizing

the device if the coarsening factor is too high.

Coarsening as an optimization is often applied by pro-

grammers in many different contexts [22]. Prior works have

also applied coarsening in the compiler [26, 32], but not

in the context of dynamic parallelism. We propose to apply

coarsening in the context of dynamic parallelism, and automate

its application via a compiler transformation.

Fig. 5 illustrates how coarsening can be applied to the child

thread blocks in the example in Fig. 1(a). In this example,

each coarsened child thread block in the transformed code

executes the work of two child thread blocks in the original

code. The advantage of applying coarsening in the context

Coarsened child grids

Original thread block 

before coarsening

Fig. 5. Dynamic Parallelism Example with Coarsening

01  __global__ child(params, _gDim) {

02    for(_bx = blockIdx.x; _bx < _gDim.x; _bx += gridDim.x) {

03      child body // Replace uses of blockIdx.x with _bx

04    } // and gridDim with _gDim

05  }

06  __global__ parent(...) {

07      ...

08      _cgDim = _gDim = gDim ;

09      _cgDim.x = (_gDim.x + _CFACTOR – 1)/_CFACTOR;

10      child <<< _cgDim, bDim >>>(args, _gDim);

11      ...

12  }

Fig. 6. Coarsening Code Transformation Example

of dynamic parallelism is that it reduces the number of child

thread blocks that need to be scheduled. More importantly,

when applied before aggregation, coarsening also has the

advantage of providing child thread blocks that do more work

per block, which makes them more capable of amortizing the

disaggregation logic overhead.

B. Code Transformation

Fig. 6 shows an example of how our compiler applies the

coarsening transformation to the original code in Fig. 3(a). The

transformation consists of two key parts: coarsening the child

kernel (lines 01-05) and modifying the launch configurations

to launch the coarsened child (lines 08-10).

To coarsen the child kernel, a parameter _gDim is appended

to the parameter list (line 01) which represents the original grid

dimension without coarsening. A coarsening loop is inserted

(line 02) that iterates over the work of the original child

thread blocks assigned to the coarsened block. Uses of the

reserved index and dimension variables are replaced with the

corresponding loop indices and bounds. The example shows

coarsening in one dimension only for simplicity, however, if

the child grid is multi-dimensional, loops would be inserted

for each dimension.

To modify the launch configurations to launch the coarsened

child, the original grid dimension gDim is stored in a variable

_gDim (line 08). The value is also copied to _cgDim, which

represents the coarsened grid dimension. The x-dimension

of the coarsened grid dimension _cgDim is then ceiling-

divided by the coarsening factor _CFACTOR (line 09). Here,

_CFACTOR is a macro variable that can be overridden at

compile time for tuning purposes. Again, the example shows

coarsening in one dimension for simplicity. Finally, the child

kernel is configured with the coarsened grid dimension, and

the original grid dimension is passed as a parameter (line 10).

V. AGGREGATION

Aggregation has been proposed by prior work [14, 24, 25,

41] and has been described in Section II-B. In this paper,

we propose a new aggregation granularity, namely, multi-

block granularity (Section V-A). We also propose to apply
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an aggregation threshold to optimize aggregation at warp and

block granularity (Section V-B).

A. Multi-block Granularity Aggregation

Recall from Section II-B that prior work has performed

aggregation at warp, block, and grid granularity. Using a

larger granularity reduces congestion and increases hardware

utilization, but incurs higher overhead from the aggregation and

disaggregation logic and delays the child grids longer before

launching them. The choice of aggregation granularity presents

a trade-off between these performance factors. However,

there is a wide gap between the block and grid granularity

aggregation schemes that leaves a large part of the trade-

off space unexplored. A parent thread block typically has

hundreds to up to 1,024 parent threads, whereas a parent grid

can have many thousands to millions of parent threads. To

better explore the trade-off space, we propose an intermediate

granularity between block and grid granularity, which is multi-

block granularity aggregation.

In multi-block granularity aggregation, we divide a parent

grid into groups of blocks, each group having a fixed number of

blocks. The threads within the same group of blocks collaborate

to aggregate their child grids into a single aggregated grid. In

prior work [14], the aggregation logic involves a scan operation

on the original grid dimensions and a max operation on the

block dimension to identify the aggregated grid configuration.

It also involves a barrier synchronization to wait for all

participating threads to store their individual configurations

and arguments to memory before the aggregated launch is

performed. Since we cannot synchronize across multiple thread

blocks, we perform the scan and max operations for multi-

block granularity using atomic operations similar to what is

done at grid granularity in prior work. As for the barrier

synchronization, we replace it with a group-wide counter that

is atomically incremented by each thread block when it finishes.

The last thread block in the group to increment the counter

performs the aggregated launch.

Fig. 7 shows an example of how our compiler applies

the multi-block granularity aggregation transformation to the

original code in Fig. 3(a). The transformation consists of two

parts: the aggregation logic in the parent kernel (lines 14-35)

and the disaggregation logic in the child kernel (lines 01-11).

For the aggregation logic in the parent kernel, we save the

gDim and bDim expressions in temporary variables to avoid

recomputing them every time we use them in case they have

side effects (lines 14-15). We then identify the group that

the thread block belongs to (line 16) and find the group’s

memory segment in a pre-allocated memory buffer (line 17).

This memory segment is used to store the configurations and

arguments that threads in the group pass to their children.

Next, each thread that launches a child grid (has a non-zero

grid dimension) atomically increments two global counters

simultaneously (lines 19-20): (1) _numParents to assign an

index to the parent thread so that the thread knows where to

store its arguments and configuration, and (2) _sumGDim to

find the total number of child blocks of prior parent threads

01  __global__ child(_paramsArray, _gDimScannedArray, _bDimArray) {

02      _parentIdx = binary search in _gDimScannedArray

03      params = _paramsArray[_parentIdx]

04      _gDim = _gDimScannedArray[_parentIdx] - _gDimScannedArray[_parentIdx - 1]

05      _bx = blockIdx.x - _gDimScannedArray[_parentIdx - 1]

06      _bDim = _bDimArray[_parentIdx]

07      if(threadIdx < _bDim) {

08          child body  // Replace uses of blockIdx.x with _bx

09                      // and gridDim with _gDim

10      }

11  }

12  __global__ parent(...) {

13      ...

14      _gDim = gDim

15      _bDim = bDim

16      _groupIdx = blockIdx.x/_AGG_GRANULARITY

17      find group's memory segments in a pre-allocated buffer based on _groupIdx

18      if(_gDim > 0) {

19          (_parentIdx, _sumPrevGDim) =

20            atomicAdd(&(_numParents[_groupIdx], _sumGDim[_groupIdx]), (1, _gDim))

21          _argsArray[_parentIdx] = args

22          _gDimScannedArray[_parentIdx] = _sumPrevGDim + _gDim

23          _bDimArray[_parentIdx] = _bDim

24          atomicMax(&_maxBDim[_groupIdx], _bDim)

25      }

26      __threadfence()

27      __syncthreads()

28      if(threadIdx == launcher thread in block) {

29          _nFinishedBlocks = atomicAdd(&_numFinishedBlocks[_groupIdx], 1) + 1

30          _isLastBlockToFinish = (_nFinishedBlocks == _AGG_GRANULARITY)

31          if(_isLastBlockToFinish) {

32              child <<< _sumGDim[_groupIdx] , _maxBDim[_groupIdx] >>>

33                  (_argsArray, _gDimScannedArray, _bDimArray);

34          }

35      }

36      ...

37  }

Fig. 7. Multi-block Granularity Aggregation Code Transformation Example

which we use to initialize the scanned array of grid dimensions.

The two global counters are incremented simultaneously by

treating them as a single 64-bit integer. Each thread then stores

its arguments, scanned grid dimension, and block dimension to

memory so they can be passed to the child grid (lines 21-23).

Each thread also performs an atomic operation to find the

maximum block dimension (line 24).

After each thread writes its configuration and arguments to

global memory, it performs a fence operation to ensure that

the configuration and arguments are visible to its child blocks

(line 26). This fence is not necessary in prior work because

the visibility of the data is ensured either by the semantics

of the dynamic kernel call (for warp and block granularity)

or by grid termination (for grid granularity). However, it is

necessary here because the launch may be performed by a

different thread block than the one that writes the data. Hence,

the writing thread block must ensure that its data is visible

in global memory before notifying the other blocks that it is

ready. A local barrier (line 27) is also needed to ensure that all

threads in the block finish storing their data before notifying.

Finally, it is time to perform the aggregation launch. One

thread in the block (line 28) atomically increments the group-

wide counter (line 29) and checks if its block is the last block

in the group to finish (line 30-31). If so, the thread launches

the aggregated grid, configuring it with the sum of all grid

6



dimensions and the maximum of all block dimensions, and

passing pointers to the memory arrays containing the original

arguments and configurations (lines 32-33).

For the disaggregation logic in the child kernel (lines 01-11),

the code remains largely the same as prior work [14]. Each

child block performs a binary search through the scanned grid

dimension array to identify its original parent thread (line 02).

It then loads its parameters and configuration (lines 04-06) and

performs the work of the child kernel based on them (lines

07-10).

Note that besides filling the gap in the trade-off space

between block and grid granularity aggregation, multi-block

granularity aggregation has another advantage over grid granu-

larity aggregation in particular. Grid granularity aggregation

requires the CPU to be involved in the aggregated launch

whereas the multi-block granularity aggregation runs entirely

on the GPU, which frees the CPU to perform other tasks.

Hence, multi-block granularity aggregation is more compatible

with the asynchronous semantics of kernel calls. If the CPU

is needed for performing other tasks, multi-block granularity

aggregation may be better for overall execution time even if

grid granularity aggregation has better kernel time.

B. Aggregation Threshold

When thresholding is applied before aggregation, the number

of original child grids that participate in the aggregated grid

may be substantially reduced. If there is an insufficient number

of original child grids participating in the aggregated grid,

the benefit of aggregation may not be worth its overhead.

To address this issue, we enhance aggregation with another

optimization that applies an aggregation threshold. The aggre-

gation logic is preceded by an operation to count the number

of participating parent threads. If the number of participating

parent threads does not meet a certain threshold, the child grids

are launched normally by their parent threads instead of being

aggregated. Therefore, a child grid may be executed in one of

three ways: it may be serialized within its parent, launched

directly by its parent, or launched as part of an aggregated

grid. Since applying an aggregation threshold requires parent

threads to synchronize to count the number of participating

threads, it can only be applied at warp and block granularity

where barrier synchronization across threads is possible.

VI. COMPILER FRAMEWORK

We integrate our three optimizations – thresholding, coars-

ening, and aggregation – into a single compiler framework.

For separation of concerns, each optimization is implemented

as a separate source-to-source transformation pass that takes a

CUDA .cu file and generates a .cu file. The transformations

are independent, meaning that any combination of them could

be applied in any order while generating correct code.

Although the optimizations can be applied in any order, we

apply them in the following order: thresholding, coarsening,

then aggregation, as shown in Fig. 8(a). Thresholding is

applied before coarsening because coarsening manipulates

the grid dimension which makes it harder to extract the

(b) Dynamic Parallelism Example with 

Thresholding, Coarsening, and Aggregation

(a) Compilation 

Flow

Thresholding

Coarsening

Aggregation

.cu

.cu

.cu

.cu

Fig. 8. Combining the three optimizations

number of threads that needs to be compared to the threshold.

Thresholding is applied before aggregation because aggregation

combines small grids with large grids into a single aggregated

grid. It is more difficult to isolate small grids and serialize them

after they have been aggregated into larger ones. Coarsening

is applied before aggregation because the disaggregation logic

should be outside the coarsening loop so that it can be amortized

across multiple original child blocks.

Figure 8(b) illustrates the impact of combining all three

optimizations on the example in Fig. 1(a). In this example,

two of the parent threads have small child grids so the work

of the child grids is serialized in the parent threads by the

thresholding optimization. The remaining two parent threads

have large child grids so they collaborate to aggregate their

grids and perform a single launch. Each child block in the

aggregated grid searches for its parent thread and obtains the

corresponding parameters and configuration from memory. The

child block then executes the work of multiple original child

blocks because it was coarsened prior to aggregation.

The compiler transformations are implemented as source-to-

source transformation passes in Clang [23]. The thresholding

and coarsening transformations and their supporting analyses

are implemented from scratch. The aggregation transformations

are implemented by modifying the implementations provided

by one of the prior works [14]. We leverage this work because

it is open source, but our techniques can also be applied to

any of the prior works that perform aggregation [14, 41].

VII. METHODOLOGY

We evaluate our compiler framework on a system with a

Volta V100 GPU [28] with 32GB of device memory and an

AMD EPYC 7551P CPU [3] with 64GB of main memory.

Table I shows the benchmarks and datasets used in our

evaluation. We set the pending launch count appropriately

to avoid overflowing the launch buffer pool [30]. We compile

the benchmarks with per-thread default streams enabled to

ensure that launches from the same block are not bottlenecked

on the same default stream. We use larger datasets than prior

work [14] does because we evaluate on a larger GPU. However,

our evaluation on smaller datasets shows similar trends. Note
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TABLE I
BENCHMARKS AND DATASETS

Benchmark Description Dataset Used

BFS Breadth First Search [10] KRON, CNR
BT Bezier Tessellation [29] T0032-C16, T2048-C64
MSTF Minimum Spanning Tree (find kernel) [8] KRON, CNR
MSTV Minimum Spanning Tree (verify kernel) [8] KRON, CNR
SP Survey Propagation [8] RAND-3, 5-SAT
SSSP Single Source Shortest Path [8] KRON, CNR
TC Triangle Counting [27] KRON, CNR

Dataset Description

KRON kron g500-simple-logn16, 65,536 vertices, 2,456,071 edges [31]
CNR cnr-2000, 325,557 vertices, 2,738,969 edges [7]
T0032-C16 Max Tessellation 32, Curvature: 16, Lines: 20,000 [29]
T2048-C64 Max Tessellation: 2048, Curvature: 64, Lines: 20,000 [29]
RAND-3 random-42000-10000-3, 10,000 literals [8]
5-SAT 5-SATISFIABLE, 117,296 literals [5]

that for TC, we use parts of the graphs in Table I due to

memory constraints.

We compare our results to three different baselines. The No

CDP versions of benchmarks are the original versions cited in

Table I that do not use CUDA Dynamic Parallelism. The CDP

versions use CUDA Dynamic Parallelism and are obtained

from prior work [14]. The KLAP (CDP+A) versions perform

aggregation only and are also obtained from prior work [14].

We use KLAP as a baseline from among prior works because

it is open source and because we build on it in our compiler

framework.

We report the performance of code versions generated by our

compiler from the CDP version for multiple combinations of

optimizations. We indicate the combinations of optimizations

applied as follows: T for thresholding, C for coarsening, and

A for aggregation. The only exception is the TC benchmark

with CDP+T because the original benchmark already applies

dynamic parallelism with thresholding.

For each combination of optimizations, we tune the relevant

parameters and report results for the best configuration. The

tuned parameters are the launch threshold, coarsening factor,

and aggregation granularity. The threshold is not tuned beyond

the largest dynamic launch size to ensure that at least one

dynamic launch is performed. We use an exhaustive search

to perform tuning to show the maximum potential of the

optimizations and to present a complete view of the design

space. However, such an exhaustive search is unnecessary in

practice as we discuss in Section VIII-C.

To extract the breakdown of execution time in Section VIII-B,

we incrementally deactivate portions of the code and calculate

the time difference. For benchmarks with multiple iterations,

we report the time for the longest running iteration. For BT,

the aggregated cudaMalloc in the parent is considered part

of the parent work because it is not affected by thresholding

and coarsening.

VIII. EVALUATION

A. Performance

Fig. 9 shows the performance results for each benchmark

and dataset with all combinations of optimizations applied.

Performance is reported as speedup over the CDP version.

Applying CDP alone leads to a performance degradation in

almost all cases compared to not applying CDP. Aggregation

alone recovers from this degradation and substantially improves

performance, where CDP+A is 12.1× faster than CDP and

2.4× faster than No CDP. These observations are consistent

with those made in prior works [14, 24, 25, 41], which note that

the large number of launches causes congestion and aggregating

the grids mitigates this overhead.

Thresholding alone gives substantial speedup, where CDP+T

is 13.4× (geomean) faster than CDP. Thresholding also gives

speedup in the presence of aggregation, where CDP+T+A is

2.9× (geomean) faster than CDP+A, and CDP+T+C+A is

also 3.1× (geomean) faster than CDP+C+A. The incremental

benefit of thresholding with aggregation is not as pronounced

as without aggregation because the benefit of thresholding is

reducing the number of launches which aggregation also does.

Nevertheless, the speedup is still significant.

Coarsening without aggregation gives modest speedup,

where CDP+C is 1.01× (geomean) faster than CDP and

CDP+T+C is 1.09× (geomean) faster than CDP+T. On the

other hand, coarsening with aggregation gives more speedup,

where CDP+C+A is 1.16× (geomean) faster than CDP+A,

and CDP+T+C+A is 1.22× (geomean) faster than CDP+T+A.

Notice how coarsening is synergistic with aggregation (its

speedup in the presence of aggregation is greater than its

speedup in the absence of aggregation). The reason is that

in the presence of aggregation, coarsening helps amortize the

disaggregation logic across more work in the coarsened child

block in contrast with much less work in each original child

block. Although the benefit of coarsening is much smaller
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than that of thresholding and aggregation, it is still substantial.

A speedup of 1.22× is significant considering that it comes

from a compiler optimization that requires no programmer

intervention or additional architecture support.

Ultimately, our compiler framework as a whole substantially

improves performance with the three optimizations combined,

where CDP+T+C+A is 43.0× (geomean) faster than CDP.

CDP+T+C+A is also 8.7× (geomean) faster than No CDP,

showing that dynamic parallelism is a powerful programming

feature when combined with the right optimizations. Moreover,

CDP+T+C+A is 3.6× (geomean) faster than KLAP (CDP+A),

showing that our framework provides substantial speedup over

prior works that perform aggregation alone [14].

B. Breakdown of Execution Time

Fig. 10 shows how the execution time is spent for each

benchmark and dataset. We use KLAP (CDP+A) as baseline

instead of CDP because prior work [14] has already shown

how aggregation affects the execution time breakdown, and

including CDP makes the figure illegible. We compare with

CDP+T+A and CDP+T+C+A to show the incremental impact

of thresholding and coarsening, respectively.

The first observation is that thresholding increases parent

work and decreases child work. Thresholding serializes child

work in parent threads so it is natural for parent threads to

have more work to do and child threads to have less.

The second observation is that thresholding decreases the

overhead from aggregation, launching, and disaggregation.

Thresholding results in fewer parent threads launching and

fewer child threads being launched. The aggregation overhead

decreases because fewer parent threads participate, the launch

overhead decreases because there are fewer launches, and the

disaggregation overhead decreases because there are fewer

child threads searching for their parents.

The third observation is that coarsening decreases the launch

overhead. Since coarsening reduces the number of child blocks

that need to be scheduled, the launch overhead decreases.

The fourth observation is that coarsening decreases the dis-

aggregation overhead. Coarsening amortizes the disaggregation

logic across multiple child thread blocks rather than having

each child thread block perform its own disaggregation.

The final observation is that coarsening decreases parent

work and increases child work for some benchmarks, namely

BFS and SSSP. This result is unintuitive because coarsening

does not change the work that the parent does. The reason

is that for these two benchmarks, after coarsening is applied,

the reduction in launch and disaggregation overhead results in

a lower optimal threshold to be found. The lower threshold

results in more work being offloaded from parent to child. This

observation demonstrates an important interaction between

thresholding and coarsening.

C. Impact of Threshold and Aggregation Granularity

Fig. 11 shows how performance varies for different threshold

values and aggregation granularity while keeping the coarsening

factor constant at the best coarsening factor found. For space

constraints, we only show the results for one dataset.

The first observation is that for most benchmarks (all except

SP), as the threshold increases initially, performance also

improves. Increasing the threshold initially results in more of

the small child grids getting serialized in their parent threads,

which reduces the number of launches, hence the congestion,

and avoids launching small grids that underutilize the device.

The second observation is that for some benchmarks (e.g.,

BFS, BT, MSTF, SSSP), increasing the threshold too much

causes performance to degrade again. Increasing the threshold

too much results in large child grids getting serialized within

their parent threads, which reduces parallelism and causes high

control divergence.

The third observation is that different benchmarks perform

best with different levels of aggregation granularity. For

example, SP and TC perform best with grid granularity, BFS

and SSSP perform best with multi-block granularity, BT

and MSTF perform best with block granularity, and MSTV

performs best without aggregation. The fact that multi-block

granularity aggregation performs best in some of the cases

reflects the importance of providing an intermediate granularity

between grid and block granularity.

As mentioned in Section VII, we use an exhaustive search

to perform tuning to show the maximum potential of the

optimizations and to present a complete view of the design

space. However, from our experience, such a broad search is
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Fig. 11. Impact of Threshold and Aggregation Granularity

unnecessary. First, the best threshold is typically the one that

allows approximately 6,000-8,000 child grid launches. Second,

performance is not very sensitive to the coarsening factor

provided that it is sufficiently large (>8) so the coarsening

factor does not need to be searched with a broad range or

with high resolution. Third, aggregation at warp granularity is

never favorable. With these observations in mind, users can

typically find a combination of parameters that is very close

to the best with less than ten runs. Moreover, the compiler

framework exposes these parameters in a configurable manner

to make it easy for users to leverage off-the-shelf autotuners [4].

Such tuning is worthwhile for kernels that run repeatedly on

similar datasets. On the other hand, if a user cannot afford

to tune the kernel, it is not necessary for the user to find the

best parameters to benefit from the optimizations. Selecting

a sub-optimal set of parameters would still yield a speedup,

just not the maximum possible speedup. For example, if we

fix the threshold to 128 for all benchmarks and datasets, then

CDP+T+C+A will have a geomean speedup of 1.9× over

CDP+C+A, as opposed to 3.1× when the best threshold is

used. Hence, our optimizations are still useful even if the best

parameters are not searched for or found.

D. Workloads with Low Nested Parallelism

Dynamic parallelism is useful when the amount of nested

parallelism is high such that the launch overhead is worth the

parallel work extracted. If the amount of nested parallelism is

low for all parent threads, the benefit of dynamic parallelism

is limited. To demonstrate the impact of dynamic parallelism

on applications with a small amount of nested parallelism, we

evaluate the graph benchmarks on a road graph (USA-road-

d.NY [11]). The graph has 264,346 vertices, 730,100 edges, an

average degree of 3, and a maximum degree of 8. Hence, each

vertex has a small number of outgoing edges so processing the

graph has a small amount of nested parallelism.

Fig. 12 shows the performance results for each graph bench-

mark on the road graph with all combinations of optimizations
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Fig. 12. Performance of Graph Benchmarks on Road Graphs (higher is better)

applied. It is clear that CDP versions perform substantially

more poorly on this graph relative to the No CDP versions.

Our proposed optimizations are able to recover much of the

performance degradation, but not all of it. In fact, in this

experiment, we tune the threshold beyond the largest launch

size such that CDP+T degenerates to serializing all child

threads like No CDP. However, CDP+T still cannot recover

fully. The reason is that the mere existence of a dynamic

launch in the code, even if it is never executed, results in

a performance degradation. To verify this observation, we

compare two kernels where the only difference is a dynamic

launch that is guarded by a condition that is always false

such that the launch is never performed. Upon inspecting the

assembly code of the two kernels, we observe that a large

number of additional instructions are generated besides the

instructions for performing the launch. Upon profiling the

execution of the two kernels, we observe that a large number

of additional instructions are executed even though the launch

is never performed.

Note that the SP benchmark on the RAND-3 dataset performs

poorly in Fig. 9 also because the amount of nested parallelism

is low (all child grids have fewer than 32 threads). These

results show the importance of being aware of the application

and dataset when choosing whether or not to apply dynamic

parallelism and its associated optimizations.
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IX. RELATED WORK

To our knowledge, our work is the first to provide a

compiler framework for optimizing dynamic parallelism code

that combines the thresholding, coarsening, and aggregation

optimizations together.

Several benchmarking efforts [16, 36, 40] observe the

inefficiencies of dynamic parallelism caused by high launch

overhead and hardware underutilization, which has motivated

various hardware and software optimizations.

Many hardware optimizations have been proposed for

mitigating the overhead of dynamic parallelism. Dynamic

Thread Block Launch (DTBL) [37, 38] proposes hardware

support for lightweight dynamic launching of thread blocks

rather than heavyweight dynamic launching of entire grids.

The dynamically launched thread blocks are essentially added

to existing grids on the fly by the hardware. LaPerm [39]

extends DTBL with a locality-aware scheduler. SPAWN [34]

is a hardware controller that advises programmers whether

or not a dynamic launch is profitable. LASER [35] enhances

dynamic parallelism with locality-aware scheduling. Hardware

optimizations are promising for future generations of GPUs,

but they are not available on current GPUs, which motivates

the need for software optimizations. Moreover, hardware

optimizations, if implemented, are potentially synergistic with

the software optimizations we propose.

Many compiler/software optimizations have been proposed

to improve dynamic parallelism performance or to provide

an alternative to dynamic parallelism. CUDA-NP [42] is a

compiler approach that enables annotation of parallel loops in

the code with directives, instead of using dynamic parallelism.

The compiler transforms the kernel to launch excess threads

for each original thread. Using control flow, the excess threads

are activated whenever a parallel loop is encountered. A later

work [19] improves this technique by having multiple original

threads share the excess threads for better load balance and

less control divergence. Another approach, Free Launch [9],

eliminates launches of child grids by applying transformations

that reuse parent threads to execute child threads either

sequentially or in parallel. These approaches mitigate the

overhead of dynamic parallelism by avoiding it entirely, but

require threads to be on standby regardless of whether or not

there is work available for them to do.

Li et al. [24, 25], Wu et al. [41], and KLAP [13, 14] are

aggregation techniques where multiple child grids are combined

into a single aggregated grid to reduce the launch overhead.

Zhang et al. [43, 44] further enhance this approach by grouping

together child grids with similar optimal configurations rather

than placing all child grids in the same aggregated grid. We

leverage one of these works, KLAP [14], as the aggregation

component in our flow.

KLAP [14] also includes another dynamic parallelism

optimization, promotion, which targets a specific pattern where

a single-block kernel calls itself recursively. Our optimizations

are not applicable to this pattern. Thresholding is not applicable

because all child grids have the same size. Coarsening is not

applicable because a child grid has only one block. Aggregation

is not applicable because only one thread per parent grid

performs a launch.

Various frameworks have been proposed to optimize the

execution of applications with irregular parallelism on GPUs.

Wireframe [1], Juggler [6], ATA [17], and BlockMaestro [2]

facilitate the execution of irregular parallel workloads where

data-dependences between thread blocks need to be enforced.

VersaPipe [45] facilitates the extraction of pipeline parallelism

from different GPU kernels. NestGPU [15] optimizes the

execution of nested SQL queries on GPUs while avoiding

the use of dynamic parallelism due it its inefficiency. Our work

focuses on optimizing GPU applications with nested parallelism

expressed using dynamic parallelism.

X. CONCLUSION

We present an open-source compiler framework for optimiz-

ing the use of dynamic parallelism in applications with nested

parallelism. The framework includes three key optimizations:

thresholding, coarsening, and aggregation. Our evaluation

shows that our compiler framework substantially improves

performance of applications with nested parallelism that use

dynamic parallelism, compared to when dynamic parallelism

is not used or when it is used with aggregation only like in

prior work.
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APPENDIX

A. Abstract

Our artifact is a compiler for optimizing applications that

use dynamic parallelism following the workflow illustrated in

Figure 8(a). We have implemented the compiler in Clang [23]

and have made the compiler code publicly available. Since

building the compiler requires building Clang/LLVM which

can be time and resource consuming, we provide pre-built

binaries of the compiler in a Docker image, along with the

required dependences and the benchmarks/datasets on which the

compiler has been evaluated. Reviewers can use the compiler

binaries to transform the benchmark CUDA code with our

optimizations, then compile and run the code on a CUDA-

capable GPU to verify the timing/speedup results reported in

Section VIII. Scripts are provided to automate this process.

B. Artifact Check-list (Meta-information)

• Program: The benchmarks used are listed in Table I. The
benchmark code is obtained from prior work [14]1. We also
include copies of the benchmark code in the artifact.

• Compilation: The CUDA code for the benchmarks before and
after transformation requires NVCC to be compiled, which has
been included in the Docker image in the artifact.

• Transformations: The software transformations are imple-
mented in Clang [23]. The code for these transformations is in

1Prior work’s code is available here: https://github.com/illinois-impact/klap
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the artifact, and a pre-compiled binary from this code has been
included in the Docker image in the artifact.

• Binaries: We include x86-x64 Linux binaries for our pre-
compiled Clang-based compiler passes in the Docker image
in the artifact.

• Data set: The datasets are listed in Table I and have been
included in the artifact.

• Run-time environment: The Docker image in the artifact builds
x86-x64 Linux binaries and includes all the dependences.

• Hardware: The evaluation requires a CUDA-cabable GPU that
can execute dynamic parallelism code. Our evaluation used a
V100 GPU with 32GB of memory. We recommend having at
least 16GB of GPU memory to support the datasets.

• Metrics: The metric reported is execution time/speedup.
• Experiments: Two scripts are provided in the artifact: one

script that tests the best configuration (threshold value, coars-
ening factor, aggregation granularity) for each combination of
optimizations (thresholding, coarsening, aggregation) to verify
Figures 9 and 12; and one script that exhaustively tests all
possible configurations for each combination of optimizations
to verify Figure 11. In our evaluation, ten runs are used and an
average is taken, but there is little variation across runs for most
benchmarks/datasets. We do not include a script for reproducing
the results in Figure 10 because the process of collecting these
results (described in Section VII) is manual and difficult to
automate.

• Output: Running the binary of a single benchmark outputs
the time it takes for that benchmark to run. Running the
experiment scripts outputs a CSV file with the execution time
of each benchmark/dataset for each combination of compiler
optimizations/configurations used.

• How much disk space required (approximately)?: < 4GB
• How much time is needed to prepare the workflow (approx-

imately)?: < 1hr
• How much time is needed to complete the experiments

(approximately)?: A single benchmark compilation and run
should finish in < 1min. Running the script for the best
configurations for all benchmarks should take < 1hr. Running
the script for the exhaustive search can take up to 24hrs per
benchmark.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT License.
• Archived (provide DOI)?: Yes, at the following link:

https://doi.org/10.6084/m9.figshare.17048447.v1.

C. Description

1) How to Access: The artifact can be downloaded at the

following link:

https://doi.org/10.6084/m9.figshare.17048447.v1.

The artifact consists of the code for the compiler passes,

the benchmark code, the datasets, and a Docker image

which includes the binaries of the compiler passes and the

dependences required to execute the compiler passes, compile

the transformed benchmark code, and execute the benchmarks.

2) Hardware Dependencies: Running the binaries depends

on having a CUDA capable devices. Our evaluation used a

V100 GPU with 32GB of memory. We recommend having at

least 16GB of GPU memory to support the datasets.

3) Software Dependencies: We ran our tests on an environ-

ment with CUDA-9.1 installed. Software dependencies have

been packaged in the Docker image in the artifact.

4) Datasets: The datasets are listed in Table I and have

been included in the artifact.

D. Installation

The artifact contains a README file with installation in-

structions and a convenience script for handling the installation.

E. Experiment Workflow

To run the experiments, run the Docker image: ‘./run.sh‘.

In order to compile all the binaries with default parameters,

from inside the Docker container, change directory to the

relevant benchmark inside the ‘test/‘ directory and run ‘make

all‘.

In order to run the benchmark with the best configurations,

run ‘bestcombination.sh‘. The parameters used here are the

best combination of parameters we found for each benchmark

and data set when we exhaustively searched the space.

In order to perform the exhaustive search, run ‘sweep.sh‘

which is available inside every benchmark directory.

F. Evaluation and Expected Result

Running ‘bestcombination.sh‘ for each benchmark should

provide the execution times used to report the speedups in

Figures 9 and 12. Running ‘sweep.sh‘ for each benchmark

should provide the execution times used to report the speedups

in Figure 11. In our evaluation, ten runs are used and an

average is taken, but there is little variation across runs for

most benchmarks/datasets.

G. Experiment Customization

The experiments can be customized by running each bench-

mark with the desired parameters. The parameters can be

updated in the provided Makefile for each benchmark.
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