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Executive Summary wa
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Genome Read Mapping is a very important problem and is the first
step in genome analysis

Read Mapping is an approximate string matching problem
o Find the best fit of 100 character strings into a 3 billion character dictionary

o Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

We propose an algorithm called GRIM-Filter

o Accelerates read mapping by reducing the number of required
alignments

o GRIM-Filter can be accelerated using processing-in-memory

Adds simple logic into 3D-Stacked memory
Uses high internal memory bandwidth to perform parallel filtering

GRIM-Filter with processing-in-memory delivers a 3.7x speedup
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Motivation and Goal E;i
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Sequencing: determine the [A,C,G,T] series in DNA strand

Today’s machines sequence short strands (reads)
o Reads are on the order of 100 — 20k base pairs (bp)
o The human genome is approximately 3 billion bp

Therefore genomes are cut into reads, which are sequenced
independently, and then reconstructed

o Read mapping is the first step in analyzing someone’s genome to
detect predispositions to diseases, personalize medicine, etc.

Goal: We want to accelerate end-to-end performance
of read mapping
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Background: Read Mappers E;
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We now have sequenced reads and want a full genome

1) i —

We map reads to a known reference genome (>99.9%
similarity across humans) with some minor errors allowed

\/ —_
Because of high similarity, long sequences in reads
perfectly match in the reference genome

VIV K

.. GACTGTGTCGA ..

We can use a hash table to help quickly map the reads!
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GRIM-Filter Outline
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Generating Hash Tables EE,;

To map any reads, generate a hash table per reference genome.

k-length sequences Location list where k-mer occurs
(k-mers) in the reference genome

A AAAA 12 35 502 610 721 989

A AAAC 13 609 788

A AAAT

G GGG G 52 67 334 634 851 s @36: |AAAAT

We can query the table with substrings from reads
to quickly find a list of possible mapping locations
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Hash Tables in Read Mapping Eﬂ,;

Read Sequence (100 bp)

99.99 of locations
result in a mismatch

Hash Table

We want to filter these out
sOo we do not waste time
trying to align them
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Location Filtering :Ei
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Alignment is expensive and requires the use of O(n?)
dynamic programming algorithm
o We need to align millions to billions of reads
- . . I _ . .

" our goal is to accelerate read mapping
by improving the filtering step

el w 1 Il | IVl Wi | W vlvllvl\ll

Both methods are used by mappers today, but filtering has
replaced alignment as the bottleneck [xin+, BMc Genomics 2013]
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Hash Tables in Read Mapping

Read Sequence (100 bp)

”bm Riignatgh. Fraise

Negative
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Reference Genome

Hash Table

Filter

37 140 § x
894 1203 [ x
1564 x

.....
---------------------------------------------------
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Our Proposal: GRIM-Filter
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GRIM-Filter: Bins mgs
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= We partition the genome into large sequences (bins).

Binx-23 Bin x - 1
| — | —

i GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC .:»

— I — | ——
Binx -2 Bin x
o Represent each bin with a bitvector Bitvector ‘
that holds the occurrence of all AAAAA |17 AAAAA
permutations of a small string (token)in AAAAC | 0 | exists in
the bin AAAAT | 1 bin X
cceec | 1
0 T_o account for matches tr_\at st_raddle cceet (ol cecer
bins, we employ overlapping bins ccccG | 0 | doesn’t
= A read will now always completely fall within .. | . | existin
a single bin GGGGG | 1 bin x
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GRIM-Filter: Bitvectors mgs
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Bin x

AAAAA | O
CGTGA

TGAGT

GAGTC

Bin x Bitvector

GTGAG
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GRIM-Filter: Bitvectors

binl bin3
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA -

Reference

Genome Storing all bitvectors
requires 4" « t bits
b, by in memory,
(AAAAA | 1 AAAAA | 0O where t = number
AAAAC | 1 AAAAC | 1 of bins.
AAAAG |0 AAAAG | O
AAAAT | O . :
: : AGAAA | 1
CCCCT | 1 . ;
. : GAAAA .
tokens { . _ _ _ c e e For bin size ~200,
GACAG | 1 and n = 5,
: : . : memory footprint
GCATG | 1 GCATG |1 ~3.8 GB
TTGCA | 1
LTTTTT |0 TTTTT |0
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GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA -+ CGAG 9 Read bitvector for bin_num(x)

o Get tokens i

- T »| 1
_______ Z:\__\_\_____________’ 0
1 e Sum e Compare
. I + > Threshold?
" \\\ T <A 1
tokens \ * 1 Nf/ \ES
A 1 Discard Send to
0 Read Mapper
9 Match tokens to bitvector for Sequence
0 Alignment
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Our Proposal: GRIM-Filter
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3. Integrating GRIM-Filter into a Mapper
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GRIM-Filter: Error Tolerance

single substitution error
total number of tokens in a read

OOOOL‘O‘.OO

Threshold = read_length — (n-1) - 'g’&e&?
A oe SN
n x:[read_length x e] &O\k\)\, ©
one substitution error
maximum affects four tokens
number of tokens when n =4

that could contain errors

GRIM-Filter can support different error tolerances by
simply changing the threshold value

More details in the paper
SAFARI 22



Our Proposal: GRIM-Filter
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Integrating GRIM-Filter into a Read Mapper

INPUT: All Potential Seed Locations

INPUT: Read Sequence ava( 020128 Juus 020131 Jaun( 414415 I
GAACTTGCGAG «ssGTATT 9 > =

KQ ) S KEEP .~ KEEP
GRIM-Filter: «2:0001070422011010 s
Filter Bitmask Generator DISCARDl
. J X
«2:0001010422011010 44+ QReference Segment Storage
Seed Location Filter Bitmask reference reference
segment segment
@ 020131 @ 414415
O Rread Mapper: Edit-Distance Calculation
Sequence Alignment :

v
SAFARI OUTPUT: Correct Mappings
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Key Properties of GRIM-Filter Ej
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Simple Operations:

o To check a given bin, find the sum of all bits corresponding to
each token in the read

o Compare against threshold to determine whether to align

Highly Parallel: Each bin is operated on independently
and there are many many bins

Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM

SAFARI 26



3D-Stacked Memory :Ei
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DRAM Layers

//
L

!l T / | TSVs
d /* pd
%
ZEE I /

Logic Layer

3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer

o Logic Layer enables Processing-in-Memory, offloading
computation to this layer and alleviating the memory bus

o Embed GRIM-Filter operations into DRAM logic layer and
appropriately distribute bitvectors throughout memory
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3D-Stacked Memory
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http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png
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3D-Stacked Memory E;i
Micron’s HMC
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Micron has working demonstration
components

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg
SA FA R l http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png




GRIM-Filter in 3D-Stacked DRAM B= =
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Bank
Row 0: AAAAA || | | ~ I
Row 1: AAAAC = £ £ || Bank--q /DRAM Layers
Row 2: AAAAG || 5| 5l 5 "g e -
] ]y O = 1
[y U . . /
sl gl A e Tsvs
vl V] o H L
2| 2|2 g . 2
- S E = P = Mault
Row R—1: TTTTT - y P
_ . P4 s
Row B . L
ow Buffer Logic Layer :

Each DRAM layer is organized as an array of banks
o A bankis an array of cells with a row buffer to transfer data

The layout of bitvectors in a bank enables filtering many
bins in parallel
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GRIM-Filter in 3D-Stacked DRAM B= =

Bank - DRAM Layers
/L/ = / i

g ‘II'- YVault
4/ /—'7'7

Logic Layer

Per-Vault
Custom GRIM-Filter Logic

Seed Location Filter Bitmask

(L_B \
wlleHs
S| cHS

ST || ® c
OD§ E_D
< ol o
VOO
LS )
o o

-~ O

£

Row Data Register

Customized logic for accumulation and comparison

per genome segment

o Low area overhead, simple implementation
a For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and

comparators in logic layer

Detalils are in the paper

SAFARI
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Methodology

Performance simulated using an in-house 3D-Stacked DRAM
simulator

Evaluate 10 real read data sets (From the 1000 Genomes
Project)
o Each data set consists of 4 million reads of length 100

Evaluate two key metrics
o Performance

o False negative rate
The fraction of locations that pass the filter but result in @ mismatch

Compare against a state-of-the-art filter, FastHASH [xin+, BMC
Genomics 2013] When using mrFAST, but GRIM-Filter can be
used with ANY read mapper
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GRIM-Filter Performance Ei
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Benchmarks and their Execution Times
[ FastHASH filter B GRIM-Filter

Sequence Alignment
Error Tolerance (e
hﬁﬂumﬂ 11

1.8x-3.7x performance benefit across real data sets

Time (%1000 seconds)
cood

2.1x average performance benefit

GRIM-Filter gets performance due to its hardware-software co-design
SAFARI 34



GRIM-Filter False Negative Rate m
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Benchmarks and their False Negative Rates
FastHASH filter [ GRIM-Filter

Sequence Alighment

()]

e
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()] Error Tolerance (e)
2 03-
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5.6x-6.4x False Negative reduction across real data sets
6.0x average reduction in False Negative Rate

GRIM-Filter utilizes more information available in the read to filter

SAFARI >



Other Results in the Paper

Sensitivity of execution time and false negative rates to
error tolerance of string matching

Read mapper execution time breakdown

Sensitivity studies on the filter
o Token Size

a Bin Size

a Error Tolerance

SAFARI
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Conclusion :Ei
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We propose an in-memory filtering algorithm to accelerate end-to-end
read mapping by reducing the number of required alignments

Key ideas:

Introduce a new representation of coarse-grained segments of the
reference genome

Use massively-parallel in-memory operations to identify read
presence within each coarse-grained segment

Key contributions and results:
Customized filtering algorithm for 3D-Stacked DRAM

Compared to the previous best filter

o We observed 1.8x-3.7x read mapping speedup
o We observed 5.6x-6.4x fewer false negatives

GRIM-Filter is a universal filter that can be applied to any read mapper
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HBM DRAM Die

Logic Die
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TSV
Microbump

> 3D-Stacked DRAM

Processor (GPU/CPU/SoC) Die
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Token Size: 5
% 100x(2716) Bins
A 200x(2°16) Bins
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Error Tolerance (%)
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Token Size: 6
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300x(2716) Bins
400x(27°16) Bins
500x(2716) Bins

+— B <> *
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False Negative Rate

0.8

—~— 0.05 error tolerance

—+— 0.04 error tolerance

0.6 —=— 0.03 error tolerance
—¥— 0.02 error tolerance
—4+— 0.01 error tolerance
0.00 error tolerance

0.0 . . . . . ' !
100 150 200 250 300 350 400 450
Number of Bins (x219)
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False Negative Rate

[ | FastHASH filter

I GRIM-Filter

o0 1l [ e

[ [ [ [ [ [ [ [ [ e

ol Sy

[ [ b

[ [l [l [ o [ |

[ om [ 100 [ om [ 00 [ o |

Sequence Alignment
Error Tolerance (e)

e =0.00
e =0.01
e =0.02
e =0.03
e =0.04
e =0.05
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Execution Time (x1000 seconds)
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Sequence Alignment
Error Tolerance (e)

e=0.00
e=0.01
e=0.02
e=0.03
e=0.04
e=0.05
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GRIM-Filter: Error Tolerance

single substitution error
total number of tokens in a read

OOOOL‘O‘.OO

Threshold = read_length — (n-1) - 'g’&e&?
A oe SN
n x:[read_length x e] &O\k\)\, ©
one substitution error
maximum affects four tokens
number of tokens when n =4

that could contain errors

GRIM-Filter can support different error tolerances by
simply changing the threshold value

More details in the paper
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