GRIM-Filter:

Fast seed location filtering in DNA read mapping
using processing-in-memory technologies

Jeremie S. Kim,
Damla Senol Cali, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

SAFARI
N Emzicich

TOBB
UNIVERSITY OF
ECONOMICS AND TECHNOLOGY

Systems @ ETH ziricn

Carnegie Mellon

Executive Summary wa

Systems @ ETH zirich

Genome Read Mapping is a very important problem and is the first
step in genome analysis

Read Mapping is an approximate string matching problem
o Find the best fit of 100 character strings into a 3 billion character dictionary

o Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

We propose an algorithm called GRIM-Filter

o Accelerates read mapping by reducing the number of required
alignments

o GRIM-Filter can be accelerated using processing-in-memory

Adds simple logic into 3D-Stacked memory
Uses high internal memory bandwidth to perform parallel filtering

GRIM-Filter with processing-in-memory delivers a 3.7x speedup

SAFARI 2

GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

GRIM-Filter Outline

1. Motivation and Goal

2. Background Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

Motivation and Goal E;i

Systems @ ETH zirich

Sequencing: determine the [A,C,G,T] series in DNA strand

Today’s machines sequence short strands (reads)
o Reads are on the order of 100 — 20k base pairs (bp)
o The human genome is approximately 3 billion bp

Therefore genomes are cut into reads, which are sequenced
independently, and then reconstructed

o Read mapping is the first step in analyzing someone’s genome to
detect predispositions to diseases, personalize medicine, etc.

Goal: We want to accelerate end-to-end performance
of read mapping

SAFARI >

GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

Background: Read Mappers E;

Systems @ ETH ziricn

We now have sequenced reads and want a full genome

1) i —

We map reads to a known reference genome (>99.9%
similarity across humans) with some minor errors allowed

\/ —_
Because of high similarity, long sequences in reads
perfectly match in the reference genome

VIV K

.. GACTGTGTCGA ..

We can use a hash table to help quickly map the reads!

SAFARI !

GRIM-Filter Outline

2. Background: Read Mappers
a.Hash TableBased

a. Hash Table Based

SAFARI

Generating Hash Tables EE,;

To map any reads, generate a hash table per reference genome.

k-length sequences Location list where k-mer occurs
(k-mers) in the reference genome

A AAAA 12 35 502 610 721 989

A AAAC 13 609 788

A AAAT

G GGG G 52 67 334 634 851 s @36: |AAAAT

We can query the table with substrings from reads
to quickly find a list of possible mapping locations

SAFARI

v,
°
v,
a
°
°
a
°
°
@
Iy
a
°
°
°
a
°
°
o,
«
v,
o,

Hash Tables in Read Mapping Eﬂ,;

Read Sequence (100 bp)

99.99 of locations
result in a mismatch

Hash Table

We want to filter these out
sOo we do not waste time
trying to align them

SAFARI

Location Filtering :Ei

Systems @ ETH zirich
Alignment is expensive and requires the use of O(n?)
dynamic programming algorithm
o We need to align millions to billions of reads
- . . I _ . .

" our goal is to accelerate read mapping
by improving the filtering step

el w 1 Il | IVl Wi | W vlvllvl\ll

Both methods are used by mappers today, but filtering has
replaced alignment as the bottleneck [xin+, BMc Genomics 2013]

SAFARI 1

GRIM-Filter Outline

2. Background: Read Mappers
b. Hash Table Based with Filter

b. Hash Table Based with Filter

SAFARI

Hash Tables in Read Mapping

Read Sequence (100 bp)

”bm Riignatgh. Fraise

Negative

Systems @ ETH ziricy

Reference Genome

Hash Table

Filter

37 140 § x
894 1203 [x
1564 x

.....

SAFARI 13

GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI

GRIM-Filter: Bins mgs

Systems @ ETH ziricn

= We partition the genome into large sequences (bins).

Binx-23 Bin x - 1
| — | —

i GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC .:»

— I — | ——
Binx -2 Bin x
o Represent each bin with a bitvector Bitvector ‘
that holds the occurrence of all AAAAA |17 AAAAA
permutations of a small string (token)in AAAAC | 0 | exists in
the bin AAAAT | 1 bin X
cceec | 1
0 T_o account for matches tr_\at st_raddle cceet (ol cecer
bins, we employ overlapping bins ccccG | 0 | doesn’t
= A read will now always completely fall within .. | . | existin
a single bin GGGGG | 1 bin x

SAFARI 16

GRIM-Filter: Bitvectors mgs

Systems @ ETH ziricy

Bin x

AAAAA | O
CGTGA

TGAGT

GAGTC

Bin x Bitvector

GTGAG

SAFARI Y7

GRIM-Filter: Bitvectors

binl bin3
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA -

Reference

Genome Storing all bitvectors
requires 4" « t bits
b, by in memory,
(AAAAA | 1 AAAAA | 0O where t = number
AAAAC | 1 AAAAC | 1 of bins.
AAAAG |0 AAAAG | O
AAAAT | O . :
: : AGAAA | 1
CCCCT | 1 . ;
. : GAAAA .
tokens { . _ _ _ c e e For bin size ~200,
GACAG | 1 and n = 5,
: : . : memory footprint
GCATG | 1 GCATG |1 ~3.8 GB
TTGCA | 1
LTTTTT |0 TTTTT |0

SAFARI °

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI

GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA -+ CGAG 9 Read bitvector for bin_num(x)

o Get tokens i

- T »| 1
_______ Z:________________’ 0
1 e Sum e Compare
. I + > Threshold?
" \\\ T <A 1
tokens \ * 1 Nf/ \ES
A 1 Discard Send to
0 Read Mapper
9 Match tokens to bitvector for Sequence
0 Alignment

SAFARI 20

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI

GRIM-Filter: Error Tolerance

single substitution error
total number of tokens in a read

OOOOL‘O‘.OO

Threshold = read_length — (n-1) - 'g’&e&?
A oe SN
n x:[read_length x e] &O\k\)\, ©
one substitution error
maximum affects four tokens
number of tokens when n =4

that could contain errors

GRIM-Filter can support different error tolerances by
simply changing the threshold value

More details in the paper
SAFARI 22

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI =

Integrating GRIM-Filter into a Read Mapper

INPUT: All Potential Seed Locations

INPUT: Read Sequence ava(020128 Juus 020131 Jaun(414415 I
GAACTTGCGAG «ssGTATT 9 > =

KQ) S KEEP .~ KEEP
GRIM-Filter: «2:0001070422011010 s
Filter Bitmask Generator DISCARDl
. J X
«2:0001010422011010 44+ QReference Segment Storage
Seed Location Filter Bitmask reference reference
segment segment
@ 020131 @ 414415
O Rread Mapper: Edit-Distance Calculation
Sequence Alignment :

v
SAFARI OUTPUT: Correct Mappings

GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

Key Properties of GRIM-Filter Ej

Systems @ ETH ziricn

Simple Operations:

o To check a given bin, find the sum of all bits corresponding to
each token in the read

o Compare against threshold to determine whether to align

Highly Parallel: Each bin is operated on independently
and there are many many bins

Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM

SAFARI 26

3D-Stacked Memory :Ei

Systems @ ETH zirich

DRAM Layers

//
L

!l T / | TSVs
d /* pd
%
ZEE I /

Logic Layer

3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer

o Logic Layer enables Processing-in-Memory, offloading
computation to this layer and alleviating the memory bus

o Embed GRIM-Filter operations into DRAM logic layer and
appropriately distribute bitvectors throughout memory

SAFARI 2

3D-Stacked Memory

Systems @ ETH zirich

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png

SAFARI 28

3D-Stacked Memory E;i
Micron’s HMC

Systems @ ETH ziricn

Micron has working demonstration
components

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg
SA FA R l http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png

GRIM-Filter in 3D-Stacked DRAM B= =

Systems @ ETH zirich
Bank
Row 0: AAAAA || | | ~ I
Row 1: AAAAC = £ £ || Bank--q /DRAM Layers
Row 2: AAAAG || 5| 5l 5 "g e -
]]y O = 1
[y U . . /
sl gl A e Tsvs
vl V] o H L
2| 2|2 g . 2
- S E = P = Mault
Row R—1: TTTTT - y P
_ . P4 s
Row B . L
ow Buffer Logic Layer :

Each DRAM layer is organized as an array of banks
o A bankis an array of cells with a row buffer to transfer data

The layout of bitvectors in a bank enables filtering many
bins in parallel

SAFARI 30

GRIM-Filter in 3D-Stacked DRAM B= =

Bank - DRAM Layers
/L/ = / i

g ‘II'- YVault
4/ /—'7'7

Logic Layer

Per-Vault
Custom GRIM-Filter Logic

Seed Location Filter Bitmask

(L_B \
wlleHs
S| cHS

ST || ® c
OD§ E_D
< ol o
VOO
LS)
o o

-~ O

£

Row Data Register

Customized logic for accumulation and comparison

per genome segment

o Low area overhead, simple implementation
a For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and

comparators in logic layer

Detalils are in the paper

SAFARI

Systems @ ETH zirich

31

GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

Methodology

Performance simulated using an in-house 3D-Stacked DRAM
simulator

Evaluate 10 real read data sets (From the 1000 Genomes
Project)
o Each data set consists of 4 million reads of length 100

Evaluate two key metrics
o Performance

o False negative rate
The fraction of locations that pass the filter but result in @ mismatch

Compare against a state-of-the-art filter, FastHASH [xin+, BMC
Genomics 2013] When using mrFAST, but GRIM-Filter can be
used with ANY read mapper

SAFARI >

GRIM-Filter Performance Ei

Systems @ ETH zirich
Benchmarks and their Execution Times
[FastHASH filter B GRIM-Filter

Sequence Alignment
Error Tolerance (e
hﬁﬂumﬂ 11

1.8x-3.7x performance benefit across real data sets

Time (%1000 seconds)
cood

2.1x average performance benefit

GRIM-Filter gets performance due to its hardware-software co-design
SAFARI 34

GRIM-Filter False Negative Rate m

Systems @ ETH ziric

Benchmarks and their False Negative Rates
FastHASH filter [GRIM-Filter

Sequence Alighment

()]

e

)

2

()] Error Tolerance (e)
2 03-

® 0.2 - e = 0.05
(=)

Q 0.1 7

z /nmlmm/Eminnlnlnlm

Q

7)) e ¥ A AV W @ Y oY e o &

© @/\q’ vé\q/ @/\% @/\% @/\% @/\q’ vé\q/ vé\q/ @/\% @/\% @Q’@

LL

5.6x-6.4x False Negative reduction across real data sets
6.0x average reduction in False Negative Rate

GRIM-Filter utilizes more information available in the read to filter

SAFARI >

Other Results in the Paper

Sensitivity of execution time and false negative rates to
error tolerance of string matching

Read mapper execution time breakdown

Sensitivity studies on the filter
o Token Size

a Bin Size

a Error Tolerance

SAFARI

36

GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

Conclusion :Ei

Systems @ ETH zirich

We propose an in-memory filtering algorithm to accelerate end-to-end
read mapping by reducing the number of required alignments

Key ideas:

Introduce a new representation of coarse-grained segments of the
reference genome

Use massively-parallel in-memory operations to identify read
presence within each coarse-grained segment

Key contributions and results:
Customized filtering algorithm for 3D-Stacked DRAM

Compared to the previous best filter

o We observed 1.8x-3.7x read mapping speedup
o We observed 5.6x-6.4x fewer false negatives

GRIM-Filter is a universal filter that can be applied to any read mapper

SAFARI o8

GRIM-Filter:

Fast seed location filtering in DNA read mapping
using processing-in-memory technologies

Jeremie S. Kim,
Damla Senol Cali, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

SAFARI
N Emzicich

TOBB
UNIVERSITY OF
ECONOMICS AND TECHNOLOGY

Systems @ ETH ziricn

Carnegie Mellon

HBM DRAM Die

Logic Die

SAFARI

TSV
Microbump

> 3D-Stacked DRAM

Processor (GPU/CPU/SoC) Die

40

:\5 60

— Token Size: 4

Y501 # 100x(2~16) Bins

GC) A 200x(2~16) Bins 3
+ 404 Y 300x(2"16) Bins +

% B 400x(2716) Bins

L 30- + 500x(2~16) Bins + +

E; +t

&) 20 b N x* * ¥ +

9 10 + AA AAd A 4

G>) 0 * ¥ ' AA AA ¥ 3/ ; 1
< 0 1 2 4

SAFARI

5

Token Size: 5
% 100x(2716) Bins
A 200x(2°16) Bins
¥ 300x(2”16) Bins
B 400x(2716) Bins + k
+ 500x(2"16) Bins + + +
¥ * ¥ ak*¥ + + 4
¥ ¥ AAA Ad *
2t Y Il¥ii"
1 2 4 5

Error Tolerance (%)

3.0

2.51
2.0+
1.5
1.0
0.5 1
0.0+

Token Size: 6

100x(2716) Bins
200x(27°16) Bins
300x(2716) Bins
400x(27°16) Bins
500x(2716) Bins

+— B <> *

41

SAFARI

False Negative Rate

0.8

—~— 0.05 error tolerance

—+— 0.04 error tolerance

0.6 —=— 0.03 error tolerance
—¥— 0.02 error tolerance
—4+— 0.01 error tolerance
0.00 error tolerance

0.0 ' !
100 150 200 250 300 350 400 450
Number of Bins (x219)

42

SAFARI

False Negative Rate

[| FastHASH filter

I GRIM-Filter

o0 1l [e

[[[[[[[[[e

ol Sy

[[b

[[l [l [o [|

[om [100 [om [00 [o |

Sequence Alignment
Error Tolerance (e)

e =0.00
e =0.01
e =0.02
e =0.03
e =0.04
e =0.05

43

SAFARI

Execution Time (x1000 seconds)

[uny
w

10 A

1N 0 N0 N0 A0 AN AN

[] mrFAST with FastHASH [GRIM-3D

MmN

il 50 50 50 S0 S0 50 1 81 6 6 |

O FRr N WA~ WOU O FRLr N WA~ UM O FRr N WU
1 1 1

I

1 U e (i [0 U [(e [

Y v e v Y v e v N v 2
o o W\ W\ & & W > N N o
SR G I L G L G S G
X X X A% A X X AX AX X ke
3 - 3 - 3 3 3 & 3 -
& & & & & & & & &<

Sequence Alignment
Error Tolerance (e)

e=0.00
e=0.01
e=0.02
e=0.03
e=0.04
e=0.05

44

GRIM-Filter: Error Tolerance

single substitution error
total number of tokens in a read

OOOOL‘O‘.OO

Threshold = read_length — (n-1) - 'g’&e&?
A oe SN
n x:[read_length x e] &O\k\)\, ©
one substitution error
maximum affects four tokens
number of tokens when n =4

that could contain errors

GRIM-Filter can support different error tolerances by
simply changing the threshold value

More details in the paper
SAFARI 22

