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3: Problem
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1: Read Mapping

2: Hash Table Based Mappers

Read Mapping: Mapping billions of DNA Seed-and-extend procedure to map ® ; ?“ery Read; ; 5 For lower runtimes, location filters can efficiently determine
fragments (reads) against a reference ' reads against a reference genome o gt whether a candidate mapping location will result in an incorrect
genome to identify genomic variants \ allowing e indels. They have: l Selected kmers mapping before performing the computationally expensive
o Requires approximate string matching | o High sensitivity (can tolerate 0 incorrect verification by alignment. They should be fast.
o Computationally expensive alignment E many errors) @r — —
using quadratic-time dynamic : o High comprehensiveness (can Location lists for selected k-mers 4: OQur Goal
programming algorithm : find more mappings) smerraorstc b u [ [B [ ] ]
o Bottlenecked by memory bandwidth | BUT ol — — — —— - 1 Design and implement a new filter that rejects incorrect mappings
i o Low SpEEd GCATGTAGCTAC [=>{ L11 | L12 | L13 | L14 Genome. before the a“gnment step
Three general types of read mappers: | - o Minimize the occurrences of unnecessary alighment
o Suffix-array based mappers ' The most recent fastest hash table @l o Maintain high sensitivity and comprehensiveness
O HaSh ta ble based mappers i based read mapper} mrFAST With ...GAAC'I'I'GGAGTCTACGAGGGTI'I'CCTAACE'GCCTI'GCATGTAGCT,;Ce:;'feAlfésGFAA;anTn;.ent o Obta|n IOW runtime and IOW false positive rate
o Hybrid | FastHASH [Xin+, BMC Genomics 2013] : ‘ —
i Alignment / Verification @

Accelerate read mapping by overcoming memory bottleneck with
3D-stacked memory and its PIM for data-intensive computation
o Very fast parallel operations on big data sets near memory

5: 3D-Stacked Logic-in-Memory DRAM
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Recent technology that tightly couples memory and logic vertically . .
sl LS I r!_'_!'/-ll\;lsié/robump with very high bandwidth connectors. 6: GRIM-Filter Mechanism
HBM DRAM Die ' ! ! ! Numerous Through Silicon Vias (TSVs) connecting layers, enable GRIM-Filter is based on two key ideas:
T R e ' ! ! ! higher bandwidth and lower latency and energy consumption. o Introduce parallelism to g-gram string matching
o Utilize a 3D-stacked DRAM to alleviates the memory bandwidth
HEM DRAM Dic T‘T‘T‘T Customizable logic layer for application-specific accelerators. issue of our algorithm and parallelizes most of the filter.
e 71| Logic layer enables fast, massively parallel operations on large sets . ,
e PTH: PQHQY GPU/mCP[:/?CmDIe of data, and provides the ability to run these operations near GRIM-Filter has tyvo ma_"j' steps: , ,
InterposeI['J{L_ﬂTJ{L_r—[rJlfﬂiﬂi];]L?L] L TtV A memory to alleviate the memory bottleneck. 1) P.recomputatlon: DIV.Ide the rgference genome |r1to consecutive
A T bins and generate existence bitvectors for each bin.
Processing in 3D-stacked memory is extremely good at 2) Filtering Algorithm: Filter locations by quickly determining
e dCCElerating embarrassingly parallel simple bit operations. whether a read can map to a specific segment of the genome.

8: GRIM-Filter Walkthrough

7: Bins & Bitvectors
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) Existence bitvectors ! Read Sequence Potential Locations
SRR T represent the existence of | GAACTTGGAGTCTACGAG+++es++++GTACGATT o 20131 ) 12331 .. ) 414415
o ) all possible permutations of ! s TN TTETEETETEETETEES S N S U —
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. : m GACAG *°° s !
: orchc [l css 5 layers of 3D-stacked DRAM | : ACGAT : X @ Check g-gram -
9 . . . . 2ndbin oo ' . 3 . 1 maS l
7] GCATG | 1 GCATG | 1 d.1 . i I
£ e | 1 e | amalilol on top of the customized : I Gather regional bit-vectors I [ R
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\ Zon J : : : : Reference string storage
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) i * where t = number of bins : . l
qrgrams Bins i : . I Local reference strings l
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Row 2: AMAG || S| 8|8 S TR e ™ SEE i 1 GRIM-Filter > | I :
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9: Results & Conclusion

False Negative Rates for GRIM-Filter as error threshold varies _ ] Runtimes for GRIM-Filter as error threshold varies
o Baseline: mrFAST with FastHASH mapper code [Xin+, BMC Genomics Benchmarks and their Execution Times

2013]. However, GRIM-Filter is fully complementary to other

Benchmarks and their False Negative Rates 1.8—
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7 [/ FastHASH 0.9+ /1 FastHASH
BN GRIM-Filter mappers, too. EEN GRIM-Filter
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10 o Key Results of GRIM-Filter: 2.5 w

5 £ Fostiash * 5.59x-6.41x less false negative locations, and ) 25| _e-iEm
I GRIM-Filter I GRIM-Filter

e 1.81x-3.65x end-to-end speedup over the state-of-the-art read
mapper mrFAST with FastHASH.
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g 4] ] ] ] ] ] ] ] ] ]E A ier o We show the inherent parallelism of our filter and ease of é”s] ] ] ] ] ] ] ]E A Fier
> o implementation for 3D-stacked memory. There is great promise % o | | | | | | |
i g M in adapting DNA read mapping algorithms to state-of-the-art and e
$ 7] ] ] } 1 ] } ] 1 w = Ghifite emerging memory and processing technologies. = 3'5] ] ] ] ] ] ] AT
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