
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCTGA…

bin1
bin2

Reference Genome

AAAAA
AAAAC
AAAAG
AAAAT

.
CCCCT

.

.

.

.
GCATG

.
TTGCA

.
TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

0
1
0
.
1
.
1
.
1
.
1
.
.
.
0

AAAAA
AAAAC
AAAAG

.
AGAAA

.
GAAAA

.
GACAG

.
GCATG

.

.

.
TTTTT

!!!

Bins

b1 b2

E
x

is
te

n
ce

 B
it

v
e

ct
o

rs

1
0
0
0
1
1
1
.
.
.
.
1
1
1
0

0
0
1
0
1
0
1
.
.
.
.
0
1
1
0

1
0
1
1
1
1
1
.
.
.
.
1
0
0
0

AAAAA
AAAAC
AAAAG
AAAAT
AAACA
AAACC
AAACG

.

.

.

.
TTTTA
TTTTC
TTTTG
TTTTT

* where t = number of bins

bt-2 bt-1 bt *

Le
n
g
th

 =
 4

5

1

0

GACAG
exists in
2nd bin

TTTTT
doesn’t
exist in
2nd bin

q-grams

3D-Memory Layout

[36], [57], [30], [10], [9]. PIM enables orders of magnitude
of improvement in performance and energy efficiency [9],
[36], [30] by offloading data-intensive computation from CPU
to memory, mainly due to three reasons. First, offloading
computation increases parallelism (and thus throughput) by
utilizing the naturally higher internal bandwidth available
within memory on top of freeing the CPU to execute other
compute-bound portions of the program. Second, it reduces
off-chip memory bus utilization by eliminating significant
amounts of data transfer. Reducing memory bus utilization 1)
results in energy savings due to fewer memory requests and
2) improves performance by servicing the memory requests
of compute-bound parts of the program with lower latency as
fewer conflicts are expected to occur. Third, as a large portion
of data is not fetched to the CPU caches, the reduction in
cache pollution provides even further performance improve-
ment [46], [48]. As a result, a 3D-stacked memory module
that includes a logic layer with processing capability improves
not only performance but also energy efficiency.

resented as matrices. This framework provides two important
capabilities that we exploit to enable efficient hardware-based
in-memory data reorganization. First, it enables restructuring
the data flow of permutations. This gives us the ability to
consider various alternative implementations to exploit the
locality and parallelism potentials in the 3D-stacked DRAM.
Second, for a given permutation, it allows deriving the index
transformation as a closed form expression. Note that the
index transformation corresponds to the address remapping
for a data reorganization. We show that, for the class of per-
mutations that we focus on, the index transformation is an
affine function. This implies that the address remapping of the
data reorganization for the entire dataset can be represented
with a single, affine remapping function. We develop a con-
figurable address remapping unit to implement the derived
affine index transformations, which allows us to handle the
address remapping completely in hardware for the physical
data reorganizations.

Driven by the implications of the mathematical framework,
we develop an efficient architecture for data reorganization in
memory. Integrated within 3D-stacked DRAM, interfaced to
the local vault controllers behind the conventional interface,
the data reorganization unit takes advantage of the internal
resources, which are inaccessible otherwise. It exploits the
fine-grain parallelism, high bandwidth and locality within the
stack via simple modifications to the logic layer keeping the
DRAM layers unchanged. Parallel architecture with multiple
SRAM blocks connected via switch networks can sustain the
internally available bandwidth at a very low power and area
cost. Attempting to do the same by external access (whether
using stacked or planar DRAM) would be much more costly
in terms of power, delay and bandwidth.

We focus on two main use cases for the in-memory data
reorganization. Firstly, we demonstrate a software transparent
physical address remapping via data layout transformation in
memory. The memory controller monitors the access patterns
and determines the bit flip rates in the DRAM address stream.
Depending on the DRAM address bit flip rates, it issues a
data reorganization and changes the physical address mapping
to utilize the memory locality and parallelism better. This
mechanism is performed transparent to the software and does
not require any changes to the user software or OS, since it
handles the remapping completely in hardware.

In the second use case, we focus on offloading and acceler-
ating commonly used data reorganization operations using the
3D-stacked accelerator. We select common reshape operations
from the Intel Math Kernel Library (MKL) and compare the
in-memory acceleration to the optimized implementations on
CPU and GPU platforms. Explicitly offloading the operations
to the accelerator requires communication between the user
software and the in-memory accelerator. For that purpose we
utilize a software stack similar to the one proposed in [31].

Contributions. In [13], we first introduced the basic con-
cepts of a 3D-stacked DRAM based accelerator supported

Logic layer

…

…

…
 …

…

Logic Layer

TSV

DRAM layers
Bank

Vault

Figure 1: Overview of a HMC-like 3D-stacked DRAM [46].

by the example of regular matrix reorganizations. This pa-
per develops the concept fully to generalized data reorganiza-
tion efficiently handled by a permutation based mathematical
framework for two fundamental use paradigms–explicit of-
floading and transparent layout transform. The most salient
specific contributions are highlighted below.
• We propose an efficient data reorganization architecture that

exploits the internal operation and organization of the 3D-
stacked DRAM. It keeps the DRAM layers unchanged and
requires simple modifications in the logic layer, which yield
only a 0.6% increase in power consumption.

• We present a mathematical framework to represent data reor-
ganizations as permutations and systematically manipulate
them for efficient hardware based operation.

• We demonstrate a methodology to derive the required ad-
dress remapping for a given permutation based data reorga-
nization.

• We evaluate the software transparent physical address
remapping via data reorganization for various general pur-
pose benchmarks [17, 32] and demonstrate up to 2x/1.2x
performance/energy improvements.

• We analyze common data reorganization routines selected
from MKL which are performed in memory and demon-
strate substantial performance and energy improvements
over optimized CPU (MKL) and GPU (CUDA) based solu-
tions.

• For various memory configurations, we compare the in-
memory acceleration to the on-chip DMA based operation
and show up to 2.2x/7x performance/energy improvements.

2. Background
2.1. 3D-stacked DRAM Overview

3D-stacked DRAM is an emerging technology where multi-
ple DRAM dies and logic layer are stacked on top of each
other and connected by through silicon vias (TSV) [46]. By
sidestepping the I/O pin count limitations, dense TSV connec-
tions allow high bandwidth and low latency communication
within the stack. There are examples of 3D-stacking tech-
nology both from industry such as Micron’s Hybrid Memory
Cube (HMC) [46], AMD/Hynix’s High Bandwidth Memory
(HBM) [9], and from academia [25, 39].

Figure 1 shows the overview of a 3D-stacked DRAM ar-
chitecture. It consists of multiple layers of DRAM where
each layer also has multiple banks. A vertical slice of stacked
banks forms a structure called vault. Each vault has its own

Fig. 1. 3D-stacked DRAM [11]

In this paper, we introduce the first read mapper location
filtering algorithm that attempts to accelerate read mapping
by overcoming the memory bottleneck with processing-in-
memory using 3D-stacked memory technology. We develop
a new algorithm that accelerates genome read mapping by
efficiently filtering out incorrect mappings using PIM. Our fil-
ter, named Genome Read In-Memory Mapper (GRIMM), can
be used with any mapper including BWT-FM seed generating
mappers such as GEM [39] and BWA-MEM [31]. In this work,
we focus primarily on the acceleration of hash table based
read mappers (e.g., [47], [21], [56], [12], [24], [8], [32], [26])
as they provide high error tolerance and comprehensiveness
at the expense of a slower run time. We aim to significantly
reduce the slowdown and achieve both high performance and
high accuracy.

Our goal is to implement a filter that rejects incorrect
mappings before the alignment step to increase performance of
read mapping while maintaining high sensitivity and compre-
hensiveness. Due to the expensive computational complexity
of alignment, we want to minimize the need for unnecessary
alignment. Naturally, any filtered incorrect mapping would
reduce the overall computation time as long as the filtering
runtime is lower than the alignment runtime. Therefore, an
ideal filter would have low runtime and a low false positive
rate. Our newly designed filter achieves this goal by utilizing
PIM to handle data-intensive computation. While conventional
mappers are heavily bottlenecked by data movement latency

and bandwidth due to massive amounts of data processed, in-
memory computation capabilities allow us to design memory-
intensive mapper-augmenting algorithms that yield high per-
formance.

Key Mechanism. GRIMM is based on q-gram filters [45]
and the pigeonhole principle for which we show a novel way
to account for error tolerance. We precompute long boolean
bitvectors representing the existence of all permutations of
small fixed-sized seeds within short ranges of consecutive
nucleotides across the entire reference genome. To determine
the potential existence of a short read in a portion of the
genome, we first get the bits of the bitvector that correspond
to the substrings of length equivalent to the small fixed-
sized seeds within the short read at the range of nucleotides
encompassing the expected location. We then compute the
sum of these found bits. Last, we compare the sum against a
threshold value that is determined by the read length, substring
size, and error acceptance rate. If the value does not meet
the threshold, we eliminate the need for alignment for that
location.

Key Results. We evaluate GRIMM qualitatively and quan-
titatively against the most recent fastest hash table based read
mapper, mrFAST with FastHASH [59]. Our results show that
our novel algorithm yields a 6.27x smaller false positive rate
and runs approximately 2.36x faster than the fastest read
mapper, when we use 5% error acceptance rate.

Contributions. We make the following contributions in this
paper:

• We note that alignment has traditionally been the bottle-
neck of read mapping. We observe that, due to immense
efforts in accelerating alignment over the past several
years, memory bandwidth has become the bottleneck in
read mapping.

• We propose the first algorithm that accelerates read
mapping by overcoming the memory bottleneck by uti-
lizing 3D-stacked memory and its PIM capability. We
observe the memory-intensive nature of our mechanism
that would only further strain the memory bottleneck
given the already memory-bound nature of read mapping.
We show that PIM enables our algorithm’s success by
providing very fast and massively parallel operations on
very large amounts of data nearby memory. We exploit
this knowledge and design our algorithm for a high
memory footprint in exchange for an embarrassingly
parallel filter. PIM also provides the benefit of freeing up
the memory bandwidth for the compute-bound portions
of read mapping, which results in further performance
improvements.

• We qualitatively and quantitatively compare our filtering
algorithm’s performance improvement over the state-of-
the-art read mapping algorithm mrFAST with FastHASH.
We show that our filter is very simple to implement on
a logic layer in memory and yields a 6.27x smaller false
positive rate with approximately a 2.36x runtime speedup.

11

Akin, Berkin, Franz Franchetti, and James C. Hoe. "Data reorganization in memory using 3d-stacked dram." Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International Symposium on. IEEE, 2015.

Bi
tv

ec
to

r
0

Bi
tv

ec
to

r
1

Bi
tv

ec
to

r
2

Bi
tv

ec
to

r
N

…

Row 0: AAAA
Row 1: AAAC
Row 2: AAAG

Row Buffer

Row N: TTTT

…
Row Buffer

Ac
cu

m
ul

at
or

…

In
c.

Bucket Existence Bitvector

…

Co
m

pa
ra

to
r

3D-Stacked Memory technologies enable:
1. In-memory Processing
2. High Bandwidth

Genome Read In-Memory (GRIM) Filter:
Fast Location Filtering in DNA Read Mapping using Emerging Memory Technologies

Jeremie Kim1,4, Damla Senol1, Hongyi Xin1, Donghyuk Lee1, Mohammed Alser2, Hasan Hassan4,3,
Oguz Ergin3, Can Alkan2 and Onur Mutlu4,1

1 Carnegie Mellon University, 2 Bilkent University, 3 TOBB University of Economics and Technology, 4 ETH Zürich

8:	GRIM-Filter	Walkthrough

9:	Results	&	Conclusion

o Baseline: mrFAST with FastHASH mapper code [Xin+, BMC Genomics
2013]. However, GRIM-Filter is fully complementary to other
mappers, too.

o Key Results of GRIM-Filter:
• 5.59x-6.41x less false negative locations, and
• 1.81x-3.65x end-to-end speedup over the state-of-the-art read
mapper mrFAST with FastHASH.

o We show the inherent parallelism of our filter and ease of
implementation for 3D-stacked memory. There is great promise
in adapting DNA read mapping algorithms to state-of-the-art and
emerging memory and processing technologies.

o Other Results:
• Examined sensitivity to number of bins: 450x65536
• Examined sensitivity to q-gram size: 5
• Found to be the best tradeoff between memory consumption,
filtering efficiency, and runtime.

*In	the	figures	shown,	smaller	bars	indicate	better	performance

5:	3D-Stacked	Logic-in-Memory	DRAM	

Design and implement a new filter that rejects incorrect mappings
before the alignment step
o Minimize the occurrences of unnecessary alignment
o Maintain high sensitivity and comprehensiveness
o Obtain low runtime and low false positive rate

Accelerate read mapping by overcoming memory bottleneck with
3D-stackedmemory and its PIM for data-intensive computation
o Very fast parallel operations on big data sets near memory

1:	Read	Mapping

Recent technology that tightly couples memory and logic vertically
with very high bandwidth connectors.

Numerous Through Silicon Vias (TSVs) connecting layers, enable
higher bandwidth and lower latency and energy consumption.

Customizable logic layer for application-specific accelerators.

Logic layer enables fast, massively parallel operations on large sets
of data, and provides the ability to run these operations near
memory to alleviate the memory bottleneck.

Processing in 3D-stacked memory is extremely good at
accelerating embarrassingly parallel simple bit operations.

3:	Problem
Read	Mapping:	Mapping	billions	of	DNA	
fragments	(reads)	against	a	reference	
genome	to	identify	genomic	variants	
o Requires	approximate	string	matching
o Computationally	expensive	alignment	

using	quadratic-time dynamic
programming algorithm

o Bottlenecked	by	memory	bandwidth

Three	general	types	of	read	mappers:
o Suffix-array	based	mappers
o Hash	table	based	mappers
o Hybrid

2:	Hash	Table	Based	Mappers

… GAACTTGGAGTC TACGAGGGTTTC CTAACGTGCCTT GCATGTAGCTAC CTGACAGGAACT …

Reference Fragment

GAACTTGGAGTCTACGAGGGTTTCCTAACGTGCCTTGCATGTAGCTACCTGACAGGAACTGA

Query Read

GAACTTGGAGTC

TACGAGGGTTTC

CTAACGTGCCTT

GCATGTAGCTAC

Selected k-mers

Hash
Table

GAACTTGGAGTC

TACGAGGGTTTC

GCATGTAGCTAC

L1 L2 L3 L4

L5 L6 L7

L8 L9

Location lists for selected k-mers

2

3

1

Reference
Genome

4

 Alignment / Verification 5

CTAACGTGCCTT L10

L11 L12 L13 L14

Seed-and-extend procedure to map
reads against a reference genome
allowing e indels. They have:
o High	sensitivity (can	tolerate	

many	errors)
o High	comprehensiveness (can	

find	more	mappings)
BUT

o Low speed

The most recent fastest hash table
based read mapper, mrFAST with
FastHASH [Xin+, BMC Genomics 2013]

4:	Our	Goal

For lower runtimes, location filters can efficiently determine
whether a candidate mapping location will result in an incorrect
mapping before performing the computationally expensive
incorrect verification by alignment. They should be fast.

6:	GRIM-Filter	Mechanism
GRIM-Filter is based on two key ideas:
o Introduce parallelism to q-gram string matching
o Utilize a 3D-stacked DRAM to alleviates the memory bandwidth

issue of our algorithm and parallelizes most of the filter.

GRIM-Filter has twomain steps:
1) Precomputation: Divide the reference genome into consecutive

bins and generate existence bitvectors for each bin.
2) Filtering Algorithm: Filter locations by quickly determining

whether a read can map to a specific segment of the genome.

Runtimes	for	GRIM-Filter	as	error	threshold	varies	

7:	Bins	&	Bitvectors

False	Negative	Rates	for	GRIM-Filter	as	error	threshold	varies	

Package Substrate

Interposer

Logic Die

GPU/CPU/SoC Die

HBM DRAM Die

PHY

HBM DRAM Die

HBM DRAM Die

HBM DRAM Die

PHY

TSV
Microbump

Existence	bitvectors
represent	the	existence	of	
all	possible	permutations	of	
q-length nucleotide	
sequences	in	each	bin.

Bitvectors are	distributed	
throughout	the	memory	
layers of	3D-stacked	DRAM
on	top	of	the	customized	
logic	layer,	which	enables	
processing-in-memory and	
high parallelism.

Read Sequence Potential Locations
GAACTTGGAGTCTACGAG!!!!!!!!!GTACGATT

GAACTTGGAGTCTACGAG!!!!!!!!!GTACGATT
 GAACTTGGAGTCTACGAG!!!!!!!!!GTACGATT
 GAACTTGGAGTCTACGAG!!!!!!!!!GTACGATT
 GAACTTGGAGTCTACGAG!!!!!!!!!GTACGATT
 GAACTTGGAGTCTACGAG!!!!!!!!!GTACGATT

!!!!!!!!!!!!! GAACTTGGAGTCTACGAG!!!!!!!!!GTACGATT
 GAACTTGGAGTCTACGAG!!!!!!!!!GTACGATT

GAACTTGGAGTCTACGAG!!!!!!!!!GTACGATT

GAACTTGGAGTCTACGAG!!!!!!!!!GTACGATT

1 Genera te q-grams

2 Gather reg iona l b i t -vec tors

GAACT 00100010001110001010…0100110110
AACTT 01001010101011001001…0000101101
 ACTTG 00001010001110001010…0100110100

CGATT 00001010001110001010…0100110100

!
!
!

3
Genera te q-gram f i l t e r by
compar ing each va lue in Sum
Vec tor aga ins t th resho ld

PASS 00001010001110001010…0100110100
 q-gram filter mask

PASS 00001010001110001010…0100110100

x
PASS PASS

4 Compute reg ion
b i t index

5 Check q-gram
mask

Reference string storage

GAACTTGGAGTCTAAGAG ! ! ! ! !GTACGATT

Edit-distance calculation Correct mappings

GAACTTGGAGTCTACGAG ! ! ! ! !GTTCGATG

! ! !
GRIM-Filter "

in-memory operations

mrFAST "
in-CPU operations

Sum Vector

Local reference strings

Memory Array Customized Logic

http://www.amd.com/en-us/innovations/software-technologies/hbm

