Genome Read In-Memory (GRIM) Filter:
Fast Location Filtering in DNA Read Mapping using Emerging Memory Technologies

Jeremie Kim®4, Damla Senol!, Hongyi Xin!, Donghyuk Lee!, Mohammed Alser?, Hasan Hassan*3,

Oguz Ergin3, Can Alkan? and Onur Mutlu*1
I Carnegie Mellon University, 2 Bilkent University, 3 TOBB University of Economics and Technology, 4 ETH Zirich

Z ":;»\,9 _)) TOBB ' :
@) Bilkent University f\ e oo 2T ZUCICH
3: Problem

CarnegieMellon SAFARI

1: Read Mapping

2: Hash Table Based Mappers

Read Mapping: Mapping billions of DNA Seed-and-extend procedure to map ® ; ?“ery Read; ; 5 For lower runtimes, location filters can efficiently determine
fragments (reads) against a reference ' reads against a reference genome o gt whether a candidate mapping location will result in an incorrect
genome to identify genomic variants \ allowing e indels. They have: l Selected kmers mapping before performing the computationally expensive
o Requires approximate string matching | o High sensitivity (can tolerate 0 incorrect verification by alignment. They should be fast.
o Computationally expensive alignment E many errors) @r — —
using quadratic-time dynamic : o High comprehensiveness (can Location lists for selected k-mers 4: OQur Goal
programming algorithm : find more mappings) smerraorstc b u [[B []]
o Bottlenecked by memory bandwidth | BUT ol — — — —— - 1 Design and implement a new filter that rejects incorrect mappings
i o Low SpEEd GCATGTAGCTAC [=>{ L11 | L12 | L13 | L14 Genome. before the a“gnment step
Three general types of read mappers: | - o Minimize the occurrences of unnecessary alighment
o Suffix-array based mappers ' The most recent fastest hash table @l o Maintain high sensitivity and comprehensiveness
O HaSh ta ble based mappers i based read mapper} mrFAST With ...GAAC'I'I'GGAGTCTACGAGGGTI'I'CCTAACE'GCCTI'GCATGTAGCT,;Ce:;'feAlfésGFAA;anTn;.ent o Obta|n IOW runtime and IOW false positive rate
o Hybrid | FastHASH [Xin+, BMC Genomics 2013] : ‘ —
i Alignment / Verification @

Accelerate read mapping by overcoming memory bottleneck with
3D-stacked memory and its PIM for data-intensive computation
o Very fast parallel operations on big data sets near memory

5: 3D-Stacked Logic-in-Memory DRAM

b o oo

Recent technology that tightly couples memory and logic vertically . .
sl LS I r!_'_!'/-ll\;lsié/robump with very high bandwidth connectors. 6: GRIM-Filter Mechanism
HBM DRAM Die ' ! ! ! Numerous Through Silicon Vias (TSVs) connecting layers, enable GRIM-Filter is based on two key ideas:
T R e ' ! ! ! higher bandwidth and lower latency and energy consumption. o Introduce parallelism to g-gram string matching
o Utilize a 3D-stacked DRAM to alleviates the memory bandwidth
HEM DRAM Dic T‘T‘T‘T Customizable logic layer for application-specific accelerators. issue of our algorithm and parallelizes most of the filter.
e 71| Logic layer enables fast, massively parallel operations on large sets . ,
e PTH: PQHQY GPU/mCP[:/?CmDIe of data, and provides the ability to run these operations near GRIM-Filter has tyvo ma_"j' steps: , ,
InterposeI['J{L_ﬂTJ{L_r—[rJlfﬂiﬂi];]L?L] L TtV A memory to alleviate the memory bottleneck. 1) P.recomputatlon: DIV.Ide the rgference genome |r1to consecutive
A T bins and generate existence bitvectors for each bin.
Processing in 3D-stacked memory is extremely good at 2) Filtering Algorithm: Filter locations by quickly determining
e dCCElerating embarrassingly parallel simple bit operations. whether a read can map to a specific segment of the genome.

8: GRIM-Filter Walkthrough

7: Bins & Bitvectors

i
1
i
i
1
1
i
Reference Genome . . i
) Existence bitvectors ! Read Sequence Potential Locations
SRR T represent the existence of | GAACTTGGAGTCTACGAG+++es++++GTACGATT o 20131) 12331 ..) 414415
o) all possible permutations of ! s TN TTETEETETEETETEES S N S U —
bin, ' ! N -
' bin, : I /’ ﬂ @Generate q-grams N A N L N .
. i o g-length nucleotide ! / \‘ [(EAeT :
1 2 t-2 D1 Dt . . : . I
AMAAC | 1 AAAAC i i .
" AMMAG | 0 AMAG | 0 AMAAG| 0 | 1|1 i i ACTTG : [I
g | mwar o . ARAAT| 00 | 1 . N : CTTGG [I
Bl g rew war 11111 | Bitvectors are distributed | : TTGGA weveneansens o ! PASS 00001010001110001010..0100110100 I
C . o 1 -
£ b a1 mcs 11111 Y throughout the memory i I TACGA i 1 :
. : m GACAG *°° s !
: orchc [l css 5 layers of 3D-stacked DRAM | : ACGAT : X @ Check g-gram -
9 2ndbin oo ' . 3 . 1 maS l
7] GCATG | 1 GCATG | 1 d.1 . i I
£ e | 1 e | amalilol on top of the customized : I Gather regional bit-vectors I [R
TTGCA | 1 | LLLUS A - logic layer, which enables | ! ! PASS PASS
mr o] o g G| 110 o | | GAACT 00100010001110001010..0100110110 :
—- exstin processing-in-memory and i AACTT 01001010101011001001..0000101101
\ Zon J : : : : Reference string storage
- Y high parallelism. | | ACTTG 00001010001110001010..0100110100 I g storag
) i * where t = number of bins : . l
qrgrams Bins i : . I Local reference strings l
Row 0- - DRAM/GV;—’“ Bucket Existence Bitvector i i CGATT+00001010001110001010'"0100110100 : GAACTTGGAGTCTACGAGe=s=» GTTCGATG
Row 1: AMAC ||O|—| z — L7 / SH = oy T . Sum Vector : GAACTTGGAGTCTAAGAGe=ses GTACGATT
Row 2: AMAG || S| 8|8 S TR e ™ SEE i 1 GRIM-Filter > | I :
SIBlsl - B —Zm ||| H3 | - { 1 in-memory operations | Generate gq-gram filter by I l
2|22 2 N Am LA =l | S g . ﬂ @ comparing each value in Sum | ——— —_—— T Corroct .
ool el [ea 0 Sifsiaist A Ssan : : " Vector against threshold I it-distance calculation » Correct mappings
v T : !L:) 1
Row N: TTT1 | Logiclyer | ! = ‘\ PASS 00001010001110001010..0100110100 =
Row Buffer \)ault Row Buffer : \\ g-gram filter mask ,/
1
Memory Array Customized Logic] R e e e L

9: Results & Conclusion

False Negative Rates for GRIM-Filter as error threshold varies _] Runtimes for GRIM-Filter as error threshold varies
o Baseline: mrFAST with FastHASH mapper code [Xin+, BMC Genomics Benchmarks and their Execution Times

2013]. However, GRIM-Filter is fully complementary to other

Benchmarks and their False Negative Rates 1.8—

14

0 Errors e = 0 Errors

7 [/ FastHASH 0.9+ /1 FastHASH
BN GRIM-Filter mappers, too. EEN GRIM-Filter

0 0

10 o Key Results of GRIM-Filter: 2.5 w

5 £ Fostiash * 5.59x-6.41x less false negative locations, and) 25| _e-iEm
I GRIM-Filter I GRIM-Filter

e 1.81x-3.65x end-to-end speedup over the state-of-the-art read
mapper mrFAST with FastHASH.

w
Ul O

g 4]]]]]]]]]]E A ier o We show the inherent parallelism of our filter and ease of é”s]]]]]]]]E A Fier
> o implementation for 3D-stacked memory. There is great promise % o | | | | | | |
i g M in adapting DNA read mapping algorithms to state-of-the-art and e
$ 7]]] } 1] }] 1 w = Ghifite emerging memory and processing technologies. = 3'5]]]]]]] AT
o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ o Other Results: g ‘ ‘ ‘ ‘ ‘ ‘
151 1 1 1 1 1 l 1 1 1 — FastiAsH * Examined sensitivity to number of bins: 450x65536 7]]]]]]] 5 FastiAsH
: e Examined sensitivity to g-gram size: 5 : ——
= ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ * Found to be the best tradeoff between memory consumption, o | | | | ‘ |
ml 1 1 1 1 1 1 1 1 1 EE%EE’??L filtering efficiency, and runtime. 351 ﬂ 1 FJ EZ?ET?T

: b n [[[[b

ERR24072600040728:5294072] 0024072 122407281224072821240722022407222 2407302407302

0
726-1 5407262 15407273 1540727205 40728-2 15407282 15407293 15 40729-2 15 40730:2 5407302 . ST
ERR2A0TTERR2A0TTeRR240 14 gRR240TT rR2A0TTeRR240T TERR240T TeRR240 T gRR2A0T T ERR2AD *In the figures shown, smaller bars indicate better performance

Benchmarks Benchmarks

