Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm

Joël Lindegger

Damla Senol Cali, Mohammed Alser, Juan Gómez-Luna, Onur Mutlu

jmlindegger@gmail.com

30/05/2022 HiCOMB 2022

Background

Pairwise sequence alignment is a common stage in genomic pipelines, such as read mapping

Pairwise sequence alignment is computationally expensive and often the pipeline's bottleneck

GenASM is a **state-of-the-art sequence aligner** with **high throughput** and **energy efficiency**

[1] Senol Cali+, "<u>GenASM: A High-Performance, Low-Power Approximate String</u> <u>Matching Acceleration Framework for Genome Sequence Analysis</u>", MICRO 2020

Benefits of GenASM

GenASM has **linear runtime complexity** with respect to the **sequence length**, due to its **windowing heuristic**

GenASM supports traceback, thus it can report the CIGAR string

GenASM provides intra-task parallelism

[1] Senol Cali+, "<u>GenASM: A High-Performance, Low-Power Approximate String</u> <u>Matching Acceleration Framework for Genome Sequence Analysis</u>", MICRO 2020

Problem – Inefficiencies in GenASM

Our Goal

Our goal is to enable **fast** and **efficient** implementations of GenASM for **CPUs**, **GPUs**, and **ASICs**

To this end we propose Scrooge, which

Reduces the memory footprint

Reduces the number of bytes accessed

Eliminates unnecessary work

Scrooge

Three novel algorithmic improvements to the GenASM algorithm

High-performance CPU and GPU implementations of the improved algorithm

GenASM Algorithm

 Traceback

- Requires table of bitvectors
 - Finds the CIGAR string

Text	Α		С	G	Т	-	
Exact Match						Л	
1 Edit							
2 Edits							
3 Edits		CIGAR String					
4 Edits							

Scrooge Improvement 1: <u>Store Entries, Not Edges (SENE)</u>

SENE results in a 3x reduction in memory footprint and data movement

Scrooge Improvement 2: <u>Discard Entries Not used by Traceback (DENT)</u>

GenASM's traceback does not cross the entire table Scrooge discards entries that are never reached

DENT results in a 4x reduction in memory footprint and data movement

Scrooge Improvement 3: <u>Early Termination (ET)</u>

Rows **below** the **edit distance** do **not** contain **useful information Scrooge stops the computation** when it finds the **edit distance**

ET eliminates unnecessary work and reduces data movement

Methodology

Platforms:

- CPU: Dual Socket Intel Xeon Gold 5118 (2× 24 logical cores at 3.2GHz with 196GB DDR4)
- GPU: NVIDIA A6000

Baseline Tools:

- CPU: KSW2 [2,3], Edlib [4]
- GPU: Darwin-GPU [5]

Dataset:

- We simulate **500 PacBio reads** from the human genome using PBSIM2 [6], each of length 10kb
- We obtain 138,929 read/candidate location pairs from minimap2 [2]

Key Results

Discussion - ASIC

A prior ASIC implementation of GenASM [1] dedicates the majority of chip area and power to SRAM

[1] Senol Cali+, "<u>GenASM: A High-Performance, Low-Power Approximate String</u> <u>Matching Acceleration Framework for Genome Sequence Analysis</u>", MICRO 2020

Our algorithmic improvements can reduce the SRAM size by 12x

Our algorithmic improvements could reduce GenASM's total ASIC chip area and power by up to 2.5x and 2x

Conclusion

Motivation	 Pairwise sequence alignment is a bottleneck in genomic pipelines (e.g., read mapped of the sequence aligner, its hardware implementation is to 10,000x faster than prior software aligners and draws 500x less power 	oing) s up
Problem	 Three inefficiencies in the GenASM algorithm limit its throughput and energy efficient. 1. It has a large memory footprint 2. It has a high bandwidth pressure 3. It does some unnecessary work 	ency:
Goal	Enable fast and efficient implementations of GenASM for CPUs, GPUs, and ASI	Cs
Scrooge	Three novel algorithmic improvements to the GenASM algorithm: •SENE and DENT reduce the memory footprint and data movement of GenASM •Early Termination eliminates unnecessary work High-performance CPU and GPU implementations	1
Results	 •1.9x speedup over GenASM on a recent CPU (Xeon Gold 5118) •5.9x speedup over GenASM on a recent GPU (NVIDIA A6000) •Similar improvements to be expected for ASICs 	
SAFAR	14	4

Links

Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm

Joël Lindegger

Damla Senol Cali, Mohammed Alser, Juan Gómez-Luna, Onur Mutlu

jmlindegger@gmail.com

30/05/2022 HiCOMB 2022

References

- [1] Senol Cali+, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis", MICRO 2020
- [2] Li, "Minimap2: Pairwise Alignment for Nucleotide Sequences", Bioinformatics 2018
- [3] Suzuki+, "Introducing Difference Recurrence Relations for Faster Semi-Global Alignment of Long Sequences", BMC Bioinformatics 2018
- [4] Šošić+, "Edlib: A C/C++ Library for Fast, Exact Sequence Alignment Using Edit Distance", Bioinformatics 2017
- [5] Ahmed+, "GPU Acceleration of Darwin Read Overlapper for de Novo Assembly of Long DNA Reads", BMC Bioinformatics 2020
- [6] Ono+, "PBSIM2: A Simulator for Long-Read Sequencers With a Novel Generative Model of Quality Scores", Bioinformatics 2020

Backup Slides

Why "Scrooge"?

- Our algorithm has an extremely small memory footprint
- In other words, it is extremely resource-saving, a common attribute of characters called "Scrooge" in pop culture

Speedup

Scrooge with the algorithmic improvements is significantly faster than GenASM on CPUs and GPUs.

Result - Parameter Sweeps are Necessary

The **CPU** version of **Scrooge benefits most** from **ET** and **SENE**, while **DENT** should **not be used**.

The **GPU** version of **Scrooge benefits most** from **SENE** and **DENT**, while **ET** only yields **marginal speedups**.

The **best combination** of **improvements depends** on the **computing platform**.

GenASM Algorithm

GenASM Distance Calculation

GenASM Distance Calculation Output

[1] Senol Cali+, "<u>GenASM: A High-Performance, Low-Power Approximate String</u> Matching Acceleration Framework for Genome Sequence Analysis", MICRO 2020 AFARI

GenASM Traceback

[1] Senol Cali+, "<u>GenASM: A High-Performance, Low-Power Approximate String</u> <u>Matching Acceleration Framework for Genome Sequence Analysis</u>", MICRO 2020 SAFARI

GenASM Traceback

[1] Senol Cali+, "<u>GenASM: A High-Performance, Low-Power Approximate String</u> <u>Matching Acceleration Framework for Genome Sequence Analysis</u>", MICRO 2020 SAFARI

GenASM Traceback - Output

[1] Senol Cali+, "<u>GenASM: A High-Performance, Low-Power Approximate String</u> <u>Matching Acceleration Framework for Genome Sequence Analysis</u>", MICRO 2020 SAFARI