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Genome Sequencing

Genome

DNA

q Genome sequencing is the 
process of determining the order 
of the DNA sequence in an 
organism’s genome. 

q Genome sequencing is pivotal in:

o Personalized medicine 

o Outbreak tracing

o Evolution

o Forensics
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Large DNA molecule

Small DNA fragments

Reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT

Genome Sequencing (cont.)
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Genome Sequence Analysis
q Genome sequence analysis requires:

1) Taking small DNA fragments from an organism
2) Reorganizing them into the entire genome

q Success of all medical and genetic applications critically depends on:
o Existence of computational techniques that can process and 

analyze the enormous amount of sequence data quickly and 
accurately

q Effectively leveraging genome sequencing as a tool:
o Requires very high computational power
o Requires processing a large amount of data
o Bottlenecked by the current capabilities of computer systems
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Read Mapping
q Read mapping is the method of 

aligning reads against a reference 
genome to detect matches and 
variations.

à One of the key components of 
genome sequence analysis.

q Goal is to identify the original 
location of each read in the 
reference genome.

q Sequenced genome may not 
exactly map to the reference 
genome

à Reason: mutations, 
variations, sequencing errors 

q Multiple steps of read mapping
must account for these errors.

Reference
Genome

AAAATTTGTACG – CT

AAA – TTTCTACGGCT

Text:

Pattern:
insertion

substitution

deletion

Reference

Read
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Problem & Our Goal
q Multiple steps of read mapping are essentially a series of approximate

(i.e., fuzzy) string matches

q Approximate string matching makes up a significant portion of read 
mapping (i.e., more than 70%).

q One of the key bottlenecks of the entire genome analysis pipeline.

Our Goal:
Accelerate approximate string matching by 

designing a fast and flexible framework, 
which can be used to accelerate multiple steps of 

the genome sequence analysis pipeline
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qUse Cases of GenASM
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Bitap Algorithm
q We have focused on the Bitap algorithm1,2

à Reason: Bitap algorithm can perform ASM with fast and simple bitwise 
operations, which makes it amenable to acceleration

q Step 1: Preprocessing
o For each character (A, C, G, T), generate a pattern bitmask 
o Indicates if character exists at each position of the pattern.

q Step 2: Searching (Edit Distance Calculation)
o Compare all characters of the text with the pattern by using:

§ Pattern bitmasks 
§ Set of bitvectors that hold the status of the partial matches 
§ Bitwise operations

[1] R. A. Baeza-Yates and G. H. Gonnet. "A new approach to text searching." Communications of the ACM, 1992.
[2] S. Wu and U. Manber. "Fast text searching: allowing errors." Communications of the ACM, 1992.
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GenASM
q Approximate string matching (ASM) acceleration framework based 

on the Bitap algorithm

q Includes optimized ASM algorithm and new hardware

o Highly-parallel Bitap with small memory footprint

o Bitvector-based novel algorithm to perform traceback 
§ Finding the sequence of matches, substitutions, insertions and 

deletions, along with their positions

o Processing-in-Memory (PIM) accelerator for Bitap and traceback

qOptimized for both 1) short yet accurate and 2) long but noisy reads
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Logic Layer

GenASM Design

Host 
CPU

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Memory

❶ reference 
and query
locations

❸ Generate the 
bitvectors for the 
current window

❹ Write 
bitvectors

❷ reference 
region and read

TB-SRAM 
for PE1

.

.
❺ Read 
bitvectors

❻ Find the 
traceback output

TB-SRAM 
for PE2

TB-SRAM 
for PEn
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GenASM-DC:
generates bitvectors and 

performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

DC-SRAM
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GenASM-DC: Hardware Design
q GenASM-DC Hardware Accelerator (HWA) is implemented as a linear cyclic 

systolic array.
o Optimized to reduce memory bandwidth and memory footprint
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GenASM-TB: Hardware Design

q Very simple logic: 

1) Reads the bitvectors from one of the TB-SRAMs using the 
computed address 
2) Performs the required computation and comparisons to find the 
traceback output for the current position
3) Computes the next TB-SRAM address to read the new set of 
bitvectors
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GenASM: Overall System
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Use Cases of GenASM
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Use Cases of GenASM (cont.)
(1) Read Alignment Step of Read Mapping

o Also called verification or seed-extension
o GenASM can perform ASM between the query reads and the candidate 

regions and report the optimal alignment. 

(2) Pre-Alignment Filtering for Short Reads
o Filter out the dissimilar sequences
o GenASM can efficiently calculate the edit distance between the short 

read and the candidate text and decide whether it is above a user-defined 
threshold.

(3) Edit Distance Calculation Between Any Two Sequences
o Fundamental operation in genomics
§ Measure the similarity or distance between two sequences

o GenASM-DC is inherently an edit distance calculation accelerator

q We also discuss other possible use cases of GenASM in our paper:
o Hash-table based indexing, whole genome alignment, generic text search

17



Damla Senol Cali

Outline
qBackground

qMotivation

qASM with Bitap Algorithm

qGenASM: ASM Acceleration Framework

qUse Cases of GenASM

qEvaluation

qConclusion

18



Damla Senol Cali

Evaluation Methodology
q 16GB HMC-like 3D-stacked DRAM architecture
o 32 vaults
o 256GB/s of internal bandwidth, and
o a clock frequency of 1.25GHz

q Datasets:
o Simulated long read datasets (ONT and PacBio)

§ 10Kbp reads with 10-15% error rate
o Simulated short read datasets (Illumina)

§ 100-250bp reads with 5% error rate
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Evaluation Methodology (cont.)
q For Use Case 1: Read Alignment, we compare GenASM with:

o Two state-of-the-art read mappers: Minimap21 and BWA-MEM2

§ Compare GenASM only with the alignment steps of these mappers 
§ Running on Intel® Xeon® Gold 6126 CPU (12-core) operating         

@ 2.60GHz with 64GB DDR4 memory

o Two state-of-the-art accelerators, Darwin3 and GenAx4

§ Compare GenASM only with the alignment components of these 
accelerators (GACT for Darwin, SillaX for GenAx)

20

[1] H. Li. "Minimap2: pairwise alignment for nucleotide sequences." In Bioinformatics, 2018.
[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.
[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read 
assembly." In ASPLOS, 2018.
[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.
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Key Results – Area and Power
q Both GenASM-DC and GenASM-TB operates @ 1GHz

q Based on our synthesis of the GenASM-DC and GenASM-TB accelerator 
datapath using Synopsys Design Compiler with a typical 28 nm LP process:

q Total power consumption of all 32 vaults 3.24W

q Total area overhead of all 32 vaults is 10.69 mm2
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Key Results (Use Case 1) – Long Reads
q Long Read Datasets:

o Compared to 12-thread runs of Minimap2 and BWA-MEM:

o Compared to Darwin-GACT:
§ 3.8× better throughput 
§ 2.7× less power consumption
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Key Results (Use Case 1) – Short Reads
q Short Read Datasets:

o Compared to 12-thread runs of Minimap2 and BWA-MEM:

o Compared to GenAx-SillaX:
§ 1.9× better throughput 
§ Comparable area and power consumption

23
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consumption
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33× less power 
consumption
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Key Results (Use Cases 2 & 3)
q Pre-Alignment Filtering for Short Reads
o Use Case 2
o 3.6× speedup vs. Shouji
o GenASM also significantly improves the filtering accuracy

q Edit Distance Calculation
o Use Case 3
o 246 – 5668× speedup vs. Edlib

q See our MICRO 2020 paper for more details
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Conclusion
q Problem: 

o Genome sequence analysis is bottlenecked by the computational power and 
memory bandwidth limitations of existing systems.

o This bottleneck is particularly an issue for approximate string matching.

q Goal: Provide an approximate string matching (ASM) acceleration framework in 
order to accelerate multiple steps of genome sequence analysis

q Key Contributions: 
o First to enhance and accelerate Bitap for ASM with genomic sequences
o GenASM: approximate  string matching (ASM) acceleration framework

§ Co-design of our modified scalable and memory-efficient algorithms with    
low-power and area-efficient hardware accelerators

§ Evaluation of three different use cases of ASM in genomics: read alignment, 
edit distance calculation, and pre-alignment filtering.

q Key Results: GenASM is significantly more efficient for all the three use cases (in 
terms of throughput and throughput per unit power) than state-of-the-art software 
and hardware baselines.
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