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Genome Sequencing
q Genome sequencing: Enables us to determine the order of the DNA 

sequence in an organism’s genome

o Plays a pivotal role in:
§ Personalized medicine
§ Outbreak tracing
§ Understanding of evolution

q Modern genome sequencing machines extract smaller randomized 
fragments of the original DNA sequence, known as reads

o Short reads: a few hundred base pairs, error rate of ∼0.1%
o Long reads: thousands to millions of base pairs, error rate of 10–15%
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Genome Sequence Analysis
q Read mapping: First key step in genome sequence analysis (GSA)

o Aligns reads to one or more possible locations within          
the reference genome, and

o Finds the matches and differences between the read and 
the reference genome segment at that location 

q Multiple steps of read mapping require approximate string matching

o Approximate string matching (ASM) enables read mapping to 
account for sequencing errors and genetic variations in the reads

q Bottlenecked by the computational power and memory bandwidth 
limitations of existing systems
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GenASM: ASM Framework for GSA

q GenASM: First ASM acceleration framework for GSA

o Based upon the Bitap algorithm 
§ Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm
§ Highly-parallel Bitap with long read support
§ Bitvector-based novel algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms 
with low-power and area-efficient hardware accelerators

Our Goal:
Accelerate approximate string matching 

by designing a fast and flexible framework, 
which can accelerate multiple steps of genome sequence analysis
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GenASM-DC GenASM-TB

GenASM: Hardware Design
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Our specialized compute units and on-chip SRAMs help us to: 
à Match the rate of computation with memory capacity and bandwidth 

à Achieve high performance and power efficiency
à Scale linearly in performance with 

the number of parallel compute units that we add to the system
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GenASM-DC: Hardware Design
q Linear cyclic systolic array based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint
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Bitwise 
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GenASM-TB

GenASM-TB: Hardware Design

q Very simple logic: 
❶Reads the bitvectors from one of the TB-SRAMs using the computed 
address 
❷Performs the required bitwise comparisons to find the traceback output 
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors
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Key Results – Area and Power
q Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

Total (1 vault): 0.334 mm2 0.101 W
Total (32 vaults): 10.69 mm2 3.23 W

% of a Xeon CPU core: 1% 1%
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GenASM has low area and power overheads
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Use Cases of GenASM
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Use Cases of GenASM (cont’d.)
(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 
reference regions

(2) Pre-Alignment Filtering for Short Reads
o Quickly identify and filter out the unlikely candidate reference 

regions for each read

(3) Edit Distance Calculation
o Measure the similarity or distance between two sequences

q We also discuss other possible use cases of GenASM in our paper:
o Read-to-read overlap finding, hash-table based indexing, whole 

genome alignment, generic text search
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Key Results
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(1) Read Alignment
q 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)

q 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)

q 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)

q 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering
q 3.7× speedup, 1.7× less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation
q 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)

q 9.3–400× speedup, 67× less power than ASAP (state-of-the-art HW)
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