GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

> Damla Senol Cali Carnegie Mellon University (dsenol@andrew.cmu.edu)

Gurpreet S. Kalsi², Zulal Bingol³, Can Firtina⁴, Lavanya Subramanian⁵, Jeremie Kim^{1,4}, Rachata Ausavarungnirun^{6,1}, Mohammed Alser⁴, Juan Gomez-Luna⁴, Amirali Boroumand¹, Anant Nori², Allison Scibisz¹, Sreenivas Subramoney², Can Alkan³, Saugata Ghose^{7,1}, and Onur Mutlu^{4,1,3}

Genome Sequencing

- Genome sequencing: Enables us to determine the order of the DNA sequence in an organism's genome
 - Plays a pivotal role in:
 - Personalized medicine
 - Outbreak tracing
 - Understanding of evolution

- Modern genome sequencing machines extract smaller randomized fragments of the original DNA sequence, known as reads
 - Short reads: a few hundred base pairs, error rate of ~0.1%
 - Long reads: thousands to millions of base pairs, error rate of 10–15%

Genome Sequence Analysis

Read mapping: *First key step* in genome sequence analysis (GSA)

- Aligns reads to one or more possible locations within the reference genome, and
- Finds the matches and differences between the read and the reference genome segment at that location

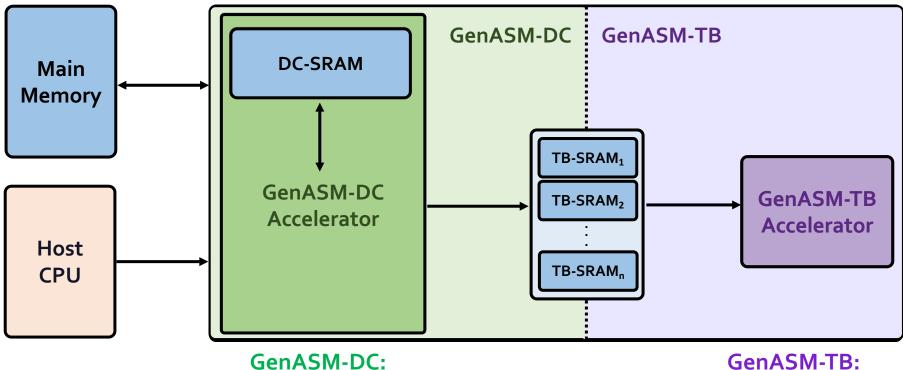
Multiple steps of read mapping require *approximate string matching*

 Approximate string matching (ASM) enables read mapping to account for sequencing errors and genetic variations in the reads

Bottlenecked by the computational power and memory bandwidth limitations of existing systems

GenASM: ASM Framework for GSA

Our Goal:

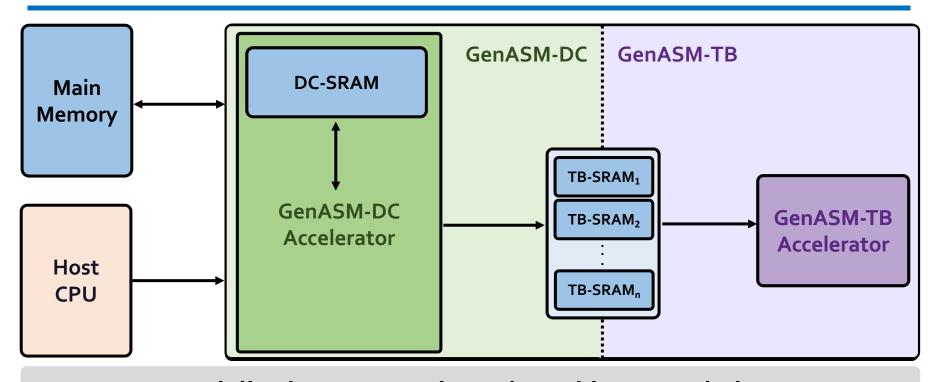

Accelerate approximate string matching by designing a fast and flexible framework, which can accelerate *multiple steps* of genome sequence analysis

GenASM: *First* ASM acceleration framework for GSA

- ο Based upon the *Bitαp* algorithm
 - Uses fast and simple bitwise operations to perform ASM
- Modified and extended ASM algorithm
 - Highly-parallel Bitap with long read support
 - Bitvector-based novel algorithm to perform traceback
- Co-design of our modified scalable and memory-efficient algorithms with low-power and area-efficient hardware accelerators

Damla Senol Cali

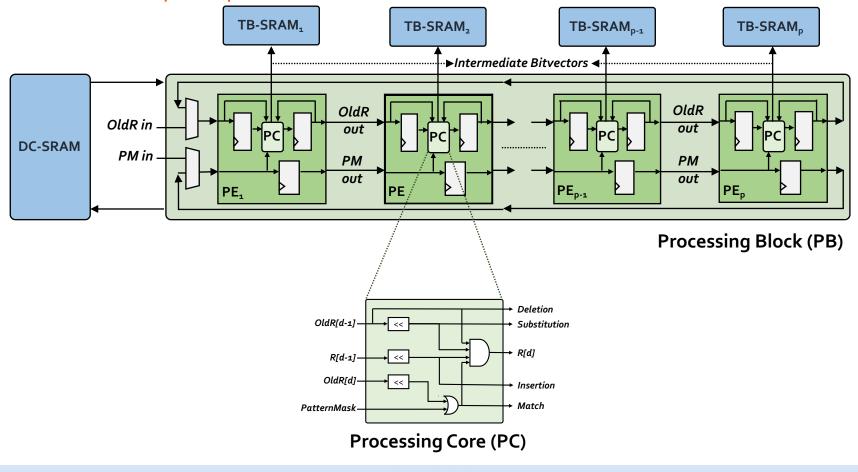
GenASM: Hardware Design



GenASM-DC:

generates bitvectors and performs edit Distance Calculation GenASM-TB: performs TraceBack and assembles the optimal alignment

GenASM: Hardware Design

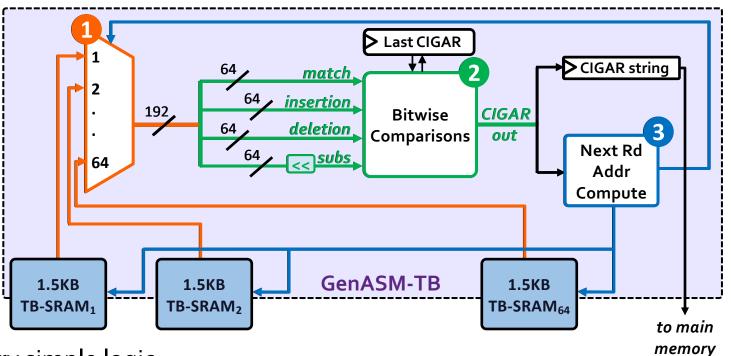


Our specialized compute units and on-chip SRAMs help us to: → Match the rate of computation with memory capacity and bandwidth → Achieve high performance and power efficiency → Scale linearly in performance with the number of parallel compute units that we add to the system

Damla Senol Cali

GenASM-DC: Hardware Design

- Linear cyclic systolic array based accelerator
 - Designed to maximize parallelism and minimize memory bandwidth and memory footprint

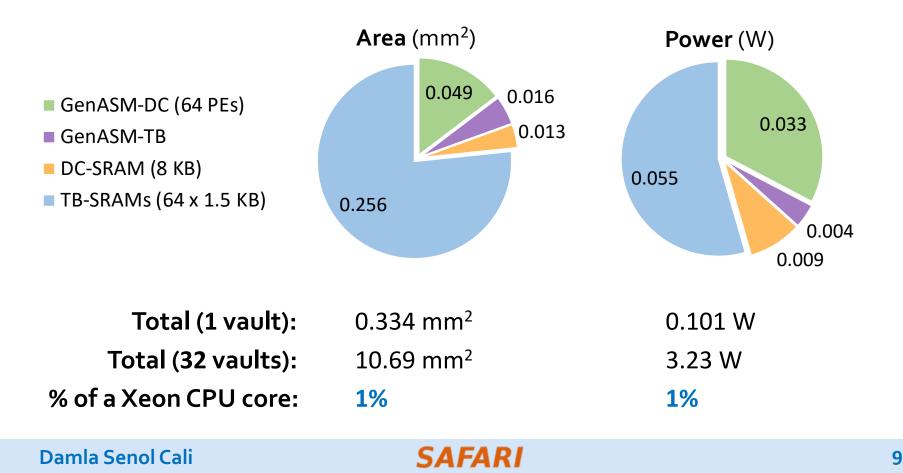


SAFARI

Damla Senol Cali

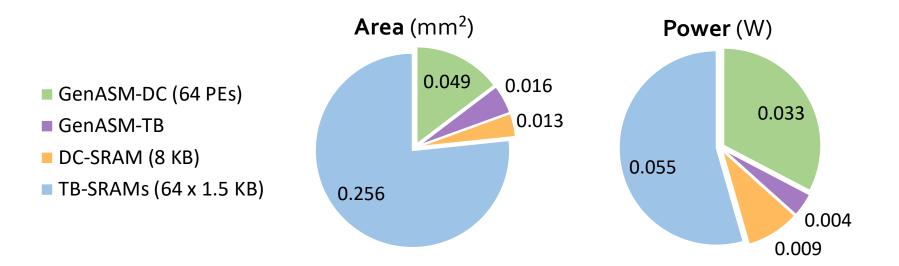
GenASM-TB: Hardware Design

□ Very simple logic:

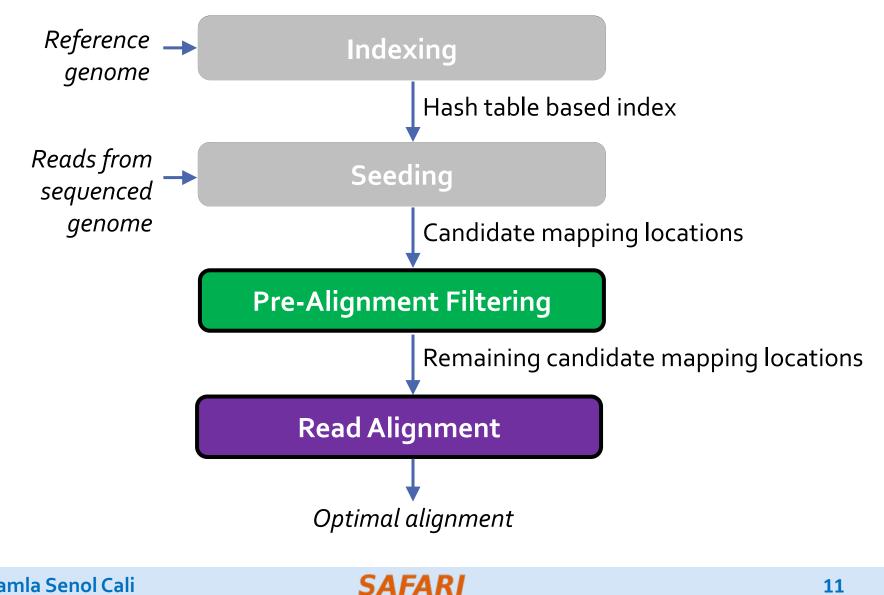

1 Reads the bitvectors from one of the TB-SRAMs using the computed address

2 Performs the required bitwise comparisons to find the traceback output for the current position

3 Computes the next TB-SRAM address to read the new set of bitvectors


Key Results – Area and Power

 Based on our synthesis of GenASM-DC and GenASM-TB accelerator datapaths using the Synopsys Design Compiler with a 28nm LP process:
 Both GenASM-DC and GenASM-TB operate (a) 1GHz


Key Results – Area and Power

 Based on our synthesis of GenASM-DC and GenASM-TB accelerator datapaths using the Synopsys Design Compiler with a 28nm LP process:
 Both GenASM-DC and GenASM-TB operate (a) 1GHz

GenASM has low area and power overheads

Use Cases of GenASM

Damla Senol Cali

Use Cases of GenASM (cont'd.)

(1) Read Alignment Step of Read Mapping

 Find the optimal alignment of how reads map to candidate reference regions

(2) Pre-Alignment Filtering for Short Reads

 Quickly identify and filter out the unlikely candidate reference regions for each read

(3) Edit Distance Calculation

- Measure the similarity or distance between two sequences
- We also discuss other possible use cases of GenASM in our paper:
 Read-to-read overlap finding, hash-table based indexing, whole genome alignment, generic text search

Key Results

(1) Read Alignment

- 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)
- □ 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)
- **3.9× better throughput, 2.7× less power than Darwin** (state-of-the-art HW)
- 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering

3.7× speedup, **1.7**× less power than **Shouji** (state-of-the-art HW)

(3) Edit Distance Calculation

- □ 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)
- **9.3–400×** speedup, 67× less power than ASAP (state-of-the-art HW)

Damla Senol Cali

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

> Damla Senol Cali Carnegie Mellon University (dsenol@andrew.cmu.edu)

Gurpreet S. Kalsi², Zulal Bingol³, Can Firtina⁴, Lavanya Subramanian⁵, Jeremie Kim^{1,4}, Rachata Ausavarungnirun^{6,1}, Mohammed Alser⁴, Juan Gomez-Luna⁴, Amirali Boroumand¹, Anant Nori², Allison Scibisz¹, Sreenivas Subramoney², Can Alkan³, Saugata Ghose^{7,1}, and Onur Mutlu^{4,1,3}

