
GenStore:
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun,
Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr,
Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

Session 6A: Thursday 3 March, 3:00 PM CEST

2

Genome Sequence Analysis
• Genome sequence analysis is critical for many applications
- Personalized medicine
- Outbreak tracing
- Evolutionary studies

• Genome sequencing machines extract smaller fragments of the original
DNA sequence, known as reads

AAGCTTCCATGG
AAATGGGCTTTC

GCCCAAATGGTT
GCTTCCAGAATG

3

Genome Sequence Analysis
• Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of
similarity (alignment score)

AAGCTTCCATGG
GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC

• Calculating the alignment score requires computationally-expensive
approximate string matching (ASM) to account for differences between
reads and the reference genome due to:

- Sequencing errors
- Genetic variation

4

Genome Sequence Analysis

Computation overhead

Data movement overhead

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System

5

Heuristics Accelerators Filters

Computation overhead

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

Data movement overhead

✓

Accelerating Genome Sequence Analysis

6

Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment

7

Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory
Storage
System

8

GenStore

Computation overhead

Data movement overhead

GenStore provides significant speedup (1.4x - 33.6x) and
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation
Unit

(CPU or
Accelerator)

Cache
Main

Memory

GenStore-Enabled
Storage
System

✓
✓

9

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

10

GCC 7
CCC 8
CAA 1
AAA 31 101
CCA 25 230 400

… … … …

Read Mapping Process
…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…Reference

> 3 billion characters

Index

K-mer Locations
GCCCAAATGGTTRead
GCC

CCC
…

K-mers

Determine potential matching locations (seeds) in the
reference genome

Prune some seeds in the reference genome

Determine the exact differences between the read
and the reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment

Seeds

…

11

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

12

Motivation
• Case study on a real-world genomic read dataset
- Various read mapping systems
- Various state-of-the-art SSD configurations

The ideal in-storage filter significantly improves performance by

1) reducing the computation overhead

2) reducing the data movement overhead

13

Motivation
• Case study on a real-world genomic read dataset
- Various read mapping systems
- Various state-of-the-art SSD configurations

Filtering outside SSD provides lower performance benefit since it

1) does not reduce the data movement overhead

2) must compete with read mapping for system resources

A HW accelerator reduces the computation bottleneck,

which makes I/O a larger bottleneck in the system

14

Our Goal

Design Objectives:

Design an in-storage filter for genome sequence analysis
in a cost-effective manner

Provide high in-storage filtering performance to overlap the
filtering with the read mapping of unfiltered data

Performance

Support reads with 1) different properties and 2) different
degrees of genetic variation in the compared genomes

Applicability

Do not require significant hardware overhead
Low-cost

15

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

16

GenStore

SSD	Controller

CoreCoreCore

In-SSD	DRAM
L2P

Mappings

Flash
Ctrl.#1

Flash
Ctrl.#N

⋯

NAND
Die#4

NAND
Die#1 ⋯

NAND
Die#4

NAND
Die#1 ⋯

Host	System

FTL

ACC

ACC

ACC GenStore
Metadata		

GenStore
FTL

Reads	that	need	
substantial	processing

• Key idea: Filter reads that do not require alignment inside the
storage system

• Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD

17

Filtering Opportunities

• Sequencing machines produce one of two kinds of reads
- Short reads: highly accurate and short

- Long reads: less accurate and long

• High sequencing error rates (long reads) or
• High genetic variation (short or long reads)

Non-matching reads
Do not have potential matching locations, so they skip alignment

• Low sequencing error rates (short reads) combined with
• Low genetic variation

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Reads that do not require the expensive alignment step:

18

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

19

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

20

GenStore-EM
• Efficient in-storage filter for reads with at least one exact

match in the reference genome

•Uses simple operations, without requiring alignment

• Challenge: large number of random accesses per read to
the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD

21

GenStore-EM: Data Structures

GCCCAAATGGTTRead
GCC

CCC
…

K-mers

K-mer

•Read-sized k-mers: to reduce the number of accesses per
each read

Only one index lookup per read

• Sorted read-sized k-mers: to avoid random accesses to
the index

Sequential scan of the read set and the index✓

✓

22

GenStore-EM: Data Structures

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Sorted
Read-sized

K-mers

Read
AAAAAAAAAA

23

GenStore-EM: Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Comparator

Read = K-mer

Next

Exact match à Filter the read

Next

24

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

NextComparator

Read > K-mer

25

Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match à Send to read mapper

26

Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match à Send to read mapper

Avoids random accesses

Simple low-cost logic✓
✓

27

GenStore-EM: Optimization
•Read-sized k-mer index takes up a large amount of space

(126 GB for human index) due to the larger number of
unique k-mers

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted K-mer Index

Strong Hash Value

1
4
7
16

Using strong hash values instead of read-sized k-mers
reduces the size of the index by 3.9x

28

GenStore-EM: Design

GenStore-Enabled SSD

Host System

Die#1
Plane#1 Plane#2

Die#4
P#1 P#2

⋯

Die#1
P#1 P#2

Die#4
P#1 P#2

⋯

Die#1
P#1 P#2

Die#4
P#1 P#2

⋯⋯

Channel#1 Channel#2 Channel#N

❷ Exact-match filtering

SSD ControllerNAND Flash Array

SRTable

SKIndex
❶ Sequential Reads

DRAM

Batch#i-1
Batch#i

Batch#j-1
Batch#j

Comparator SRTable Buffer

SKIndex Buffer

Data is evenly distributed between channels, dies, and planes
to leverage the full internal bandwidth of the SSD

Steps 1 and 2 are pipelined.
During filtering, GenStore-EM sends the unfiltered reads

to the host system.

29

GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads

30

GenStore-NM
• Efficient chaining-based in-storage filter to prune most of the non-

matching reads

• Challenge: how to perform chaining inside the SSD
- For a read with Seeds 𝑆! to 𝑆", the chaining score for 𝑆!… 𝑆# can be calculated as

𝐦𝐚𝐱{𝐦𝐚𝐱 𝑺𝒄𝒐𝒓𝒆 𝑺𝒋 +𝑴𝒂𝒕𝒄𝒉_𝑺𝒄𝒐𝒓𝒆 𝑺𝒊 , 𝑺𝒋 − 𝑮𝒂𝒑_𝑷𝒆𝒏𝒂𝒍𝒕𝒚(𝑺𝒊 , 𝑺𝒋) , 𝒘}
i > j > 1

Costly dynamic programming on many seeds in each read

Particularly challenging for long reads with many seeds

Determine potential matching locations (seeds) in the
reference genome

Prune some seeds in the reference genome

Determine the exact differences between the read
and the reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment

31

GenStore-NM: Mechanism

Filters many non-aligning reads without
costly hardware resources in the SSD

Pr
ob
ab
ili
ty

0

0.5

1

0 16 32 48 64 80 96 112 128 144

Number	of	seeds	per	read

High	Alignment
Probability	

Al
ig
nm

en
t

Reads with a sufficiently large number of seeds
are very likely to align to the reference genome

• GenStore-NM uses a light-weight chaining filter

- Selectively performs chaining only on reads with a small number of seeds

- Directly sends reads that require more complex chaining to the host system

✓

32

GenStore-NM: Mechanism

Can filter many non-aligning reads without
costly hardware resources in the SSD

Pr
ob
ab
ili
ty

0

0.5

1

0 16 32 48 64 80 96 112 128 144

Number	of	seeds	per	read

High	Alignment
Probability	

Al
ig
nm

en
t

Reads with a sufficiently large number of seeds
are very likely to align to the reference genome

• GenStore-NM uses a light-weight chaining filter

- Selectively performs chaining only on reads with a small number of seeds

- Directly sends reads that require more complex chaining to the host system

Details on GenStore-NM’s design are in the paper

33

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

34

Evaluation Methodology
Read Mappers
• Base: state-of-the-art software or hardware read mappers
- Minimap2 [Bioinformatics’18]: software mapper for short and long reads

- GenCache [MICRO’19]: hardware mapper for short reads

- Darwin [ASPLOS’18]: hardware mapper for long reads

• GS: Base integrated with GenStore

SSD Configurations
• SSD-L: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-M: with PCIe Gen3 interface (3.5 GB/s sequential read bandwidth)

• SSD-H: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)

35

For a read set with 80% exactly-matching reads

Performance – GenStore-EM

0
50

100
150
200

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

Ex
ec

. t
im

e
[s

ec
]

0
2
4
6
8

10

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

With the Software Mapper With the Hardware Mapper

2.1× - 2.5× speedup compared to the software Base

1.5× – 3.3× speedup compared to the hardware Base

On average 3.92× energy reduction

292.
5x

2.
1x

2.
1x

3.
3x

1.
5x

2.
5x

36

For a read set with 99.7% non-matching reads

Performance – GenStore-NM

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

Ex
ec

. t
im

e
[s

ec
]

Lo
g

sc
al

e

With the Software Mapper With the Hardware Mapper

22.4× – 27.9× speedup compared to the software Base

6.8× – 19.2× speedup compared to the hardware Base

On average 27.2× energy reduction

0.1

1

10

100

Base GS Base GS Base GS

SSD-L SSD-M SSD-H

22
.4

29
x

27
.9
x

19
.2
x

6.
8x

6.
8x

37

Area and Power
• Based on Synthesis of GenStore accelerators using the Synopsys

Design Compiler @ 65nm technology node

Logic unit # of instances Area [mm2] Power [mW]

Comparator 1 per SSD 0.0007 0.14

K -mer Window 2 per channel 0.0018 0.27

Hash Accelerator 2 per SSD 0.008 1.8

Location Buffer 1 per channel 0.00725 0.37375

Chaining Buffer 1 per channel 0.008 0.95

Chaining PE 1 per channel 0.004 0.98

Control 1 per SSD 0.0002 0.11

Total for an 8-channel SSD - 0.2 26.6

Only 0.006% of a 14nm Intel Processor, less than 9.5% of the three
ARM processors in a SATA SSD controller

38

Other Results in the Paper
• Effect of read set features on performance

- Data size (up to 440 GB)

- Filter ratio

• Performance benefit of an implementation of GenStore
outside the SSD

- In some cases, it provides performance benefits due more
efficient streaming accesses

- Provides significantly lower benefit compared to GenStore

•More detailed characterization of non-matching reads
across different read mapping use cases and species

39

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline

40

Conclusion
• There has been significant effort into improving read mapping performance

through efficient heuristics, hardware acceleration, accurate filters

• Problem: while these approaches address the computation overhead, none of
them alleviate the data movement overhead from storage

• Goal: improve the performance of genome sequence analysis by effectively
reducing unnecessary data movement from the storage system

• Idea: filter reads that do not require the expensive alignment computation in
the storage system to fundamentally reduce the data movement overhead

• Challenges:
- Read mapping workloads can exhibit different behavior
- There are limited available hardware resources in the storage system
• GenStore: the first in-storage processing system designed for genome sequence

analysis to reduce both the computation and data movement overhead

• Key Results: GenStore provides significant speedup (1.4x - 33.6x) and energy
reduction (3.9x – 29.2x) at low cost

Nika Mansouri Ghiasi (mnika@ethz.ch)
Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun,

Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr,
Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu

Session 6A: Thursday 3 March, 3:00 PM CEST

GenStore:
A High-Performance In-Storage Processing System

for Genome Sequence Analysis

42

Backup Slides

43

End-to-End Workflow of Genome Sequence Analysis

• There are three key initial steps in a standard genome sequencing and analysis workflow

- Collection, preparation, and sequencing of a DNA sample in the laboratory

- Basecalling

- Read mapping

• Genomic read sets can be obtained by

- Sequencing a DNA sample and storing the generated read set into the SSD of a sequencing machine

- Downloading read sets from publicly available repositories and storing them into an SSD

• We focus on optimizing the performance of read mapping because sequencing and basecalling are
performed only once per read set, whereas read mapping can be performed many times

- Analyzing the differences between a reads from an individual and many reference genomes of other individuals

- Repeating the read mapping step many times to improve the outcome of read mapping

• Improving read mapping performance is critical in almost all genomic analyses that use sequencing

- 45% of the execution time when discovering sequence variants in cancer genomics studies

- 60% of the execution time when profiling the species composition of a multi-species (i.e., metagenomic) read

44

Motivation

SSD-L SSD-M SSD-H DRAM

0

25

50

75

100

Base SW-filtered Ideal-ISF Accelerator Ideal-ISF+ACC

0

2

4

N
/A

24
.8

N
/A

3.
54 2.
01

1.
64

1.
44

0.
7210

.1

Ex
ec
ut
io
n	
ti
m
e	
[s
ec
]

ACCSW-filter

45

State-of-the-art software
read mapper, Minimap2

Motivation

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

Ex
ec

ut
io

n
ti

m
e

[s
ec

]

Base integrated with a software filter
that prunes 80% of exactly-matching reads

Base integrated with an
ideal in-storage filter

N
/A

46

Motivation

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

Ex
ec

ut
io

n
ti

m
e

[s
ec

]
Low-end SSD with SATA3

interface (0.5 GB/s)

High-end SSD with PCIe Gen4
interface (7 GB/s)

Data preloaded in DRAM,
with no I/O overhead

N
/A

47

Benefits of Ideal In-Storage Filter

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

Ex
ec

ut
io

n
ti

m
e

[s
ec

]

The ideal in-storage filter significantly improves performance by

1) Reducing computation overhead

2) Reducing data movement overhead

N
/A

48

Overheads of Software Mappers

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

Ex
ec

ut
io

n
ti

m
e

[s
ec

]

I/O has a significant impact on application performance

which can be alleviated at the cost of
expensive storage devices and interfaces

N
/A

49

Overheads of Software Mappers

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

Ex
ec

ut
io

n
ti

m
e

[s
ec

]

SW-filter provides limited benefits compared to Base

N
/A

The filtering process outside the SSD must compete
with the read mapping process for the resources in the system

50

Overheads of Hardware Mappers

0

1

2

Accelerator Ideal-ISF

SSD-L SSD-H DRAM
Ex

ec
ut

io
n

ti
m

e
[s

ec
]

24
.8

10
.123%

The ideal in-storage filter significantly improves performance

Even the high-end SSD does not fully alleviate the storage bottleneck

N
/A

51

Ideal-OSF

• Execution time of an ideal in-storage filter:

• Execution time of an ideal outside-storage filter:
• 60% slower than Ideal-ISF in our analysis

52

Comparison to PIM
• Even though read mapping applications could also benefit from other near-data,

in-storage processing can fundamentally address the data movement problem
by filtering large, low-reuse data where the data initially resides.

• Even if an ideal accelerator achieved a zero execution time, there would still exist
the need to bring the data from storage to the accelerator.
- 2.15x slower than the execution time that Ideal-ISF+ACC provides in our

motivational analysis

In-storage filter can be integrated with any read mapping accelerator,

including PIM accelerators, to alleviate their data movement overhead.

53

Long Read Use Cases

54

FTL

GenStore-Enabled	SSD

GenStore	SSD	Controller

CoreCoreCore

SSD-LV
ACC

DRAM

L2P
Mappings

Flash
Ctrl.#1

Flash
Ctrl.#N

⋯ ⋯

CH-LV
ACC#1

CH-LV
ACC#N

GenStore
Metadata		

① Start	analysis ⑤ Unfiltered	data

NAND
Die#4

NAND
Die#1 ⋯

NAND
Die#4

NAND
Die#1 ⋯

③ Full-bandwidth	read

②
Preparation

Flush
Load

GenStore
FTL

④ Filtering

Host	System

❷ ❸

❶

55

FTL: Metadata
•GenStore metadata includes the mapping information of

the data structures necessary for read mapping
acceleration

• In accelerator mode, GenStore also keeps in internal
DRAM other metadata structures of the regular FTL
- Examples include the page status table and block read counts

which need to be updated during the filtering process

•We carefully design GenStore to only sequentially access
the underlying NAND flash chips while operating as an
accelerator
- Requires only a small amount of metadata to access the stored

data

56

FTL: Data Placement
•GenStore needs to properly place its data structures to

enable the full utilization of the internal SSD bandwidth

•When each data structure is initially written to the SSD,
GenStore sequentially and evenly distributes it across
NAND flash chips

•GenStore can specify the physical location of a 30-GB
data structure by maintaining only the list of 1,250 (30
GB/24 MB) physical block addresses

• It significantly reduces the size of the necessary mapping
information from 300 MB (with conventional 4-KiB page
mapping) to only 5 KB (1,250 4 bytes)

57

FTL: SSD Management Tasks
• In accelerator mode, GenStore only reads data structures to

perform filtering, and does not write any new data
- GenStore does not require any write-related SSD-management

tasks such as garbage collection and wear-leveling

• The other tasks necessary for ensuring data reliability can be done
before or after the filtering process
- GenStore significantly limits the amount of data whose retention

age would exceed the manufacturer-specified threshold since
GenStore’s filtering process takes a short time.
- GenStore-FTL can easily avoid read disturbance errors for data

with high read counts since GenStore sequentially reads NAND
flash blocks only once during filtering

58

Data Sizes
• Conventional k-mer index in Minimap2 + reference genome: 7 GB

(k = 15)

• Read-sized k-mer index before optimization: 126 GB (k= 150)

• Read-sized k-mer index after optimization: 32 GB (k = 150)

59

SSD Specs
• SSD-L: SATA3 interface (0.5 GB/s sequential read)
- 1.2 GB/s per channel bandwidth
- 8 channels

• SSD-L: PCIe Gen3 M.2 interface (3.5 GB/s sequential
read)
- 1.2 GB/s per channel bandwidth
- 16 channels

• SSD-L: PCIe Gen4 interface (7 GB/s sequential read)
- 1.2 GB/s per channel bandwidth
- 16 channels

60

Evaluation Methodology
•Performance modeling
- Ramulator for DRAM timing
- MQSim for SSD timing
- We model the end-to-end throughput of GenStore based on the

throughput of each GenStore pipeline stage
• Accessing NAND flash chips
• Accessing internal DRAM
• Accelerator computation
• Transferring unfiltered data to the host

•Real system results
- AMD EPYC 7742CPU
- 1TB DDR4 DRAM
- AMD μProf

61

GenStore-NM

GenStore-Enabled	SSD

Host	System

Flash	Array

Input	
Read	Set

SSD	ControllerDRAM

KmerIndex

Seed	Finder

Location	Buffer

① Reads
Chaining-Based	Filter

(Filters	low-score	reads)
❸

M	≤	#	of	Seeds	<	N

Seed	Count-Based	Filter
(Filters	if	#	of	Seeds	<	M)

❷

#	of	Seeds	≥	N High	chaining	score

❶

④ Seeds

③ Query

K-merWindow

Hash	Acc.
K-mers②

62

Chaining Processing Element

63

GenStore-EM

0
50
100
150
200

Ba
se

SI
M
D

GS
-E
xt GS

Ba
se

SI
M
D

GS
-E
xt GS

Ba
se

SI
M
D

GS
-E
xt GS

SSD-L SSD-M SSD-H

Other Alignment

0

5

10

Ba
se

GS
-E
xt GS

Ba
se

GS
-E
xt GS

Ba
se

GS
-E
xt GS

SSD-L SSD-M SSD-H

Ex
ec
.	t
im
e	
[s
ec
] 44 108 15

GS-Ext provides significant performance improvements

over both Base and SIMD in SSD-M and SSD-H.

GS-Ext provides limited benefits over SIMD in SSD-L

due to low external I/O bandwidth.

64

GenStore-NM

0.1

1

10

100
Ba
se GS

Ba
se GS

Ba
se GS

SSD-L SSD-M SSD-H

Ba
se

GS
-E
xt GS

Ba
se

GS
-E
xt GS

Ba
se

GS
-E
xt GS

SSD-L SSD-M SSD-H

GS-Ext performs significantly slower than Base (2.28x - 1.91x)

on all systems.

65

Effect of Inputs on GenStore-EM
N
or
m
al
iz
ed
	

ex
ec
.	t
im
e

Read	set	size:

Exact	match:
0

0.2
0.4
0.6
0.8
1

75% 85% 75% 85% 75% 85%

1x 10x 20x

75% 85% 75% 85% 75% 85%

1x 10x 20x

Base GS

66

Effect of Inputs on GenStore-NM

0.001

0.01

0.1

1

0.3% 37% 0.3% 37% 0.3% 37%

1x 10x 20x

0.3% 37% 0.3% 37% 0.3% 37%

1x 10x 20x

Base GS

N
or
m
al
iz
ed
	

ex
ec
.	t
im
e

Read	set	size:

Align.	rate:

0.
69

0.
67

0.
66

