Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

Carnegie Mellon

SAFARI

Consumer devices are everywhere!

Consumer devices are everywhere!

Consumer devices are everywhere!

Energy consumption is a first-class concern in consumer devices

Chrome

Google's web browser

Chrome

Google's web browser

TensorFlow Mobile

Google's machine learning framework

Chrome

Google's web browser

TensorFlow Mobile

Google's machine learning framework

Chrome

Google's web browser

TensorFlow Mobile

Google's machine learning framework

Google's video codec

Google's video codec

Ist key observation: 62.7% of the total system energy is spent on data movement

Ist key observation: 62.7% of the total system energy is spent on data movement

Potential solution: move computation close to data

Ist key observation: 62.7% of the total system energy is spent on data movement

Processing-In-Memory (PIM)

Potential solution: move computation close to data

Ist key observation: 62.7% of the total system energy is spent on data movement

Processing-In-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget

2nd key observation: a significant fraction of the data movement often comes from simple functions

2nd key observation: a significant fraction of the data movement often comes from simple functions

We can design lightweight logic to implement these <u>simple functions</u> in <u>memory</u>

2nd key observation: a significant fraction of the data movement often comes from simple functions

We can design lightweight logic to implement these <u>simple functions</u> in <u>memory</u>

Small embedded low-power core

2nd key observation: a significant fraction of the data movement often comes from simple functions

We can design lightweight logic to implement these <u>simple functions</u> in <u>memory</u>

Small embedded low-power core

PIM Core **Small fixed-function** accelerators

2nd key observation: a significant fraction of the data movement often comes from simple functions

We can design lightweight logic to implement these <u>simple functions</u> in <u>memory</u>

Small embedded low-power core

PIM Core **Small fixed-function** accelerators

Offloading to PIM logic reduces energy and improves performance, on average, by 55.4% and 54.2%

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

Location: Virgina EF

Time: 11:10 AM

SAFARI

Carnegie Mellon

