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Consumer Devices 

2 

Consumer devices are everywhere! 

Energy consumption is 
 a first-class concern in consumer devices 



Popular Google Consumer Workloads 
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Chrome 
Google’s web browser 

TensorFlow Mobile 
Google’s machine learning 

framework 

Video Playback 
Google’s video codec  

 

Video Capture 
Google’s video codec  
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Energy Cost of Data Movement 
 

Data Movement 

1st key observation:  62.7% of the  
total system energy is spent on data movement 

Potential solution: move computation close to data 

Challenge: limited area and energy budget 

Processing-in-Memory (PIM) 

SoC 

DRAM L2 L1 

CPU 
CPU CPU CPU 

Compute 
Unit  



Using PIM to Reduce Data Movement 
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2nd key observation: a significant fraction of  
 data movement often comes from simple functions 

PIM 
Core 

PIM 
Accelerator 

PIM 
Accelerator 

PIM 
Accelerator 

We can design lightweight logic to  
implement these simple functions in memory 

Small embedded 
 low-power core 

Small fixed-function 
accelerators 

Offloading to PIM logic reduces energy by 55.4% 
and improves performance by 54.2% on average 



Goals 
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1

2

Understand the data movement related 
bottlenecks in modern consumer workloads 

Analyze opportunities to mitigate data movement 
by using processing-in-memory (PIM) 

 

Design PIM logic that can maximize energy 
efficiency given the limited area and energy 

budget in consumer devices 
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Outline 

•  Introduction 

•  Background 
•  Analysis Methodology 
•  Workload Analysis 
•  Evaluation 
•  Conclusion 
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Potential Solution to Address Data Movement  
•  Processing-in-Memory (PIM)  
–  A potential solution to reduce data movement 
–  Idea: move computation close to data 

 

 
•  Enabled by recent advances in 3D-stacked memory 
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Reduces data movement 
Exploits large in-memory bandwidth 
Exploits shorter access latency to memory 



Outline 

•  Introduction 
•  Background 

•  Analysis Methodology 
•  Workload Analysis 
•  Evaluation 
•  Conclusion 
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Workload Analysis Methodology 
•  Workload Characterization 
–  Chromebook with an 

Intel Celeron SoC and 2GB of DRAM 
–  Extensively use performance counters within SoC 

 

•  Energy Model 
–  Sum of the energy consumption within the CPU,  

all caches, off-chip interconnects, and DRAM 
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DRAM L2 L1 CPU CPU 



PIM Logic Implementation 
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SoC 
DRAM 

Logic Layer 

PIM Core 
PIM 

Accelerator 
PIM 

Accelerator 
PIM 

Accelerator N 
Customized embedded 
general-purpose core 

256-bit SIMD unit  
No aggressive ILP techniques 

Small fixed-function 
accelerators 

Multiple copies of customized  
in-memory logic unit 



Workload Analysis 
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Chrome 
Google’s web browser 

TensorFlow 
Google’s machine learning 

framework 

Video Playback 
Google’s video codec 

Video Capture 
Google’s video Codec 
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TensorFlow 
Google’s machine learning 

framework 

Video Playback 
Google’s video codec 

Video Capture 
Google’s video codec 

 

Workload Analysis 

Chrome 
Google’s web browser 



How Chrome Renders a Web Page 
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HTML 

CSS 

HTML 
Parser 

CSS 
Parser 

Render 
Tree Layout Rasteriza-

tion 
Composit-

ing 

HTML 

CSS 

HTML 
Parser 

CSS 
Parser 

Loading and 
Parsing 

 

Render 
Tree Layout Rasteriza-

tion 
Composi-

ting 

Painting 
 



How Chrome Renders a Web Page 
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HTML 

CSS 

HTML 
Parser 

CSS 
Parser 

Render 
Tree Layout Rasteriza-

tion 
Composi-

ting 

HTML 

CSS 

HTML 
Parser 

CSS 
Parser 

Loading and 
Parsing 

 

Render 
Tree Layout 

Layouting 
 

Rasteriza-
tion 

Composi-
ting 

Painting 
 

paints those objects  
and generates the bitmaps calculates the 

 visual elements and 
position of each object 

 assembles all layers 
into a final screen image 

 



Browser Analysis 
•  To satisfy user experience, the browser must 

provide: 
–  Fast loading of webpages 
–  Smooth scrolling of webpages 
–  Quick switching between browser tabs 

•  We focus on two important user interactions: 
 1)  Page Scrolling  
 2)   Tab Switching 
–  Both include page loading 
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Scrolling 
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What Does Happen During Scrolling? 
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HTML 

CSS 

HTML 
Parser 

CSS 
Parser 

Render 
Tree Layout Rasteriza-

tion 
Composi-

itng Layout Rasteriza-
tion 

Composi-
ting 

Rasterization generates the bitmap 
and sends it to GPU for compositing 

Texture 
Tiling 

to minimize cache misses  
during compositing, the graphics driver 

reorganizes the bitmaps 

rasterization uses color blitters 
 to convert the basic primitives  

into bitmaps 
Color 

Blitting 



Scrolling Energy Analysis 
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41.9% of page scrolling energy is spent on 
 texture tiling and color blitting 



A significant portion of 
total data movement comes from 
 texture tiling and color blitting 

Scrolling a Google Docs Web Page 
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77% of total energy 
consumption goes to 

data movement 

37.7% of total system energy  
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Scrolling a Google Docs Web Page 

A significant portion of 
total data movement comes from 
 texture tiling and color blitting 
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77% of total energy 
consumption goes to 

data movement 

37.7% of total system energy  
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Data	Movement	 Compute	
Can we use PIM to mitigate the data movement cost 

 for texture tiling and color blitting? 



Can We Use PIM for Texture Tiling? 

22 

!me	
CPU	 Memory	

Rasterization 

Read Bitmap 

Conversion 

Write Back 

data	movement	

CPU	 PIM	

 CPU + PIM 

Rasterization 

Conversion id
le
	

 1) Eliminate a significant 
portion of data movement 

 2) Free up CPU to perform 

CPU-Only 

Linear 
Bitmap 

Texture 
Tiles Invoke 

Compositing 

Invoke 
Compositing 

Linear 
Bitmap 

Texture 
Tiles 

Major sources of data movement: 
1) poor data locality  
2) large rasterized bitmap size (e.g. 4MB) 

high	

Te
xt
ur
e	
Ti
lin
g	

Texture tiling is a good candidate for 
 PIM execution 



Can We Implement Texture Tiling in PIM Logic? 
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Requires simple primitives: memcopy, bitwise 
operations, and simple arithmetic operations 

PIM Core PIM 
Accelerator 

Texture 
Tiling 

Linear Bitmap Tiled Texture 

9.4% of the area 
available for PIM logic 

7.1% of the area 
available for PIM logic 

PIM core and PIM accelerator are feasible to 
implement in-memory Texture Tiling 



Color Blitting Analysis 
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  Color blitting is a good candidate  
for PIM execution  

It is feasible to implement color blitting  
in PIM core and PIM accelerator 

Generates a large amount of data movement 

Requires low-cost operations: 
 Memset, simple arithmetic, and shift operations 

 

Accounts for 19.1% of the total system energy during scrolling 



Scrolling Wrap Up 
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Texture tiling and color blitting account for 
a significant portion (41.9%) of energy consumption 

37.7% of total system energy goes to 
data movement generated by these functions 

Both functions can benefit significantly  
from PIM execution 

    Both functions are feasible to implement  
as PIM logic 

1

2



Tab Switching 
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What Happens During Tab Switching? 
•  Chrome employs a multi-process architecture 
–  Each tab is a separate process 

 
 
 
 
 
 
 

•  Main operations during tab switching: 
–  Context switch 
–  Load the new page 
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Chrome Process 

… 

Tab 1  
Process  

 

Tab 2 
Process  

 

Tab N 
Process  

 



Memory Consumption 
•  Primary concerns during tab switching: 

–   How fast a new tab loads and becomes interactive 
–   Memory consumption 
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CPU 

DRAM 
Inactive Tab 

Compression Decompression 

Chrome uses compression to 
 reduce each tab’s memory footprint 

 

ZRAM 

Compressed Tab 



Data Movement Study 
•  To study data movement during tab switching,  

we emulate a user switching through 50 tabs 

 
 

 

 

29 

Compression and decompression 
contribute to18.1% of the total system energy 

19.6 GB of data moves between 
CPU and ZRAM 2

1

We make two key observations: 



Can We Use PIM to Mitigate the Cost? 
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CPU	
CPU-Only 

Memory	 CPU	
CPU + PIM 

PIM	
!me	

Swap out N pages 

Read N Pages 

Compress 

Other tasks 

Write back 

co
m
pr
es
si
on

	

ZRAM 

Swap out N pages 

Other tasks 
Compress 

ZRAM 
No off-chip data 

movement 

PIM core and PIM accelerator are feasible to 
implement in-memory compression/decompression 

data	movement	
high	

Uncompressed 
Pages 

Uncompressed 
Pages 



Tab Switching Wrap Up 
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A large amount of data movement happens 
during tab switching as Chrome attempts to 

compress and decompress tabs 

2

Both functions can benefit from PIM execution 
and can be implemented as PIM logic 
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Chrome 
Google’s web browser 

TensorFlow 
Google’s machine learning 

framework 

Video Playback 
Google’s video codec  

 

Video Capture 
Google’s video codec  

 

Workload Analysis 
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Chrome 
Google’s web browser 

TensorFlow 
Google’s machine learning 

framework 

Video Playback 
Google’s video codec  

 

Video Capture 
Google’s video codec  

 

Workload Analysis 



TensorFlow Mobile 
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 57.3% of the inference energy is spent on 
 data movement 

 54.4% of the data movement energy comes from  
packing/unpacking and quantization 

Inference  Prediction 



Packing 
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  Reorders elements of matrices to minimize  
cache misses during matrix multiplication 

Up to 40% of the 
 inference energy and 31% of 

 inference execution time  

Packing’s data movement 
accounts for up to  

35.3% of the inference energy 

Packing 
Matrix Packed Matrix 

A simple data reorganization process 
 that requires simple arithmetic  



Quantization 
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Converts 32-bit floating point to 8-bit integers to improve 
inference execution time and energy consumption  

Up to 16.8% of the 
inference energy  

and 16.1% of  
inference execution time  

Majority of quantization 
energy comes from  

data movement 

Quantization 
floating point integer 

A simple data conversion operation that requires 
shift, addition, and multiplication operations 



Quantization 
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Converts 32-bit floating point to 8-bit integers to improve 
inference execution time and energy consumption  

Up to 16.8% of the 
inference energy  

and 16.1% of  
inference execution time  

Majority of quantization 
energy comes from  

data movement 

Quantization 
floating point integer 

A simple data conversion operation that requires 
shift, addition, and multiplication operations 

Based on our analysis, we conclude that: 
•  Both functions are good candidates for PIM execution  
•  It is feasible to implement them in PIM logic 



Video Playback and Capture 
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Compressed 
video VP9 

Decoder 

Display 
Captured 

video VP9 
Encoder 

Compressed 
video 

Majority of energy is spent on data movement 

Majority of data movement comes from  
simple functions in decoding and encoding pipelines 



Outline 

•  Introduction 
•  Background 
•  Analysis Methodology 
•  Workload Analysis 

•  Evaluation 
•  Conclusion 

39 



Evaluation Methodology  
•  System Configuration (gem5 Simulator) 
–  SoC:  4 OoO cores, 8-wide issue, 64 kB L1cache, 

2MB L2 cache 

–  PIM Core: 1 core per vault, 1-wide issue, 4-wide SIMD,  
32kB L1 cache 

–  3D-Stacked Memory: 2GB cube, 16 vaults per cube 
•  Internal Bandwidth: 256GB/S  
•  Off-Chip Channel Bandwidth: 32 GB/s 

–  Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler 
 

•  We study each target in isolation and emulate each 
separately and run them in our simulator 
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Normalized Energy  
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PIM core and PIM accelerator reduces 
 energy consumption on average by 49.1% and 55.4% 

77.7% and 82.6% of energy reduction for texture tiling 
and packing comes from eliminating data movement 
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Normalized Runtime 
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Offloading these kernels to PIM core and PIM accelerator 
improves performance on average by 44.6% and 54.2% 



Conclusion 
•  Energy consumption is a major challenge in consumer devices 
•  We conduct an in-depth analysis of popular Google 

consumer workloads 
–  62.7% of the total system energy is spent on data movement 
–  Most of the data movement often come from simple functions 

that consists of simple operations  

•  We use PIM to reduce data movement cost  
–  We design lightweight logic to implement 

simple operations in DRAM 

 
 
–  Reduces total energy by 55.4% on average  
–  Reduces execution time by 54.2% on average  
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PIM 
Core 

PIM 
Accelerator 

PIM 
Accelerator 

PIM 
Accelerator 
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Video Playback 
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 63.5% of the system energy is spent on 
 data movement 

Compressed 
video VP9 Decoder 

Display 

 80.4% of the data movement energy comes from  
sub-pixel interpolation and deblocking filter 

Deblocking filter: a simple low-
pass filter that attempts to 

remove discontinuity in pixels 

Sub-pixel interpolation: 
interpolates the value of 

pixels at non-integer location 



Video Playback 
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 63.5% of the system energy is spent on 
 data movement 

Compressed 
video VP9 Decoder 

Display 

 80.4% of the data movement energy comes from  
sub-pixel interpolation and deblocking filter 

Deblocking filter: a simple low-
pass filter that attempts to 

remove discontinuity in pixels 

Sub-pixel interpolation: 
interpolates the value of 

pixels at non-integer location 

Based on our analysis, we conclude that: 
•  Both Functions can benefit from PIM execution  
•  They can be implemented in PIM logic 



Video Capture 
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 59.1% of the system energy is spent on 
 data movement 

Captured 
video 

VP9 Encoder 

Compressed 

 Majority of the data movement energy comes from  
motion estimation which accounts for 21.3%  

of total system energy 

Motion estimation: compresses the frames using 
temporal redundancy between them 



Video Capture 
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 59.1% of the system energy is spent on 
 data movement 

Captured 
video 

VP9 Encoder 

Compressed 

 Majority of the data movement energy comes from  
motion estimation which accounts for 21.3%  

of total system energy 

Motion estimation: compresses the frames using 
temporal redundancy between them 

Motion Estimation is a good candidate for PIM 
execution and is feasible to be implemented at 

PIM logic 



TensorFlow Mobile 
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 57.3% of the inference energy is spent on 
 data movement 

 54.4% of the data movement energy comes from  
packing/unpacking and quantization 

Quantization: A simple data 
conversion operation that 

converts 32-bit floating point to 8-
bit integers 

Packing: A simple  
data re-organization process 

that reorders elements of matrices 

Inference  Prediction 



TensorFlow Mobile 
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 57.3% of the inference energy is spent on 
 data movement 

 54.4% of the data movement energy comes from  
packing/unpacking and quantization 

Quantization: A simple data 
conversion operation that converts 

32-bit floating point to 8-bit 
integers 

Packing: A simple  
data re-organization process 

that reorders elements of matrices 

Inference  Prediction 

Based on our analysis, we conclude that: 
•  Both Functions are good candidate for PIM execution  
•  It is feasible to implement them in PIM logic 



Data Movement Study 
•  To study data movement during tab switching, we 

did an experiment: 
–  A user opens 50 tabs (most-accessed websites) 
–  Scrolls through each for a few second 
–  Switches to the next tab 

•  We make two key observations: 
–   Compression and decompression contribute to 18.1% of 

the total system energy 
–   19.6 GB of data swapped in and out of ZRAM 
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Other Details and Results in the paper 

•  Detailed discussion of the other workloads 
–  Tensorflow Mobile 
–  Video Playback 
–  Video Capture 

•  Detailed discussion of  VP9 hardware decoder and 
encoder 

 

•  System Integration 
–  Software interface 
–  Coherence 
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Color Blitting Analysis 
•  Color blitting generates a large amount of data movement 

–  Accounts for 19.1% of the total system energy used during page 
scrolling 

–   63.9% of the energy consumed by color blitting is due to data 
movement 
 

•  Majority of data movement comes from: 
–  Streaming access pattern  
–  The large sizes of the bitmaps (e.g., 1024x1024 pixels) 

•  Color blitting require low-cost computation operations 
–  Memset, simple arithmetic for alpha blending, shift operations 
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Based on our analysis, we conclude that: 
•  Color blitting is a good candidate for PIM execution  
•  It is feasible to implement color blitting in PIM logic 



Data Movement During Tab-Switching 
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11.7 GB of data is compressed and swapped 
out to ZRAM, at a rate of up to 201 MB/s 

7.8 GB of data is swapped in from ZRAM and 
gets decompressed, at a rate of up to 227 MB/s 
When switching between 50 tabs, compression 

and decompression contribute to 18.1% the 
total system energy 



Methodology: Implementing PIM Targets 
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SoC 

DRAM 

PIM 
Logic 

PIM 
Logic 

PIM 
Logic 

. . . 
Vault 

Mem Ctrl 

Vault 
Mem Ctrl 

Vault 
Mem Ctrl 

. . .

3.5–4.4 mm2 area budget for the 
PIM logic 

Cache 

PIM Core OR 

PIM-
Accelerator  1 

PIM-
Accelerator  N 

. . . 

General-purpose PIM core 
•  A customized low-power single issue core 
•  A 4-wide SIMD unit  

 

Fixed-function PIM Accelerator 
•  A customized in-memory logic unit  
•  performs a single thread of the PIM target 

 

Vault 



Cost Analysis: Texture Tiling 
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  Texture Tiling (int* src, int* dst, … ) 
{ 
… 
   for (y = k*columnWidth, y<maxWidth, y++) 
   { 
     … 
     int swizzle = swizzle1; 
     mem_copy (dst + (y*swizzle), src + x, k-x); 
     … 
     for (x=x1; x<x2; x+=tile) { 
       mem_copy ((x+y)^swizzle, src + x, x3-x); 
       swizzle ^= swizzle_bit; 
       … 
   } 
 
 
 
 
 
 
 

Texture Tiling 

Requires simple primitives: memcopy, bitwise 
operations, and simple arithmetic operations 

PIM core PIM 
accelelerator 

SIMD 4-wide 
0.33 mm2  

(9.4% of the area available per vault ) 

Multiple In-memory tiling unit 
0.25 mm2  

(7.1% of the area available per vault ) 



Memory Consumption 
•  Potential Solution: kill inactive background tabs 

–  When the user accesses those tabs again,  
reload the tab pages from the disk 

–   Downsides: 1) high latency 2) loss of data 
 

 
 
 

•  Chrome uses compression to reduce each tab’s 
memory footprint 
–  Uses compression to compress inactive pages and places 

them into a DRAM-based memory pool (ZRAM) 
–  When the user switches to a previously-inactive tab, Chrome 

loads the data from ZRAM and decompresses it 
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Methodology: Identifying PIM 
targets 
•  We pick a function as PIM target candidate if: 

–  Consumes the most energy out of the all functions  
–  Significant data movement cost (MPKI > 10) 
–  Bounded by data movement, not computation 

•  We drop any candidate if:  
   Incurs any performance loss when runs on PIM logic 
   Requires more area than is available in the logic layer of 3D-
stacked  memory 
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