
Google Workloads
 for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand
Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,

 Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
 Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

Consumer Devices

2

Consumer devices are everywhere!

Energy consumption is
 a first-class concern in consumer devices

Popular Google Consumer Workloads

3

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

4

Energy Cost of Data Movement

Data Movement

1st key observation: 62.7% of the
total system energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget

Processing-in-Memory (PIM)

SoC

DRAM L2 L1

CPU
CPU CPU CPU

Compute
Unit

Using PIM to Reduce Data Movement

5

2nd key observation: a significant fraction of
 data movement often comes from simple functions

PIM
Core

PIM
Accelerator

PIM
Accelerator

PIM
Accelerator

We can design lightweight logic to
implement these simple functions in memory

Small embedded
 low-power core

Small fixed-function
accelerators

Offloading to PIM logic reduces energy by 55.4%
and improves performance by 54.2% on average

Goals

6

1

2

Understand the data movement related
bottlenecks in modern consumer workloads

Analyze opportunities to mitigate data movement
by using processing-in-memory (PIM)

Design PIM logic that can maximize energy
efficiency given the limited area and energy

budget in consumer devices

3

Outline

•  Introduction

•  Background
•  Analysis Methodology
•  Workload Analysis
•  Evaluation
•  Conclusion

7

Potential Solution to Address Data Movement
•  Processing-in-Memory (PIM)
–  A potential solution to reduce data movement
–  Idea: move computation close to data

•  Enabled by recent advances in 3D-stacked memory

8

Reduces data movement
Exploits large in-memory bandwidth
Exploits shorter access latency to memory

Outline

•  Introduction
•  Background

•  Analysis Methodology
•  Workload Analysis
•  Evaluation
•  Conclusion

9

Workload Analysis Methodology
•  Workload Characterization
–  Chromebook with an

Intel Celeron SoC and 2GB of DRAM
–  Extensively use performance counters within SoC

•  Energy Model
–  Sum of the energy consumption within the CPU,

all caches, off-chip interconnects, and DRAM

10

DRAM L2 L1 CPU CPU

PIM Logic Implementation

11

SoC
DRAM

Logic Layer

PIM Core
PIM

Accelerator
PIM

Accelerator
PIM

Accelerator N
Customized embedded
general-purpose core

256-bit SIMD unit
No aggressive ILP techniques

Small fixed-function
accelerators

Multiple copies of customized
in-memory logic unit

Workload Analysis

12

Chrome
Google’s web browser

TensorFlow
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video Codec

13

TensorFlow
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Workload Analysis

Chrome
Google’s web browser

How Chrome Renders a Web Page

14

HTML

CSS

HTML
Parser

CSS
Parser

Render
Tree Layout Rasteriza-

tion
Composit-

ing

HTML

CSS

HTML
Parser

CSS
Parser

Loading and
Parsing

Render
Tree Layout Rasteriza-

tion
Composi-

ting

Painting

How Chrome Renders a Web Page

15

HTML

CSS

HTML
Parser

CSS
Parser

Render
Tree Layout Rasteriza-

tion
Composi-

ting

HTML

CSS

HTML
Parser

CSS
Parser

Loading and
Parsing

Render
Tree Layout

Layouting

Rasteriza-
tion

Composi-
ting

Painting

paints those objects
and generates the bitmaps calculates the

 visual elements and
position of each object

 assembles all layers
into a final screen image

Browser Analysis
•  To satisfy user experience, the browser must

provide:
–  Fast loading of webpages
–  Smooth scrolling of webpages
–  Quick switching between browser tabs

•  We focus on two important user interactions:
 1) Page Scrolling
 2) Tab Switching
–  Both include page loading

16

Scrolling

17

What Does Happen During Scrolling?

18

HTML

CSS

HTML
Parser

CSS
Parser

Render
Tree Layout Rasteriza-

tion
Composi-

itng Layout Rasteriza-
tion

Composi-
ting

Rasterization generates the bitmap
and sends it to GPU for compositing

Texture
Tiling

to minimize cache misses
during compositing, the graphics driver

reorganizes the bitmaps

rasterization uses color blitters
 to convert the basic primitives

into bitmaps
Color

Blitting

Scrolling Energy Analysis

19

0%	
20%	
40%	
60%	
80%	

100%	

Fr
ac
%o

n	
of
	

To
ta
l	E
ne

rg
y	

Texture	Tiling		 Color	Bli6ng		 Other	

Google
Docs

Gmail Google
Calendar

Word-
Press

Twitter Ani-
mation

AVG

41.9% of page scrolling energy is spent on
 texture tiling and color blitting

A significant portion of
total data movement comes from
 texture tiling and color blitting

Scrolling a Google Docs Web Page

20

77% of total energy
consumption goes to

data movement

37.7% of total system energy

CPU	 L1	 LLC	 Inter-	
connect	

Mem	
Ctrl	

DRAM	To
ta
l	E
ne

rg
y	
(p
J)	 Texture	Tiling		 Color	Bli6ng		 Other	

0×1012	
3×1012	
6×1012	
9×1012	

12×1012	
15×1012	
18×1012	

0%	

10%	

20%	

30%	

40%	

Texture	
Tiling		

Color	
Bli6ng		

Fr
ac
%o

n	
of
		

To
ta
l	E
ne

rg
y	
	

Data	Movement	 Compute	

Scrolling a Google Docs Web Page

A significant portion of
total data movement comes from
 texture tiling and color blitting

21

77% of total energy
consumption goes to

data movement

37.7% of total system energy

CPU	 L1	 LLC	 Inter-	
connect	

Mem	
Ctrl	

DRAM	To
ta
l	E
ne

rg
y	
(p
J)	 Texture	Tiling		 Color	Bli6ng		 Other	

0×1012	
3×1012	
6×1012	
9×1012	

12×1012	
15×1012	
18×1012	

0%	

10%	

20%	

30%	

40%	

Texture	
Tiling		

Color	
Bli6ng		

Fr
ac
%o

n	
of
		

To
ta
l	E
ne

rg
y	
	

Data	Movement	 Compute	
Can we use PIM to mitigate the data movement cost

 for texture tiling and color blitting?

Can We Use PIM for Texture Tiling?

22

!me	
CPU	 Memory	

Rasterization

Read Bitmap

Conversion

Write Back

data	movement	

CPU	 PIM	

 CPU + PIM

Rasterization

Conversion id
le
	

 1) Eliminate a significant
portion of data movement

 2) Free up CPU to perform

CPU-Only

Linear
Bitmap

Texture
Tiles Invoke

Compositing

Invoke
Compositing

Linear
Bitmap

Texture
Tiles

Major sources of data movement:
1) poor data locality
2) large rasterized bitmap size (e.g. 4MB)

high	

Te
xt
ur
e	
Ti
lin
g	

Texture tiling is a good candidate for
 PIM execution

Can We Implement Texture Tiling in PIM Logic?

23

Requires simple primitives: memcopy, bitwise
operations, and simple arithmetic operations

PIM Core PIM
Accelerator

Texture
Tiling

Linear Bitmap Tiled Texture

9.4% of the area
available for PIM logic

7.1% of the area
available for PIM logic

PIM core and PIM accelerator are feasible to
implement in-memory Texture Tiling

Color Blitting Analysis

24

 Color blitting is a good candidate
for PIM execution

It is feasible to implement color blitting
in PIM core and PIM accelerator

Generates a large amount of data movement

Requires low-cost operations:
 Memset, simple arithmetic, and shift operations

Accounts for 19.1% of the total system energy during scrolling

Scrolling Wrap Up

25

Texture tiling and color blitting account for
a significant portion (41.9%) of energy consumption

37.7% of total system energy goes to
data movement generated by these functions

Both functions can benefit significantly
from PIM execution

 Both functions are feasible to implement
as PIM logic

1

2

Tab Switching

26

What Happens During Tab Switching?
•  Chrome employs a multi-process architecture
–  Each tab is a separate process

•  Main operations during tab switching:
–  Context switch
–  Load the new page

27

Chrome Process

…

Tab 1
Process

Tab 2
Process

Tab N
Process

Memory Consumption
•  Primary concerns during tab switching:

–  How fast a new tab loads and becomes interactive
–  Memory consumption

28

CPU

DRAM
Inactive Tab

Compression Decompression

Chrome uses compression to
 reduce each tab’s memory footprint

ZRAM

Compressed Tab

Data Movement Study
•  To study data movement during tab switching,

we emulate a user switching through 50 tabs

29

Compression and decompression
contribute to18.1% of the total system energy

19.6 GB of data moves between
CPU and ZRAM 2

1

We make two key observations:

Can We Use PIM to Mitigate the Cost?

30

CPU	
CPU-Only

Memory	 CPU	
CPU + PIM

PIM	
!me	

Swap out N pages

Read N Pages

Compress

Other tasks

Write back

co
m
pr
es
si
on

	

ZRAM

Swap out N pages

Other tasks
Compress

ZRAM
No off-chip data

movement

PIM core and PIM accelerator are feasible to
implement in-memory compression/decompression

data	movement	
high	

Uncompressed
Pages

Uncompressed
Pages

Tab Switching Wrap Up

31

A large amount of data movement happens
during tab switching as Chrome attempts to

compress and decompress tabs

2

Both functions can benefit from PIM execution
and can be implemented as PIM logic

32

Chrome
Google’s web browser

TensorFlow
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Workload Analysis

33

Chrome
Google’s web browser

TensorFlow
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Workload Analysis

TensorFlow Mobile

34

 57.3% of the inference energy is spent on
 data movement

 54.4% of the data movement energy comes from
packing/unpacking and quantization

Inference Prediction

Packing

36

 Reorders elements of matrices to minimize
cache misses during matrix multiplication

Up to 40% of the
 inference energy and 31% of

 inference execution time

Packing’s data movement
accounts for up to

35.3% of the inference energy

Packing
Matrix Packed Matrix

A simple data reorganization process
 that requires simple arithmetic

Quantization

36

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

Up to 16.8% of the
inference energy

and 16.1% of
inference execution time

Majority of quantization
energy comes from

data movement

Quantization
floating point integer

A simple data conversion operation that requires
shift, addition, and multiplication operations

Quantization

37

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

Up to 16.8% of the
inference energy

and 16.1% of
inference execution time

Majority of quantization
energy comes from

data movement

Quantization
floating point integer

A simple data conversion operation that requires
shift, addition, and multiplication operations

Based on our analysis, we conclude that:
•  Both functions are good candidates for PIM execution
•  It is feasible to implement them in PIM logic

Video Playback and Capture

38

Compressed
video VP9

Decoder

Display
Captured

video VP9
Encoder

Compressed
video

Majority of energy is spent on data movement

Majority of data movement comes from
simple functions in decoding and encoding pipelines

Outline

•  Introduction
•  Background
•  Analysis Methodology
•  Workload Analysis

•  Evaluation
•  Conclusion

39

Evaluation Methodology
•  System Configuration (gem5 Simulator)
–  SoC: 4 OoO cores, 8-wide issue, 64 kB L1cache,

2MB L2 cache

–  PIM Core: 1 core per vault, 1-wide issue, 4-wide SIMD,
32kB L1 cache

–  3D-Stacked Memory: 2GB cube, 16 vaults per cube
•  Internal Bandwidth: 256GB/S
•  Off-Chip Channel Bandwidth: 32 GB/s

–  Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler

•  We study each target in isolation and emulate each
separately and run them in our simulator

40

Normalized Energy

0

0.2

0.4

0.6

0.8

1

Texture
Tiling

Color
Blitting

Com-
pression

Decom-
pression

Packing Quantization Sub-Pixel
Interpolation

Deblocking
Filter

Motion
Estimation

N
or

m
al

iz
ed

 E
ne

rg
y

CPU-Only PIM-Core PIM-Acc

Chrome Browser Video Playback and
Capture

TensorFlow
Mobile

PIM core and PIM accelerator reduces
 energy consumption on average by 49.1% and 55.4%

77.7% and 82.6% of energy reduction for texture tiling
and packing comes from eliminating data movement

41

Normalized Runtime

42

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

Texture							
Tiling	

Color							
Bli6ng	

Comp-				
ression	

Decomp-				
ression	

Sub-Pixel	
InterpolaRon	

Deblocking	
Filter	

MoRon	
EsRmaRon	

TensorFlow	N
or
m
al
iz
ed

	R
un

%m
e	

CPU-Only	 PIM-Core	 PIM-Acc	

Chrome Browser Video Playback
and Capture

TensorFlow
Mobile

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%

Conclusion
•  Energy consumption is a major challenge in consumer devices
•  We conduct an in-depth analysis of popular Google

consumer workloads
–  62.7% of the total system energy is spent on data movement
–  Most of the data movement often come from simple functions

that consists of simple operations

•  We use PIM to reduce data movement cost
–  We design lightweight logic to implement

simple operations in DRAM

–  Reduces total energy by 55.4% on average
–  Reduces execution time by 54.2% on average

43

PIM
Core

PIM
Accelerator

PIM
Accelerator

PIM
Accelerator

Google Workloads
 for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand
Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,

 Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
 Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

Backup

Video Playback

39

 63.5% of the system energy is spent on
 data movement

Compressed
video VP9 Decoder

Display

 80.4% of the data movement energy comes from
sub-pixel interpolation and deblocking filter

Deblocking filter: a simple low-
pass filter that attempts to

remove discontinuity in pixels

Sub-pixel interpolation:
interpolates the value of

pixels at non-integer location

Video Playback

40

 63.5% of the system energy is spent on
 data movement

Compressed
video VP9 Decoder

Display

 80.4% of the data movement energy comes from
sub-pixel interpolation and deblocking filter

Deblocking filter: a simple low-
pass filter that attempts to

remove discontinuity in pixels

Sub-pixel interpolation:
interpolates the value of

pixels at non-integer location

Based on our analysis, we conclude that:
•  Both Functions can benefit from PIM execution
•  They can be implemented in PIM logic

Video Capture

41

 59.1% of the system energy is spent on
 data movement

Captured
video

VP9 Encoder

Compressed

 Majority of the data movement energy comes from
motion estimation which accounts for 21.3%

of total system energy

Motion estimation: compresses the frames using
temporal redundancy between them

Video Capture

42

 59.1% of the system energy is spent on
 data movement

Captured
video

VP9 Encoder

Compressed

 Majority of the data movement energy comes from
motion estimation which accounts for 21.3%

of total system energy

Motion estimation: compresses the frames using
temporal redundancy between them

Motion Estimation is a good candidate for PIM
execution and is feasible to be implemented at

PIM logic

TensorFlow Mobile

35

 57.3% of the inference energy is spent on
 data movement

 54.4% of the data movement energy comes from
packing/unpacking and quantization

Quantization: A simple data
conversion operation that

converts 32-bit floating point to 8-
bit integers

Packing: A simple
data re-organization process

that reorders elements of matrices

Inference Prediction

TensorFlow Mobile

32

 57.3% of the inference energy is spent on
 data movement

 54.4% of the data movement energy comes from
packing/unpacking and quantization

Quantization: A simple data
conversion operation that converts

32-bit floating point to 8-bit
integers

Packing: A simple
data re-organization process

that reorders elements of matrices

Inference Prediction

Based on our analysis, we conclude that:
•  Both Functions are good candidate for PIM execution
•  It is feasible to implement them in PIM logic

Data Movement Study
•  To study data movement during tab switching, we

did an experiment:
–  A user opens 50 tabs (most-accessed websites)
–  Scrolls through each for a few second
–  Switches to the next tab

•  We make two key observations:
–  Compression and decompression contribute to 18.1% of

the total system energy
–  19.6 GB of data swapped in and out of ZRAM

28

Other Details and Results in the paper

•  Detailed discussion of the other workloads
–  Tensorflow Mobile
–  Video Playback
–  Video Capture

•  Detailed discussion of VP9 hardware decoder and
encoder

•  System Integration
–  Software interface
–  Coherence

37

Color Blitting Analysis
•  Color blitting generates a large amount of data movement

–  Accounts for 19.1% of the total system energy used during page
scrolling

–  63.9% of the energy consumed by color blitting is due to data
movement

•  Majority of data movement comes from:
–  Streaming access pattern
–  The large sizes of the bitmaps (e.g., 1024x1024 pixels)

•  Color blitting require low-cost computation operations
–  Memset, simple arithmetic for alpha blending, shift operations

27

Based on our analysis, we conclude that:
•  Color blitting is a good candidate for PIM execution
•  It is feasible to implement color blitting in PIM logic

Data Movement During Tab-Switching

32

0	
50	

100	
150	
200	
250	

0	 20	 40	 60	 80	 100	 120	 140	 160	 180	 200	 220	

Da
ta
	S
w
ap

pe
d	
O
ut
	

to
	Z
RA

M
	(M

B/
s)
	

Time	(seconds)	

0	
50	

100	
150	
200	
250	

0	 20	 40	 60	 80	 100	 120	 140	 160	 180	 200	 220	

Da
ta
	S
w
ap

pe
d	
In
	

fr
om

	Z
RA

M
	(M

B/
s)
	

Time	(seconds)	

11.7 GB of data is compressed and swapped
out to ZRAM, at a rate of up to 201 MB/s

7.8 GB of data is swapped in from ZRAM and
gets decompressed, at a rate of up to 227 MB/s
When switching between 50 tabs, compression

and decompression contribute to 18.1% the
total system energy

Methodology: Implementing PIM Targets

15

SoC

DRAM

PIM
Logic

PIM
Logic

PIM
Logic

. . .
Vault

Mem Ctrl

Vault
Mem Ctrl

Vault
Mem Ctrl

. . .

3.5–4.4 mm2 area budget for the
PIM logic

Cache

PIM Core OR

PIM-
Accelerator 1

PIM-
Accelerator N

. . .

General-purpose PIM core
•  A customized low-power single issue core
•  A 4-wide SIMD unit

Fixed-function PIM Accelerator
•  A customized in-memory logic unit
•  performs a single thread of the PIM target

Vault

Cost Analysis: Texture Tiling

57

 Texture Tiling (int* src, int* dst, …)
{
…
 for (y = k*columnWidth, y<maxWidth, y++)
 {
 …
 int swizzle = swizzle1;
 mem_copy (dst + (y*swizzle), src + x, k-x);
 …
 for (x=x1; x<x2; x+=tile) {
 mem_copy ((x+y)^swizzle, src + x, x3-x);
 swizzle ^= swizzle_bit;
 …
 }

Texture Tiling

Requires simple primitives: memcopy, bitwise
operations, and simple arithmetic operations

PIM core PIM
accelelerator

SIMD 4-wide
0.33 mm2

(9.4% of the area available per vault)

Multiple In-memory tiling unit
0.25 mm2

(7.1% of the area available per vault)

Memory Consumption
•  Potential Solution: kill inactive background tabs

–  When the user accesses those tabs again,
reload the tab pages from the disk

–  Downsides: 1) high latency 2) loss of data

•  Chrome uses compression to reduce each tab’s
memory footprint
–  Uses compression to compress inactive pages and places

them into a DRAM-based memory pool (ZRAM)
–  When the user switches to a previously-inactive tab, Chrome

loads the data from ZRAM and decompresses it

30

Methodology: Identifying PIM
targets
•  We pick a function as PIM target candidate if:

–  Consumes the most energy out of the all functions
–  Significant data movement cost (MPKI > 10)
–  Bounded by data movement, not computation

•  We drop any candidate if:
 Incurs any performance loss when runs on PIM logic
 Requires more area than is available in the logic layer of 3D-
stacked memory

59

