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Abstract
We are experiencing an explosive growth in the number of con-
sumer devices, including smartphones, tablets, web-based compu-
ters such as Chromebooks, and wearable devices. For this class of
devices, energy efficiency is a first-class concern due to the limi-
ted battery capacity and thermal power budget. We find that data
movement is a major contributor to the total system energy and
execution time in consumer devices. The energy and performance
costs of moving data between the memory system and the compute
units are significantly higher than the costs of computation. As a
result, addressing data movement is crucial for consumer devices.

In this work, we comprehensively analyze the energy and per-
formance impact of data movement for several widely-used Google
consumer workloads: (1) the Chrome web browser; (2) TensorFlow
Mobile, Google’s machine learning framework; (3) video playback,
and (4) video capture, both of which are used in many video services
such as YouTube and Google Hangouts. We find that processing-in-
memory (PIM) can significantly reduce data movement for all of
these workloads, by performing part of the computation close to
memory. Each workload contains simple primitives and functions
that contribute to a significant amount of the overall data mo-
vement. We investigate whether these primitives and functions
are feasible to implement using PIM, given the limited area and
power constraints of consumer devices. Our analysis shows that
offloading these primitives to PIM logic, consisting of either simple
cores or specialized accelerators, eliminates a large amount of data
movement, and significantly reduces total system energy (by an
average of 55.4% across the workloads) and execution time (by an
average of 54.2%).

CCS Concepts • Hardware → Power and energy; Memory
and dense storage; •Human-centered computing→ Ubiqui-
tous and mobile devices; • Computer systems organization
→ Heterogeneous (hybrid) systems;

Keywords processing-in-memory; datamovement; consumerwor-
kloads; memory systems; energy efficiency
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1 Introduction
Consumer devices, which include smartphones, tablets, web-based
computers such as Chromebook [40], andwearable devices, have be-
come increasingly ubiquitous in recent years. There were 2.3 billion
smartphone users worldwide in 2017 [32]. Tablets have witnessed
similar growth, as 51% of the U.S. population owns a tablet as of
2016, and 1.2 billion people in the world use tablets [32]. There is
similar demand for web-based computers like Chromebooks [40],
which now account for 58% of all computer shipments to schools
in the U.S. [63].

Energy consumption is a first-class concern for consumer de-
vices. The performance requirements of these consumer devices
have increased dramatically every year to support emerging ap-
plications such as 4K video streaming and recording [154], virtual
reality (VR) [87], and augmented reality (AR) [6, 18, 60, 93]. A con-
sumer device integrates many power-hungry components such as
powerful CPUs, a GPU, special-purpose accelerators, sensors, and a
high-resolution screen. Despite the rapid growth in processing capa-
bility, two trends greatly limit the performance of consumer devices.
First, lithium-ion battery capacity has only doubled in the last 20
years [26, 123]. Second, the thermal power dissipation of consumer
devices has become a severe performance constraint [60]. There-
fore, fundamentally energy-efficient design of consumer devices is
critical to keep up with increasing user demands and to support a
wide range of emerging applications [18, 82, 87, 100–102, 109, 154].

To identify the major sources of energy consumption in con-
sumer devices, we conduct an in-depth analysis of several popu-
lar Google consumer workloads, as they account for a significant
portion of the applications executed on consumer devices. We ana-
lyze (1) Chrome [39], the most commonly-used web browser [108];
(2) TensorFlow Mobile [52], Google’s machine learning framework
that is used in various services such as Google Translate [49], Goo-
gle Now [48], and Google Photos [46]; (3) video playback [55]
and (4) video capture using the VP9 codec [55], which is used by
many video services such as YouTube [53], Skype [97], and Google
Hangouts [45]. These workloads are among the most commonly-
used applications by consumer device users [25, 28, 33, 68, 113],
and they form the core of many Google services (e.g., Gmail [42],
YouTube [53], the Android OS [38], Google Search [47]) that each
have over a billion monthly active users [54, 117].

We make a key observation based on our comprehensive wor-
kload analysis: among the many sources of energy consumption in
consumer devices (e.g., CPUs, GPU, special purpose accelerators,
memory), data movement between the main memory system and
computation units (e.g., CPUs, GPU, special-purpose accelerators)
is a major contributor to the total system energy. For example, when
the user scrolls through a Google Docs [44] web page, moving data
between memory and computation units causes 77% of the total
system energy consumption (Section 4.2.1). This is due to the fact
that the energy cost of moving data is orders of magnitude higher
than the energy cost of computation [80]. We find that across all
of the applications we study, 62.7% of the total system energy, on
average, is spent on data movement between main memory and
the compute units.
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Based on our key observation, we find that we can substan-
tially reduce the total system energy if we greatly mitigate the
cost of data movement. One potential way to do so is to execute
the data-movement-heavy portions of our applications close to the
data. Recent advances in 3D-stacked memory technology have ena-
bled cost-effective solutions to realize this idea [71, 75, 90, 94]. 3D-
stacked DRAM architectures include a dedicated logic layer, that is
capable of providing logic functionality, with high-bandwidth low-
latency connectivity to DRAM layers. Recent works [3–5, 12, 30,
35, 36, 56, 59, 65, 66, 81, 82, 98, 99, 106, 116, 138, 150, 151, 153] take
advantage of the logic layer [71, 75, 90, 94] to perform processing-in-
memory (PIM), also known as near-data processing. PIM allows the
CPU to dispatch parts of the application for execution on compute
units that are close to DRAM. Offloading computation using PIM
has two major benefits. First, it eliminates a significant portion
of the data movement between main memory and conventional
processors. Second, it can take advantage of the high-bandwidth
and low-latency access to the data inside 3D-stacked DRAM.

However, there are challenges against introducing PIM in con-
sumer devices. Consumer devices are extremely stringent in terms
of the area and energy budget they can accommodate for any new
hardware enhancement. Regardless of the memory technology used
to enable PIM (whether it is HMC [71], HBM [75], or some other
form of 3D-stacked or compute-capable memory [85, 90, 125, 126]),
any additional logic can potentially translate into a significant cost
in consumer devices. In fact, unlike prior proposals for PIM in
server or desktop environments, consumer devices may not be
able to afford the addition of full-blown general-purpose PIM co-
res [12, 30, 35], GPU PIM cores [65, 116, 153], or sophisticated PIM
accelerators [3, 36, 66] to 3D-stacked memory. As a result, a major
challenge for enabling PIM in consumer devices is to identify what
kind of in-memory logic can both (1) maximize energy efficiency
and (2) be implemented at minimum possible cost.

To investigate the potential benefits of PIM, given the area and
energy constraints of consumer devices, we delve further into each
consumer workload to understand what underlying functions and
characteristics contribute most to data movement. Our analysis
leads to a second key observation: across all of the consumer
workloads we examine, there are often simple functions and primi-
tives (which we refer to as PIM targets) that are responsible for a
significant fraction of the total data movement. These PIM targets
range from simple data reorganization operations, such as tiling
and packing, to value interpolation and quantization. For example,
as we show in Sections 4 and 5, the data movement cost of data reor-
ganization operations in Chrome and TensorFlow Mobile account
for up to 25.7% and 35.3% of the total system energy, respectively.

We find that many of these PIM targets are comprised of simple
operations such as memcopy, memset, and basic arithmetic and bit-
wise operations. Such PIM targets are mostly data-intensive and re-
quire relatively little and simple computation. For example, texture
tiling in Chrome is comprised ofmemcopy, basic arithmetic, and bit-
wise operations. We find that the PIM targets can be implemented
as PIM logic using either (1) a small low-power general-purpose em-
bedded core (which we refer to as a PIM core) or (2) a group of small
fixed-function accelerators (PIM accelerators). Our analysis shows
that the area of a PIM core and a PIM accelerator take up no more
than 9.4% and 35.4%, respectively, of the area available for PIM logic
in an HMC-like [71] 3D-stacked memory architecture (Section 3.2).
Thus, the PIM core and PIM accelerator are cost-effective to use in
consumer devices.

Our comprehensive experimental evaluation shows that PIM
cores are sufficient to eliminate a majority of data movement, due
to the computational simplicity and high memory intensity of the
PIM targets. On average across all of the consumer workloads that
we examine, PIM cores provide a 49.1% energy reduction (up to
59.4%) and a 44.6% performance improvement (up to 2.2x) for a
state-of-the-art consumer device. We find that PIM accelerators

provide larger benefits, with an average energy reduction of 55.4%
(up to 73.5%) and performance improvement of 54.2% (up to 2.5x)
for a state-of-the-art consumer device. However, PIM accelerators
require custom logic to be implemented for each separate workload.
We find that PIM accelerators are especially effective for workloads
such as video playback, which already make use of specialized
hardware accelerators in consumer devices.

We make the following key contributions in this work:
• We conduct the first comprehensive analysis of important Google
consumer workloads, including the Chrome browser [39], Ten-
sorFlow Mobile [52], video playback [55], and video capture [55],
to identify major sources of energy consumption.

• We observe that data movement between the main memory and
conventional computation units is a major contributor to the total
system energy consumption in consumer devices. On average,
data movement accounts for 62.7% of the total energy consumed
by Google consumer workloads.

• We observe that most of the data movement in consumer wor-
kloads is generated by simple functions and primitives. These
functions and primitives are composed of operations such as
memcopy, memset, basic arithmetic operations, and bitwise ope-
rations, all of which can be implemented in hardware at low
cost.

• We perform the first detailed analysis of processing-in-memory
(PIM) for consumer devices, considering the stringent power and
area constraints of such devices. Our evaluation shows that we
can design cost-efficient PIM logic that significantly reduces the
total system energy and execution time of consumer worklo-
ads, by 55.4% and 54.2%, respectively, averaged across all of the
consumer workloads we study.

2 Background
Processing-in-memory (PIM) involves embedding logic directly
within a memory device, and by offloading some of the computation
onto this embedded logic. Early works on PIM [86, 115, 129, 134] add
substantial processing logic completely inside a DRAM chip. Later
works [29, 79, 95, 112] propose more versatile substrates that incre-
ase the flexibility and computational capability available within the
DRAM chip. These proposals have limited to no adoption, as they
require very costly DRAM–logic integration.

The emergence of 3D-stacked DRAM architectures [71, 75, 90,
94] offers a promising solution. These architectures stack multiple
layers of DRAMarrayswithin a single chip, and use vertical through-
silicon vias (TSVs) to provide much greater bandwidth between
layers than the off-chip bandwidth available between DRAM and
the CPUs. Several 3D-stacked DRAM architectures (e.g., HBM [75],
HMC [71]) provide a dedicated logic layer within the stack that
can have low-complexity (due to thermal constraints) logic. Recent
works on PIM embed computation units within the logic layer
(e.g., [3–5, 12, 30, 35, 36, 56, 59, 65, 66, 81, 82, 98, 99, 106, 116, 138,
150, 151, 153]). However, these previous proposals are not designed
for the highly-stringent area, power, and thermal constraints of
modern commercial consumer devices.

We refer the reader to our survey works [37, 127, 128] for more
detail on prior processing-in-memory proposals.

3 Analyzing and Mitigating Data Movement
Our goal in this work is to (1) understand the data movement related
bottlenecks in modern consumer workloads, (2) comprehensively
analyze the benefits that PIM can provide for such workloads, and
(3) investigate the PIM logic that can benefit these workloads while
still being feasible to implement given the limited area, power, and
thermal budgets of consumer devices.

We start by identifying those portions of the consumer worklo-
ads that cause significant data movement and that are best suited
for PIM execution. We examine four widely-used Google consu-
mer workloads: (1) the Chrome web browser [39]; (2) TensorFlow
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Mobile [52], Google’s machine learning framework; (3) video play-
back, and (4) video capture using the VP9 video codec [55]. These
workloads form the core of many Google services (e.g., Gmail [42],
YouTube [53], the Android OS [38], Google Search [47]) that each
have over a billion monthly active users [54, 117].

In this section, we discuss our characterization methodology
(Section 3.1), our approach for identifying PIM targets in each
consumer workload (Section 3.2), and the types of PIM logic we
use to implement the PIM targets (Section 3.3).

3.1 Workload Analysis Methodology
We perform our workload characterization on a Chromebook [40]
with an Intel Celeron (N3060 dual core) SoC [72] and 2GB of DRAM.
Our performance and traffic analyses are based on hardware per-
formance counters within the SoC.

We build our energy model based on prior work [114], which
sums up the total energy consumed by the CPU cores, DRAM, off-
chip interconnects, and all caches. We use hardware performance
counters to drive this model. During our characterization, we turn
offWi-Fi and use the lowest brightness for the display to ensure that
the majority of the total energy is spent on the SoC and the memory
system [113, 114]. We use CACTI-P 6.5 [104] with a 22nm process
technology to estimate L1 and L2 cache energy. We estimate the
CPU energy based on prior works [114, 143] and scale the energy
to accurately fit our Celeron processor. We model the 3D-stacked
DRAM energy as the energy consumed per bit, using estimates
and models from prior works [74, 124]. We conservatively use the
energy of the ARM Cortex-R8 to estimate the energy consumed
by a PIM core, and we estimate the PIM accelerator energy based
on [1], conservatively assuming that the accelerator is 20x more
energy-efficient than the CPU cores.
Chrome Web Browser.We analyze Chrome [39] using the Tele-
metry framework [23], which automates user actions on a set of
web pages. We analyze three pages that belong to important Google
web services (Google Docs [44], Gmail [42], Google Calendar [43]),
two of the top 25 most-accessed web sites [7] (WordPress [149] and
Twitter [142]), and one animation-heavy page [23].
TensorFlow Mobile. To analyze TensorFlow Mobile [52], we pro-
file four representative neural networks: VGG-19 [131], ResNet-v2-
152 [62], Inception-ResNet-v2 [137], and Residual-GRU [141]. The
first three networks are for image classification, and Residual-GRU
is for image compression. All four networks have a number of use
cases on mobile consumer devices (e.g., grouping similar images,
reducing the size of newly-taken photos on the fly).
Video Playback and Video Capture.We evaluate both hardware
and software implementations of the VP9 codec [55, 146]. We use
publicly-available video frames [152] as inputs to the VP9 decoder
and encoder. For the in-house hardware implementation, we use
a bit-level C++ model to accurately model all traffic between each
component of the hardware and DRAM. The RTL for the commer-
cial VP9 hardware is generated from this C++ model using Calypto
Catapult [96].

3.2 Identifying PIM Targets
We use hardware performance counters and our energy model to
identify candidate functions that could be PIM targets. A function
is a PIM target candidate if (1) it consumes the most energy out of
the all functions in the workload, (2) its data movement consumes
a significant fraction of the total workload energy, (3) it is memory-
intensive (i.e., its last-level cachemisses per kilo instruction, or MPKI,
is greater than 10 [21, 83, 84, 103]), and (4) data movement is the
single largest component of the function’s energy consumption.
We then check if each candidate is amenable to PIM logic imple-
mentation using two criteria. First, we discard any PIM targets that
incur any performance loss when run on simple PIM logic (i.e., PIM
core, PIM accelerator). Second, we discard any PIM targets that

require more area than is available in the logic layer of 3D-stacked
memory (see Section 3.3). In the rest of this paper, we study only
PIM target candidates that pass both of these criteria.

3.3 Implementing PIM Targets in 3D-Stacked DRAM
For eachworkload, oncewe have identified a PIM target, we propose
PIM logic that can perform the PIM target functionality inside the
logic layer of 3D-stacked memory. We propose two types of PIM
logic: (1) a general-purpose PIM core, where a single PIM core can
be used by any of our PIM targets; and (2) a fixed-function PIM
accelerator, where we design custom logic for each PIM target.

For the PIM core, we design a custom 64-bit low-power single-
issue core similar in design to the ARM Cortex-R8 [9] (see Section 9
for more details). All of the PIM targets that we evaluate are data-
intensive, and the majority of them perform only simple operations
(e.g., memcopy, basic arithmetic operations, bitwise operations).
As a result, we do not implement aggressive instruction-level pa-
rallelism (ILP) techniques (e.g., sophisticated branch predictors,
superscalar execution) in our core. Several of our PIM targets exhi-
bit highly data-parallel behavior, leading us to incorporate a SIMD
unit that can perform a single operation on multiple pieces of data
concurrently. We empirically set the width of our SIMD unit to 4.

For the PIM accelerator for each of our PIM targets, we first
design a customized in-memory logic unit, which is fixed-function
logic that performs a single thread of the PIM target in the logic
layer. To exploit the data-parallel nature of the PIM targets, we
add multiple copies of the in-memory logic unit, so that multiple
threads of execution can be performed concurrently.

We evaluate the performance and energy consumption of a state-
of-the-art consumer device that contains either PIM cores or PIM
accelerators in 3D-stacked memory (Section 10). In order to assess
the feasibility of implementing our PIM cores or PIM accelerators in
memory, we estimate the area consumed by both types of PIM logic
for a 22 nm process technology. We assume that the 3D-stacked
memory contains multiple vaults (i.e., vertical slices of 3D-stacked
DRAM), and that we add one PIM core or PIM accelerator per vault.
Assuming an HMC-like [71] 3D-stacked memory architecture for
PIM, there is around 50–60mm2 of area available for architects
to add new logic into the DRAM logic layer. This translates to an
available area of approximately 3.5–4.4mm2 per vault to implement
our PIM logic [30, 36, 74].1 We find that each PIM core requires
less than 0.33mm2 of area in the logic layer, conservatively based
on the footprint of the ARM Cortex-R8 [9]. This requires no more
than 9.4% of the area available per vault to implement PIM logic.
The area required for each PIM accelerator depends on the PIM
target being implemented, and we report these area numbers in
Sections 4–7.

4 Chrome Web Browser
A web browser is one of the most commonly-used applications
by consumer device users [28], and is listed as one of the most
common applications in many mobile benchmarks [57, 68, 113].
We study Google Chrome, which has claimed the majority of the
mobile browsing market share for several years [108], and has over
a billion active users [117].

The user perception of the browser speed is based on three
factors: (1) page load time, (2) smooth web page scrolling, and
(3) quick switching between browser tabs. In our study, we focus on
two user interactions that impact these three factors, and govern a
user’s browsing experience: (1) page scrolling and (2) tab switching.
Note that each interaction includes page loading.

1As a comparison, a typical system-on-chip (SoC) used in a consumer device has an
area of 50–100mm2 [132, 136, 139, 147, 148].
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4.1 Background
When a web page is downloaded, the rendering engine in Chrome,
called Blink [22], parses the HTML to construct a Document Object
Model (DOM) tree, which consists of the internal elements of the
web page represented as tree nodes. Blink also parses the style
rule data from the Cascading Style Sheet (CSS). The DOM tree and
style rules enable a visual representation of the page, called the
render tree. Each render tree node, called a render object, requires
geometric information of the corresponding element to paint it to
the display. The process of calculating the position and size of each
render object is called layout. Once layout is complete, Chrome
uses the Skia library [51] to perform rasterization, where a bitmap
is generated for each render object by recursively traversing the
render tree. The rasterized bitmap (also known as a texture) is then
sent to the GPU through a process called texture upload, after which
the GPU performs compositing. During compositing, the GPU paints
the pixels corresponding to the texture onto the screen.

4.2 Page Scrolling
Scrolling triggers three operations: (1) layout, (2) rasterization, and
(3) compositing. All three operations must happen within the mo-
bile screen refresh time (60 FPS or 16.7ms [92, 105]) to avoid frame
dropping. Scrolling often forces the browser to recompute the la-
yout for the new dimensions and position of each web page element,
which is highly compute-intensive. However, a careful design of
web pages can mitigate this cost [135, 140]. The browser also needs
to rasterize any new objects that were not displayed previously.
Depending on the web page contents and scroll depth, this requires
significant computation [91, 140]. The updated rasterized bitmap
must then be composited to display the results of the scroll on the
screen.

4.2.1 Scrolling Energy Analysis
Figure 1 shows the energy breakdown for scrolling on different
web pages. Across all of the pages that we test, a significant por-
tion (41.9%) of page scrolling energy is spent on two data-intensive
components: (1) texture tiling, where the graphics driver reorga-
nizes the linear bitmap data into a tiled format for the GPU; and
(2) color blitting, which is invoked by the Skia library [51] during
rasterization. The rest of the energy is spent on a variety of other
libraries and functions, each of which contributes to less than 1%
of the total energy consumption (labeled Other in Figure 1).
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Figure 1. Energy breakdown for page scrolling.

Figure 2 (left) gives more insight into where energy is spent
in the system when we scroll through a Google Docs [44] web
page. We find that 77% of the total energy consumption is due to
data movement. The data movement energy includes the energy
consumed by DRAM, the off-chip interconnect, and the on-chip
caches. The data movement generated by texture tiling and color
blitting alone accounts for 37.7% of the total system energy (right
graph in Figure 2). We confirm this by measuring the MPKI issued
by the last-level cache (LLC). All of our pages exhibit a high MPKI
(21.4 on average), and the majority of LLC misses are generated by
texture tiling and color blitting. Texture tiling and color blitting are
also the top two contributors to the execution time, accounting for
27.1% of the cycles executed when scrolling through our Google
Docs page.

We conclude that texture tiling and color blitting are responsible
for a significant portion of the data movement that takes place
during web page scrolling.
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4.2.2 Analysis of PIM Effectiveness
In this section, we analyze the suitability of texture tiling and color
blitting for PIM execution.
Texture Tiling. Figure 3a illustrates the major steps and associated
data movement that take place during the texture tiling process.
Texture tiling takes place after rasterization and before composi-
ting. Rasterization generates a linear rasterized bitmap, which is
written using a linear access pattern to memory ( 1 in the figure).
After rasterization, compositing accesses each texture in both the
horizontal and vertical directions. To minimize cache misses du-
ring compositing, the graphics driver reads the rasterized bitmap
( 2 ) and converts the bitmap into a tiled texture layout ( 3 ). For
example, the Intel HD Graphics driver breaks down each rasterized
bitmap into multiple 4 kB texture tiles [70]. This allows the GPU to
perform compositing on only one tile from the bitmap at a time to
improve data locality.
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Figure 3. Texture tiling on (a) CPU vs. (b) PIM.

As we observe from Figure 2 (right), 25.7% of the total system
energy is spent on data movement generated by texture tiling. In
fact, only 18.5% of the total energy consumed by texture tiling is
used for computation, and the rest goes to data movement. The
majority of the data movement comes from (1) the poor data locality
during texture tiling; and (2) the large rasterized bitmap size (e.g.,
1024x1024 pixels, which is 4MB), which typically exceeds the LLC
capacity. Due to the high amount of data movement, texture tiling
is a good candidate for PIM execution. As shown in Figure 3b, by
moving texture tiling to PIM ( 4 in the figure), we can free up the
CPU ( 5 ) to perform other important compute-intensive tasks in
Chrome, such as handling user interaction, executing JavaScript
code, or rasterizing other render objects.

We next determine whether texture tiling can be implemented
in a cost-effective manner using PIM. Our analysis indicates that
texture tiling requires only simple primitives: memcopy, bitwise
operations, and simple arithmetic operations (e.g., addition). These
operations can be performed at high performance on our PIM core
(see Section 3.3), and are amenable to be implemented as a fixed-
function PIM accelerator. Our PIM accelerator for texture tiling
consists of multiple in-memory tiling units. Each in-memory tiling
unit consists of only a simple ALU, and operates on a single 4 kB
tile. We empirically decide to use four in-memory tiling units in
each PIM accelerator. Using the area estimation approach proposed
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in prior work [30], we estimate that the overhead of each PIM
accelerator is less than 0.25mm2, which requires no more than
7.1% of the area available per vault for PIM logic (see Section 3.3).
We conclude that the area required for texture tiling PIM logic is
small, making the PIM logic feasible to implement in a consumer
device with 3D-stacked memory. We evaluate the energy efficiency
and performance of both the PIM core and PIM accelerator for
texture tiling in Section 10.1.

An alternate way to reduce the data movement cost of texture
tiling is to directly rasterize the content in the GPU, instead of the
CPU, by using OpenGL primitives [24]. While GPU rasterization
eliminates the need to move textures around the system, the GPU’s
highly-parallel architecture is not a good fit for rasterizing fonts
and other small shapes [73]. We observe this issue in particular for
text-intensive pages. We find that when Chrome uses the GPU to
rasterize text-intensive pages, the page load time increases by up to
24.9%. This is one of the main reasons that the GPU rasterization is
not enabled by default in Chrome. PIM can significantly reduce the
overhead of texture tiling, while still allowing Chrome to exploit
the benefits of CPU-based rasterization.
Color Blitting. During rasterization, the Skia library [51] uses
high-level functions to draw basic primitives (e.g., lines, text) for
each render object. Each of these high-level functions uses a color
blitter, which converts the basic primitives into the bitmaps that
are sent to the GPU. The primary operation of a blitter is to copy
a block of pixels from one location to another. Blitting has many
uses cases, such as drawing lines and filling paths, performing
double buffering, alpha compositing, and combining two images or
primitives together.

Color blitting requires simple computation operations, but ge-
nerates a large amount of data movement. As we see in Figure 2
(right), color blitting accounts for 19.1% of the total system energy
used during page scrolling. 63.9% of the energy consumed by color
blitting is due to data movement (right graph in Figure 2), primarily
due to its streaming access pattern and the large sizes of the bitmaps
(e.g., 1024x1024 pixels). Similar to texture tiling, color blitting is a
good candidate for PIM execution due to its high amount of data
movement.

We next determine whether color blitting can be implemented in
a cost-effective manner using PIM. Our analysis reveals that color
blitting requires only low-cost computations such asmemset, simple
arithmetic operations to perform alpha blending (e.g., addition
and multiplication), and shift operations. These operations can be
performed at high performance on our PIM core (see Section 3.3),
or we can use a PIM accelerator that consists of the same four in-
memory logic units that we design for texture tiling, with different
control logic specifically designed to perform color blitting. Thus,
we conclude that the area required for color blitting PIM logic is
small, and that the PIM logic is feasible to implement in a consumer
device with 3D-stacked memory. We evaluate the energy efficiency
and performance of both the PIM core and PIM accelerator for color
blitting in Section 10.1.

4.3 Tab Switching
Chrome uses a multi-process architecture, where each tab has its
own application process for rendering the page displayed in the
tab (see Section 4.1), to enhance reliability and security. When a
user switches between browser tabs, this triggers two operations:
(1) a context switch to the process for the selected tab, and (2) a
load operation for the new page. There are two primary concerns
during tab switching: (1) how fast a new tab loads and becomes
interactive, as this directly affects user satisfaction; and (2) memory
consumption. Memory consumption is a major concern for three
reasons. First, the average memory footprint of a web page has
increased significantly in recent years [67] due to the increased
use of images, JavaScript, and video in modern web pages. Second,

users tend to open multiple tabs at a time [31, 110], with each tab
consuming additional memory. Third, consumer devices typically
have a much lower memory capacity than server or desktop sy-
stems, and without careful memory management, Chrome could
run out of memory on these systems over time.

One potential solution to handle a memory shortage is to kill
inactive background tabs, and when the user accesses those tabs
again, reload the tab pages from the disk. There are two downsides
to this mechanism. First, reloading tabs from the disk (which invo-
kes page faults) and rebuilding the page objects take a relatively
long time. Second, such reloading may lead to the loss of some
parts of the page (e.g., active remote connections). To avoid these
drawbacks, Chrome uses memory compression to reduce each tab’s
memory footprint. When the available memory is lower than a
predetermined threshold, Chrome compresses pages of an inactive
tab, with assistance from the OS, and places them into a DRAM-
based memory pool, called ZRAM [76]. When the user switches to
a previously-inactive tab whose pages were compressed, Chrome
loads the data from ZRAM and decompresses it. This allows the
browser to avoid expensive I/O operations to disk, and retrieve the
web page data much faster, thereby improving overall performance
and the browsing experience.

4.3.1 Tab Switching Energy Analysis
To study data movement during tab switching, we perform an
experiment where a user (1) opens 50 tabs (picked from the top
most-accessed websites [7]), (2) scrolls through each tab for a few
seconds, and then (3) switches to the next tab. During this study,
we monitor the amount of data that is swapped in and out of ZRAM
per second, which we plot in Figure 4. We observe that, in total,
11.7 GB of data is swapped out to ZRAM (left graph in Figure 4), at
a rate of up to 201 MB/s. When the CPU performs this swapping, as
shown in Figure 5a, it incurs significant overhead, as it must read
the inactive page data ( 1 in the figure), compress the data ( 2 ),
and write the compressed data to ZRAM ( 3 ). We observe a similar
behavior for decompression (right graph in Figure 4), with as much
as 7.8 GB of data swapped in, at a rate of up to 227 MB/s. Note that
during decompression, most of the newly-decompressed page cache
lines are not accessed by the CPU, as the tab rendering process
needs to read only a small fraction of the decompressed cache lines
to display the tab’s contents. When switching between 50 tabs,
compression and decompression incur 19.6GB of data movement,
and contribute to 18.1% and 14.2% of the total system energy and
execution time of tab switching, respectively.
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Figure 4. Number of bytes per second swapped out to ZRAM (left)
and in from ZRAM (right), while switching between 50 tabs.

4.3.2 Analysis of PIM Effectiveness
Compression and decompression are a good fit for PIM execution,
as (1) they cause a large amount of data movement; and (2) com-
pression can be handled in the background, since none of the active
tab processes need the data that is being compressed. Figure 5b
shows the compression operation once it has been offloaded to
PIM. In this case, the CPU only informs the PIM logic about the
pages that need to be swapped out, and the PIM logic operates
on the uncompressed page data that is already in memory ( 4 in
the figure). This (1) eliminates the off-chip page data movement
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Figure 5. Compression on (a) CPU vs. (b) PIM.
that took place during CPU-based compression, and (2) frees up
the CPU to perform other tasks while PIM performs compression
in the background ( 5 ). We observe a similar behavior for tab de-
compression, where the compressed data is kept within DRAM,
and only those cache lines used later by the CPU are sent across
the off-chip channel, reducing data movement and improving CPU
cache utilization.

We find that compression and decompression are good candida-
tes for PIM execution. Chrome’s ZRAM uses the LZO compression
algorithm [111] which uses simple operations and favors speed
over compression ratio [78, 111]. Thus, LZO can execute without
performance loss on our PIM core (see Section 3.3). Prior work [156]
shows that sophisticated compression algorithms (e.g., LZ77 com-
pression [160] with Huffman encoding [69]) can be implemented
efficiently using an accelerator. Thus, we expect that the simpler
LZO compression algorithm can be implemented as a PIM accele-
rator that requires less than 0.25mm2 of area [156]. Thus, both the
PIM core and PIM accelerator are feasible to implement in-memory
compression/decompression.

In-memory compression/decompression can benefit a number of
other applications and use cases. For example, many modern opera-
ting systems support user-transparent file system compression (e.g.,
BTRFS [122] and ZFS [11]). Such compression is not yet widely
supported in commercial mobile operating systems due to energy
and performance issues [156]. An in-memory compression unit
can enable efficient user-transparent file system compression by
eliminating the off-chip data movement cost and largely reducing
the decompression latency.

5 TensorFlow Mobile
Machine learning (ML) is emerging as an important core function
for consumer devices. Recent works from academia and industry
are pushing inference to mobile devices [8, 14, 19, 118, 119], as
opposed to performing inference on cloud servers. In this work, we
study TensorFlow Mobile [52], a version of Google’s TensorFlow
ML library that is specifically tailored for mobile and embedded
platforms. TensorFlow Mobile enables a variety of tasks, such as
image classification, face recognition, and Google Translate’s in-
stant visual translation [50], all of which perform inference on
consumer devices using a neural network that was pre-trained on
cloud servers.

5.1 Background
Inference begins by feeding input data (e.g., an image) to a neural
network. A neural network is a directed acyclic graph consisting of
multiple layers. Each layer performs a number of calculations and
forwards the results to the next layer. Depending on the type of the
layer, the calculation can differ for each level. A fully-connected
layer performs matrix multiplication (MatMul) on the input data,
to extract high-level features. A 2-D convolution layer applies a
convolution filter (Conv2D) across the input data, to extract low-
level features. The last layer of a neural network is the output layer,

which performs classification to generate a prediction based on the
input data.

5.2 TensorFlow Mobile Energy Analysis
Figure 6 shows the breakdown of the energy consumed by each
function in TensorFlow Mobile, for four different input networks.
As convolutional neural networks (CNNs) consist mainly of 2-D
convolution layers and fully-connected layers [2], the majority of
energy is spent on these two types of layers. However, we find that
there are two other functions that consume a significant fraction of
the system energy: packing/unpacking and quantization. Packing
and unpacking reorder the elements of matrices to minimize cache
misses during matrix multiplication. Quantization converts 32-bit
floating point and integer values into 8-bit integers to improve the
execution time and energy consumption of inference. These two
together account for 39.3% of total system energy on average. The
rest of the energy is spent on a variety of other functions such
as random sampling, reductions, and simple arithmetic, and each
of which contributes to less than 1% of total energy consumption
(labeled Other in Figure 6).
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Figure 6. Energy breakdown during inference execution on four
input networks.

Further analysis (not shown) reveals that data movement bet-
ween the CPUs and main memory accounts for the majority of total
system energy consumed by TensorFlow Mobile. While Conv2D
and MatMul dominate CPU energy consumption, 57.3% of the total
system energy is spent on data movement, on average across our
four input networks. We find that 54.4% of the data movement
energy comes from packing/unpacking and quantization.

Even though the main goal of packing and quantization is to
reduce energy consumption and inference latency, our analysis
shows that they generate a large amount of data movement, and
thus, lose part of the energy savings they aim to achieve. Furt-
hermore, Figure 7 shows a significant portion (27.4% on average)
of the execution time is spent on the packing and quantization
process. Hence, we focus our analysis on these two functions. We
exclude Conv2D and MatMul from our analysis because (1) a majo-
rity (67.5%) of their energy is spent on computation; and (2) Conv2D
and MatMul require a relatively large and sophisticated amount of
PIM logic [36, 81], which may not be cost-effective for consumer
devices.
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Figure 7. Execution time breakdown of inference.

5.3 Analysis of PIM Effectiveness

Packing. GEneralized Matrix Multiplication (GEMM) is the core
building block of neural networks, and is used by both 2-D con-
volution and fully-connected layers. These two layers account for
the majority of TensorFlow Mobile execution time. To implement
fast and energy-efficient GEMM, TensorFlow Mobile employs a
low-precision, quantized GEMM library called gemmlowp [41]. The

6



gemmlowp library performs GEMM by executing its innermost
kernel, an architecture-specific GEMM code portion for small fixed-
size matrix chunks, multiple times. First, gemmlowp fetches matrix
chunks which fit into the LLC from DRAM. Then, it executes the
GEMM kernel on the fetched matrix chunks in a block-wise manner.

To minimize cache misses, gemmlowp employs a process called
packing, which reorders the matrix chunks based on the memory
access pattern of the kernel to make the chunks cache-friendly.
After performing GEMM, gemmlowp performs unpacking, which
converts the result matrix chunk back to its original order.

Packing and unpacking account for up to 40% of the total sy-
stem energy and 31% of the inference execution time, as shown in
Figures 6 and 7, respectively. Due to their unfriendly cache access
pattern and the large matrix sizes, packing and unpacking generate
a significant amount of data movement. For instance, for VGG-
19 [131], 35.3% of the total energy goes to data movement incur-
red by packing-related functions. On average, we find that data
movement is responsible for 82.1% of the total energy consumed
during the packing/unpacking process, indicating that packing and
unpacking are bottlenecked by data movement.

Packing and unpacking are simply pre-processing steps, to pre-
pare data in the right format for the kernel. Ideally, the CPU should
execute only the GEMM kernel, and assume that packing and un-
packing are already taken care of. PIM can enable such a scenario by
performing packing and unpacking without any CPU involvement.
Our PIM logic packs matrix chunks, and sends the packed chunks
to the CPU, which executes the GEMM kernel. Once the GEMM
kernel completes, the PIM logic receives the result matrix chunk
from the CPU, and unpacks the chunk while the CPU executes the
GEMM kernel on a different matrix chunk.

We next determine whether packing and unpacking can be imple-
mented in a cost-effective manner using PIM. Our analysis reveals
that packing is a simple data reorganization process and requires
simple arithmetic operations to scan over matrices and compute
new indices. As a result, packing and unpacking can be performed
at high performance on our PIM core (see Section 3.3), or on a PIM
accelerator that consists of the same four in-memory logic units that
we design for texture tiling (see Section 4.2.2), with different control
logic specifically designed to perform packing and unpacking. For
packing and unpacking, we can assign each in-memory logic unit
to work on one chunk of the matrix. Thus, we conclude that it
is feasible to implement packing and unpacking using PIM in a
consumer device with 3D-stacked memory.
Quantization. TensorFlowMobile performs quantization twice for
each Conv2D operation. First, quantization is performed on the 32-
bit input matrix before Conv2D starts. Then, Conv2D runs, during
which gemmlowp generates a 32-bit result matrix.2 Quantization
is performed for the second time on this result matrix (this step
is referred to as re-quantization). Accordingly, invoking Conv2D
more frequently (which occurs when there are more 2-D convolu-
tion layers in a network) leads to higher quantization overheads.
For example, VGG requires only 19 Conv2D operations, incurring
small quantization overheads. On the other hand, ResNet requires
156 Conv2D operations, causing quantization to consume 16.1%
of the total system energy and 16.8% of the execution time. The
quantization overheads are expected to increase as neural networks
get deeper.

Figure 8a shows how TensorFlow quantizes the result matrix
using the CPU. First, the entire matrix needs to be scanned to
identify the minimum and maximum values of the matrix ( 1 in
the figure). Then, using the minimum and maximum values, the
matrix is scanned a second time to convert each 32-bit element of
the matrix into an 8-bit integer ( 2 ). These steps are repeated for

2Even though gemmlowp reads 8-bit input matrices, its output matrix uses 32-bit inte-
gers, because multiplying two 8-bit integers produces a 16-bit result, and gemmlowp
uses a 32-bit integer to store each 16-bit result.

re-quantization of the result matrix ( 3 and 4 ). The majority of the
quantization overhead comes from data movement. Because both
the input matrix quantization and the result matrix re-quantization
need to scan a large matrix twice, they exhibit poor cache locality
and incur a large amount of data movement. For example, for the
ResNet network, 73.5% of the energy consumed during quantization
is spent on data movement, indicating that the computation is
relatively cheap (in comparison, only 32.5% of Conv2D/MatMul
energy goes to data movement, while the majority goes to MAC
computation). 19.8% of the total data movement energy of inference
execution comes from quantization. As Figure 8b shows, we can
offload both quantization ( 5 in the figure) and re-quantization ( 6 )
to PIM to eliminate data movement. This frees up the CPU to focus
on GEMM execution, and allows the next Conv2D operation to be
performed in parallel with re-quantization ( 7 ).
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Quantization itself is a simple data conversion operation that
requires shift, addition, and multiplication operations. As a result,
quantization can be performed at high performance on our PIM
core (see Section 3.3), or on a PIM accelerator that consists of the
same four in-memory logic units that we design for texture tiling
(see Section 4.2.2), with different control logic specifically designed
to perform quantization. For quantization, we can assign each in-
memory logic unit to work on a separate Conv2D operation. Thus,
we conclude that it is feasible to implement quantization using PIM
in a consumer device with 3D-stacked memory.

6 Video Playback
Video playback is among the most heavily- and commonly-used
applications among mobile users [155]. Recent reports on mobile
traffic [25, 33] show that video dominates consumer device traffic
today. Many Google services and products, such as YouTube [53],
Google Hangouts [45], and the Chrome web browser [39] rely he-
avily on video playback. YouTube alone has over a billion users,
and the majority of video views on YouTube come from mobile
devices [54]. Video playback requires a dedicated decoder, which de-
compresses and decodes the streaming video data and renders video
on the consumer device. In this work, we focus on the VP9 deco-
der [55], which is an open-source codec widely used by video-based
applications, and is supported by most consumer devices [144].

6.1 Background
Figure 9 shows a high-level overview of the VP9 decoder architec-
ture. VP9 processes video one frame at a time, and uses a reference
frame to decode the current frame. For the current frame, the deco-
der reads the frame’s compressed content (i.e., the input bitstream)
from memory ( 1 in the figure) and sends the content to the en-
tropy decoder. The entropy decoder ( 2 ) extracts (1) motion vectors,
which predict how objects move relative to the reference frame;
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Figure 9. General overview of the VP9 decoder.

and (2) residual data, which fills in information not predicted by
the motion vectors.

The motion vectors are sent to the motion compensation (MC)
unit ( 3 ), which applies the object movement predictions to the
reference frame ( 4 ). MC predicts movement at a macro-block (i.e.,
16x16-pixel) granularity. Each frame is decomposed into macro-
blocks, and each motion vector points to a macro-block in the
reference frame. VP9 allows motion vectors to have a resolution
as small as 1

8 th of a pixel, which means that a motion vector may
point to a pixel location with a non-integer value. In such cases,
MC performs sub-pixel interpolation to estimate the image at a
non-integer pixel location. In parallel with MC, the residual data is
transformed by the inverse quantization ( 5 ) and inverse transform
( 6 ) blocks. The resulting information is combined with the macro-
block output by MC ( 7 ) to reconstruct the current frame.

Due to block-based prediction, there may be discontinuities at
the border between two blocks. The deblocking filter ( 8 ) attempts
to remove such artifacts by (1) identifying edge pixels (i.e., pixels
that lie on the border of two blocks) that are discontinuous with
their neighbors, and (2) applying a low-pass filter to these pixels.
Finally, the reconstructed frame ( 9 ) is written back to the frame
buffer in memory.

The VP9 decoder architecture can be implemented in either
software or hardware. We provide an extensive analysis of two
decoder implementations in this section: (1) libvpx [145], Google’s
open-source software decoder library, which is used as a reference
software implementation for the VP9 codec; and (2) Google’s VP9
hardware decoder [146].

6.2 VP9 Software Decoder
6.2.1 Software Decoder Energy Analysis
Figure 10 shows the total system energy consumed when libvpx
VP9 decoder is used to play a 4K (3840x2160-pixel) video from
Netflix [152]. We find that the majority of energy (53.4%) is spent
onMC, which is the most bandwidth-intensive and time-consuming
task in the decoder [13, 64]. Prior works [58, 88, 120] make similar
observations for other video codecs. Most of the energy consump-
tion in MC is due to sub-pixel interpolation, the most memory-
intensive component of MC [13, 64, 77]. We find that sub-pixel
interpolation alone consumes 37.5% of the total energy and 41.2%
of the execution time spent by the entire decoder. Aside from MC,
the deblocking filter is another major component of the decoder,
consuming 29.7% of the software decoder energy and 24.3% of the
total cycle count. Other components, such as the entropy decoder
and inverse transform, consume a smaller portion of the energy.

Figure 11 shows the per-function breakdown of the energy con-
sumption of each hardware component when the VP9 software
decoder is used to play back 4K video. We find that 63.5% of the
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Figure 10. Energy analysis of VP9 software decoder.

total energy is spent on data movement, the majority (80.4%) of
which is performed by MC and the deblocking filter. Sub-pixel inter-
polation is the dominant function of MC, and on its own generates
42.6% of the total data movement. We find that the CPU spends the
majority of its time and energy stalling (not shown in Figure 11)
as it waits for data from memory during MC and deblocking filter
execution. The other functions generate much less data movement
because their working set fits within the CPU caches. For example,
the entropy decoder works on the encoded bit stream and the in-
verse transform works on the decoded coefficients, and both are
small enough to be captured by the caches.
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Figure 11. Energy breakdown of VP9 software decoder.

We conclude that video playback generates a large amount of
data movement, the majority of which comes from sub-pixel inter-
polation and the deblocking filter.

6.2.2 Analysis of PIM Effectiveness

Sub-Pixel Interpolation. During sub-pixel interpolation, VP9
uses a combination of multi-tap finite infinite response (FIR) and
bi-linear filters to interpolate the value of pixels at non-integer
locations [55]. The interpolation process is both compute- and
memory-intensive, for two reasons. First, interpolating each sub-
pixel value requires multiple pixels to be fetched from memory.
VP9 decomposes each frame into 64x64-pixel superblocks, which
are then divided further into smaller sub-blocks, as small as 4x4-
pixel. In the worst case, where the decoder interpolates pixels in a
sub-block at a 1

8 -pixel resolution, the decoder fetches 11x11 pixels
from the reference frame. Second, each motion vector can point to
any location in the reference frame. As a result, there is poor loca-
lity, and sub-pixel interpolation does not benefit significantly from
caching. We confirm this in Figure 11, where we observe that data
movement between main memory and the CPU accounts for 65.3%
of the total energy consumed by sub-pixel interpolation. As a result,
sub-pixel interpolation is a good candidate for PIM execution.

We find that sub-pixel interpolation is amenable for PIM, as
it consists mainly of multiplication, addition, and shift operati-
ons [55, 64, 77]. As a result, sub-pixel interpolation can be executed
with high performance on our PIM core (see Section 3.3), and can be
implemented as a fixed-function PIM accelerator. Our PIM accelera-
tor for sub-pixel interpolation is similar in design to the sub-pixel
interpolation component of the hardware VP9 decoder. Our analy-
sis shows that our PIM accelerator occupies an area of 0.21mm2,
which requires no more than 6.0% of the area available per vault for
PIM logic (see Section 3.3). Thus, we conclude that it is feasible to
implement sub-pixel interpolation using PIM in a consumer device
with 3D-stacked memory.
Deblocking Filter. Recall that the deblocking filter works on the
edge pixels in each 64x64-pixel superblock, to remove blocking
artifacts. Deblocking invokes a low-pass filter on neighboring edge
pixels, and iterates through the superblocks in a raster scan or-
der [55]. For each edge between two superblocks, the filter evalu-
ates up to eight pixels on either side of the edge, and if the filter
condition is triggered, the filter may modify up to seven pixels on
either side.
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Like sub-pixel interpolation, the deblocking filter is compute-
and memory-intensive, and accounts for a third of the computation
complexity of the entire VP9 decoder [20, 27]. As the filter needs to
check the vertical and horizontal edges of each 4x4-pixel block in
the frame, its memory access pattern exhibits poor cache locality.
Instead, the filter generates a large amount of data movement and
produces strictly less output than input, with 71.1% of themovement
taking place on the off-chipmemory channel. Hence, the deblocking
filter is a good fit for PIM.

We find that the deblocking filter is amenable for PIM, as it is
a simple low-pass filter that requires only arithmetic and bitwise
operations. As a result, the deblocking filter can be executed with
high performance on our PIM core (see Section 3.3), and can be
implemented as a fixed-function PIM accelerator that is is similar
in design to the deblocking filter component of the hardware VP9
decoder. Our analysis shows that our PIM accelerator occupies an
area of 0.12mm2, which requires no more than 3.4% of the area
available per vault for PIM logic (see Section 3.3). Thus, we conclude
that it is feasible to implement the deblocking filter using PIM in a
consumer device with 3D-stacked memory.

6.3 VP9 Hardware Decoder
For high-resolution (e.g., 4K) video playback, a hardware decoder
is essential. It enables fast video decoding at much lower energy
consumption than a software decoder. In this section, we present
our analysis on the VP9 hardware decoder, which is used in a large
fraction of consumer devices [144].

Unlike the software decoder, the VP9 hardware decoder employs
several techniques to hide memory latency, such as prefetching
and parallelization. For example, the hardware decoder can work
on a batch of motion vectors simultaneously, which allows the
decoder to fetch the reference pixels for the entire batch at once.
In addition, the hardware decoder does not make use of the CPU
caches, and instead sends requests directly to DRAM, which allows
the decoder to avoid cache lookup latencies and cache coherence
overheads. Thus, there is little room to improve the memory latency
for the hardware decoder. However, we find that despite these
optimizations, there is still a significant amount of off-chip data
movement generated by the hardware decoder, which consumes
significant memory bandwidth and system energy.

6.3.1 Hardware Decoder Energy Analysis
Figure 12 shows the breakdown of off-chip traffic when decoding
one frame of a 4K video and an HD (720x1280-pixel) video. For
each resolution, we show the traffic both with and without los-
sless frame compression. We make five key observations from the
analysis. First, the majority of the traffic (up to 75.5% for HD and
59.6% for 4K) comes from reading the reference frame data from
DRAM during MC. This data movement is responsible for 71.3%
and 69.2% of total hardware decoder energy, respectively. Note
that while frame compression reduces the reference frame traffic,
reference frame data movement still accounts for a significant por-
tion (62.2% for HD and 48.8% for 4K) of the off-chip traffic. Second,
similar to our observations for the software decoder, the bulk of
this data movement is due to the extra reference pixels required by
sub-pixel interpolation. For every pixel of the current frame, the
decoder reads 2.9 reference frame pixels from DRAM. Third, data
movement increases significantly as the video resolution increases.
Our analysis indicates that decoding one 4K frame requires 4.6x
the data movement of a single HD frame. Fourth, the reconstructed
frame data output by the decoder is the second-biggest contributor
to the off-chip data movement, generating 22.2% of the total traffic.
Fifth, unlike the software decoder, the deblocking filter does not
generate much off-chip data movement in the hardware decoder,
as the hardware employs large SRAM buffers (875 kB) to cache the
reference pixels read during MC, so that the pixels can be reused
during deblocking.
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Figure 12. Off-chip traffic breakdown of VP9 hardware decoder.

6.3.2 Analysis of PIM Effectiveness
Similar to our observations for the software decoder (see
Section 6.2), the MC unit (sub-pixel interpolation, in particular)
is responsible for the majority of off-chip data movement in the
hardware VP9 decoder. The MC unit is a good fit for PIM execution,
because we can eliminate the need to move reference frames from
memory to the on-chip decoder, thus saving significant energy. Fi-
gure 13 shows a high-level overview of our proposed architecture,
and how a modified hardware decoder interacts with memory and
with the in-memory MC unit. In this architecture, the entropy deco-
der ( 1 in the figure) sends the motion vectors to memory, where
the MC unit now resides. The in-memory MC unit ( 2 ) generates
macro-blocks using the motion vectors and the reference frame
( 3 ) fetched from memory. The macro-blocks generated by MC
are then combined with residual data and sent to the deblocking
filter ( 4 ). To avoid sending the macro-blocks back to the decoder
(which would eliminate part of the energy savings of not moving
reference frame data), we also made the design choice of moving
the deblocking filter into memory ( 4 ). While the deblocking filter
itself does not generate significant traffic, by placing it in PIM, we
can avoid moving the reconstructed frame ( 5 ) back and forth on
the main memory bus unnecessarily.
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Figure 13.Modified VP9 decoder with in-memory MC.

Overall, moving the MC unit and deblocking filter reduces data
movement significantly, as only the compressed input bitstream,
the motion vectors, and the residual data need to move between the
decoder hardware components and the memory. Another benefit of
this approach is that we can use the same in-memory components
for software VP9 decoding as well. In total, the area used by a PIM
accelerator that performs MC and the deblocking filter is 0.33mm2,
which requires no more than 9.4% of the area available per vault
for PIM logic (see Section 3.3). We conclude that it is effective to
perform part of VP9 hardware decoding in memory.

7 Video Capture
Video capture is used in many consumer applications, such as video
conferencing (e.g., Google Hangouts [45], Skype [97]), video strea-
ming (e.g., YouTube [53], Instagram [34]), and recording local video
from a mobile device camera. Video-capture-based applications
account for a significant portion of mobile traffic [25, 33, 155]. It is
expected that video will constitute 78% of all mobile data traffic by
2021 [25]. To effectively capture, store, and transfer video content
over the network, a video encoder is required. The video encoder
handles the majority of the computation for video capture. In this
work, we focus on the VP9 encoder, as it is the main compression
technology used by Google Hangouts [45], YouTube [53], and most
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web-based video applications in the Chrome browser [39], and is
supported by many mobile devices [144].

7.1 Background
Figure 14 shows a high-level overview of the VP9 encoder archi-
tecture. The encoder fetches the current frame ( 1 in the figure)
and three reference frames ( 2 ) from DRAM. Then, the current
frame is sliced into 16x16-pixel macro-blocks. Each macro-block
is passed into the intra-prediction ( 3 ) and motion estimation (ME)
( 4 ) units. Intra-prediction predicts the value of an entire macro-
block by measuring its similarity to adjacent blocks within the
frame. ME, also known as inter-prediction, compresses the frame by
exploiting temporal redundancy between adjacent frames. Then,
ME finds the motion vector, which encodes the spatial offset of
each macro-block relative to the reference frames. If successful,
ME replaces the macro-block with the motion vector. The mode
decision unit ( 5 ) examines the outputs of intra-prediction and ME
for each macro-block, and chooses the best prediction for the block.
The macro-block prediction is then (1) transformed into the fre-
quency domain using a discrete cosine (DCT) transform ( 6 ), and
(2) simultaneously sent to the motion compensation (MC) unit ( 7 )
to reconstruct the currently-encoded frame, which will be used as
a reference frame ( 8 ) to encode future frames. The encoder then
uses quantization ( 9 ) to compress the DCT coefficients of each
macro-block. Finally, the entropy coder step (10 ) uses run-length
coding and variable-length coding to reduce the number of bits
required to represent the DCT coefficients.
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Figure 14. General overview of the VP9 encoder.

As is the case for the VP9 decoder, the encoder can be implemen-
ted in either software or hardware. We analyze both libvpx [145],
Google’s open source software encoder library, and Google’s VP9
hardware encoder [146].

7.2 VP9 Software Encoder
7.2.1 Software Encoder Energy Analysis
Figure 15 shows our energy analysis during the real-time encoding
of an HD video. We find that a significant portion of the system
energy (39.6%) is spent on ME. ME is the most memory-intensive
unit in the encoder [133], accounting for 43.1% of the total enco-
ding cycles. The next major contributor to total system energy is
the deblocking filter, which we discuss in in Section 6.2. While
intra-prediction, transform, and quantization are other major con-
tributors to the energy consumption, none of them individually
account for more than 9% of the total energy. The remaining energy,
labeled Other in the figure, is spent on decoding the encoded frame,
and behaves the same way as the software decoding we discuss in
Section 6.2.

We find that 59.1% of encoder energy goes to datamovement. The
majority of this data movement is generated by ME, and accounts
for 21.3% of the total system energy. Other major contributors to
data movement are the MC and deblocking filter used to decode
the encoded frames (see Section 6.2).
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Figure 15. Energy analysis of VP9 software encoder.

7.2.2 Analysis of PIM Effectiveness
In libvpx, ME uses the diamond search algorithm [157] to locate
matching objects in reference frames, using the sum of absolute dif-
ferences (SAD) to evaluate matches. ME is highly memory-intensive
and requires high memory bandwidth. 54.7% of ME’s energy con-
sumption is spent on data movement (not shown). For each macro-
block, ME needs to check for matching objects in three reference
frames, which leads to a large amount of data movement. Hence,
ME is a good candidate for PIM execution.

While ME is more compute- and memory-intensive than the
other PIM targets we examine, it primarily calculates SAD, which
requires only simple arithmetic operations. As a result, ME can be
executed with high performance on our PIM core (see Section 3.3),
and can be implemented as a fixed-function PIM accelerator that
is similar in design to the ME component of the hardware VP9
decoder. Our analysis shows that our PIM accelerator occupies an
area of 1.24mm2, which requires no more than 35.4% of the area
available per vault for PIM logic (see Section 3.3). Thus, we conclude
that it is feasible to implement ME using PIM in a consumer device
with 3D-stacked memory.

7.3 VP9 Hardware Encoder
In this section, we present our analysis on the VP9 hardware enco-
der. While software encoding offers more flexibility, hardware en-
coding enables much faster encoding in an energy-efficient manner.
Similar to the hardware video decoder (Section 6.3), the hardware
video encoder employs prefetching to hide memory latency. Unlike
the decoder, the encoder’s memory access pattern is highly predic-
table, as the search window for each reference frame is predefined.
As a result, the encoder (specifically the ME unit) successfully hi-
des latency. However, energy consumption and the cost of data
movement remain as major challenges.

7.3.1 Hardware Encoder Energy Analysis
Figure 16 shows the breakdown of off-chip traffic for encoding a
single frame of 4K and HD video, both with and without lossless
frame compression. Similar to our findings for the software encoder,
the majority of the off-chip traffic is due to the reference frame
pixels fetched by ME (shown as Reference Frame in the figure),
which accounts for 65.1% of the entire encoder’s data movement
for HD video. The traffic grows significantly when we move to
4K video, as the encoder requires 4.3x the number of pixels read
during HD video encoding. While frame compression can reduce
the amount of data transferred by 59.7%, a significant portion of
encoder energy is still spent on reference frame traffic.

The two othermajor contributors to off-chip traffic are (1) the cur-
rent frame after encoding, and (2) the reconstructed frame, which
is used as a future reference frame. The current frame generates
14.2% of the traffic when frame compression is disabled, but since
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Figure 16. Off-chip traffic breakdown of VP9 hardware encoder.
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compression cannot be applied to the encoded version of the cur-
rent frame, the total data movement for the current frame takes
up to 31.9% of the traffic when compression is enabled. The recon-
structed frame consumes on average 12.4% of the traffic across the
two resolutions.

7.3.2 Analysis of PIM Effectiveness
Similar to the software encoder, ME is responsible for the majority
of data movement in the hardware encoder, and is again a good can-
didate for PIM execution, which would eliminate the need to move
three reference frames to the on-chip encoder. Figure 17 shows the
high-level architecture of a modified VP9 encoder with in-memory
ME (which is the same as the PIM accelerator in Section 7.2.2). Once
in-memory ME ( 1 in the figure) generates the motion vector for a
macro-block, it sends the vector back to the mode decision unit ( 2 )
in the on-chip accelerator. Note that we also offload MC ( 3 ) and
the deblocking filter ( 4 ) to PIM, similar to the hardware decoder
(see Section 6.3.2), since they use reference frames ( 5 ) together
with the motion vectors output by ME to reconstruct the encoded
frame. This eliminates data movement during frame reconstruction.
We conclude that data movement can be reduced significantly by
implementing the ME, MC, and deblocking filter components of
the VP9 hardware encoder in memory.
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Figure 17.Modified VP9 encoder with in-memory ME.

8 System Integration
We briefly discuss two system challenges to implementing PIM in
the consumer device context.

8.1 Software Interface for Efficient Offloading
We use a simple interface to offload the PIM targets. We identify
PIM targets using two macros, which mark the beginning and end
of the code segment that should be offloaded to PIM. The compiler
converts these macros into instructions that we add to the ISA,
which trigger and end PIM kernel execution. Examples are provides
in a related work [37].

8.2 Coherence Between CPUs and PIM Logic
A major system challenge to implementing PIM is CPU-PIM com-
munication and coherence. The majority of the PIM targets we
identified are minimal functions/primitives that are interleaved
with other parts of the workloads in a fine-grained manner. As a re-
sult, to fully benefit from offloading them to PIM, we need efficient
communication between the CPU and PIM logic to allow coordi-
nation, ordering, and synchronization between different parts of
the workloads. We find that coherence is required to (1) enable
efficient synchronization, (2) retain programmability, and (3) retain
the benefits’ of using PIM. As a result, we employ a simple fine-
grained coherence technique, which uses a local PIM-side directory
in the logic layer to maintain coherence between PIM cores (or PIM
accelerators), and to enable low-overhead fine-grained coherence

between PIM logic and the CPUs. The CPU-side directory acts as
the main coherence point for the system, interfacing with both the
processor caches and the PIM-side directory. Our design can benefit
further from other approaches to coherence like LazyPIM [12, 37].

9 Methodology
We evaluate our proposed PIM architectures using the gem5 [10]
full-system simulator. Table 1 lists our system configuration.

SoC 4 OoO cores, 8-wide issue; L1 I/D Caches: 64 kB
private, 4-way assoc.; L2 Cache: 2MB shared,
8-way assoc.; Coherence: MESI

PIM Core 1 core per vault, 1-wide issue, 4-wide SIMD unit,
L1 I/D Caches: 32 kB private, 4-way assoc.

3D-Stacked 2GB cube, 16 vaults per cube; Internal Bandwidth:
Memory 256GB/s; Off-Chip Channel Bandwidth: 32GB/s
Baseline Memory LPDDR3, 2GB, FR-FCFS scheduler

Table 1. Evaluated system configuration.

We organize our PIM architecture such that each vault in 3D-
stacked memory has its own PIM logic. The PIM logic for each
vault consists of either a PIM core or a PIM accelerator. We assume
that the PIM core is ISA-compatible with the main processor cores
in the SoC, and is a simple general-purpose core (e.g., 1-wide issue,
no prefetcher) that has only a 32KB private L1 cache. Each PIM
accelerator has a small 32kB buffer to hold its working set of data.
Like prior works [3, 4, 12, 35, 65, 66], we use the memory bandwidth
available to the logic layer of 3D-stacked memory as the memory
bandwidth to the PIM core/accelerator. We model our 3D-stacked
memory similar to HBM [75] and use the bandwidth available in the
logic layer of HBM (256GB/s), which is 8x more than the bandwidth
available (32GB/s) to the off-chip CPU cores.

To evaluate how PIM benefits each of the PIM targets that we
identified, we study each target in isolation, by emulating each tar-
get separately, constructing a microbenchmark for the component,
and then analyzing the benefit of PIM in our simulator. We use
Verilog RTL [96] to estimate the area overhead of the VP9 hardware
encoder and decoder.
Chrome Browser. For texture tiling, we precisely emulate
glTextImage2d() for OpenGL from the Intel i965 graphics dri-
ver, using 512x512-pixel RGBA tiles as the input set. For color
blitting, we construct a microbenchmark that closely follows the
color blitting implementation in Skia, and use randomly-generated
bitmaps (ranging from 32x32 to 1024x1024 pixels) as inputs. For
compression and decompression, we use LZO [111] from the latest
upstream Linux version. We generate the input data by starting
Chrome on our Chromebook, opening 50 tabs, navigating through
them, and then dumping the entire contents of the Chromebook’s
main memory to a file.
TensorFlow Mobile. For packing, we modify the gemmlowp li-
brary [41] to perform only matrix packing, by disabling the quanti-
zed matrix multiplication and result matrix unpacking routines. We
evaluate in-memory quantization using a microbenchmark that in-
vokes TensorFlow Mobile’s post-Conv2D/MatMul re-quantization
routines, and we use the result matrix sizes of GEMMs to reflect
real-world usage.
Video Playback and Capture. For sub-pixel interpolation and
the deblocking filter, we construct microbenchmarks that closely
follow their implementations in libvpx, and use 100 frames from a 4K
Netflix video [152] as an input. For motion estimation, we develop
a microbenchmark that uses the diamond search algorithm [157]
to perform block matching using three reference frames, and use
10 frames from anHD video [152] as an input. For the hardware VP9
evaluation, we use the off-chip traffic analysis (Figures 12 and 16)
together with in-memory ME and in-memory MC traffic analysis
from our simulator to model the energy cost of data movement.
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10 Evaluation
In this section, we examine how our four consumer workloads
benefit from PIM. We show results normalized to a processor-only
baseline (CPU-Only), and compare to PIM execution using PIM
cores (PIM-Core) or fixed-function PIM accelerators (PIM-Acc).

10.1 Chrome Browser
Figure 18 shows the energy consumption and runtime of CPU-
Only, PIM-Core, and PIM-Acc across different browser kernels,
normalized to CPU-only.Wemake three key observations on energy
from the left graph in Figure 18. First, we find that offloading these
kernels to PIM reduces the energy consumption, on average across
all of our evaluated web pages, by 51.3%whenwe use PIM-Core, and
by 61.0% when we use PIM-Acc. Second, we find that the majority of
this reduction comes from eliminating data movement. For example,
eliminating data movement in texture tiling contributes to 77.7%
of the total energy reduction. Third, PIM-Acc provides 18.9% more
energy reduction over PIM-Core, though the energy reduction
of PIM-Acc is limited by the highly-memory-intensive behavior
of these browser kernels. This is because while computation on
PIM-Acc is more efficient than computation using PIM-Core, data
movement accounts for the majority of energy consumption in
the kernels, limiting the impact of more efficient computation on
overall energy consumption.
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Figure 18. Energy (left) and runtime (right) for all browser kernels,
normalized to CPU-Only, for kernel inputs listed in Section 9.

We make five observations on performance from the right graph
in Figure 18. First, PIM-Core and PIM-Acc significantly outperform
CPU-Only across all kernels, improving performance by 1.6x and
2.0x, on average across all of our evaluated web pages. Second,
we observe that the browser kernels benefit from the higher band-
width and lower access latency of 3D-stacked memory (due to
their data-intensive nature), leading to performance improvement.
Third, this performance benefit increases as the working set size
increases. For example, our analysis (not shown) shows that the
speedup increases by 31.2% when the texture size increases from
256x256 to 512x512 pixels. Fourth, the performance improvement
of PIM-Acc over PIM-Core for texture tiling and color blitting is
limited by the low computational complexity of these two kernels.
Fifth, compression and decompression benefit significantly from
using PIM-Acc over PIM-Core in terms of performance, because
these kernels are more compute-intensive and less data-intensive
compared to texture tiling and color blitting.

10.2 TensorFlow Mobile
Figure 19 (left) shows the energy consumption of CPU-Only, PIM-
Core, and PIM-Acc for the four most time- and energy-consuming
GEMM operations for each input neural network in packing and
quantization, normalized to CPU-Only. We make three key obser-
vations. First, PIM-Core and PIM-Acc decrease the total energy
consumption by 50.9% and 54.9%, on average across all four in-
put networks, compared to CPU-Only. Second, the majority of the
energy savings comes from the reduction in data movement, as the
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Figure 19. Energy (left) and performance (right) for TensorFlow
Mobile kernels, for four neural networks [62, 131, 137, 141].

computation energy accounts for a negligible portion of the total
energy consumption. For instance, 82.6% of the energy reduction
for packing is due to the reduced data movement. Third, we find
that the data-intensive nature of these kernels and their low com-
putational complexity limit the energy benefits PIM-Acc provides
over PIM-Core.

Figure 19 (right) shows the total execution time of CPU-Only,
PIM-Core and PIM-Acc as we vary the number of GEMMoperations
performed. For CPU-Only, we evaluate a scenario where the CPU
performs packing, GEMM operations, quantization, and unpacking.
To evaluate PIM-Core and PIM-Acc, we assume that packing and
quantization are handled by the PIM logic, and the CPU performs
GEMMoperations.We find that as the number of GEMMoperations
increases, PIM-Core and PIM-Acc provide greater performance im-
provements over CPU-Only. For example, for one GEMM operation,
PIM-Core and PIM-Acc achieve speedups of 13.1% and 17.2%, re-
spectively. For 16 GEMM operations, the speedups of PIM-Core and
PIM-Acc increase to 57.2% and 98.1%, respectively, over CPU-Only.
These improvements are the result of PIM logic (1) exploiting the
higher bandwidth and lower latency of 3D-stacked memory, and
(2) enabling the CPU to perform GEMM in parallel while the PIM
logic handles packing and quantization. For example, offloading
packing to the PIM core speeds up the operation by 32.1%. Similar
to our observation for the browser kernels (Section 10.1), as these
kernels are not compute-intensive, the performance improvement
of PIM-Acc over PIM-Core is limited.

10.3 Video Playback and Capture
10.3.1 VP9 Software
Figure 20 (left) shows the energy consumption of CPU-Only, PIM-
Core, and PIM-Acc across different video kernels, normalized to
CPU-Only. We make three observations from the figure. First, all of
the kernels significantly benefit from PIM-Core and PIM-Acc, with
an average energy reduction of 46.8% and 66.6%, respectively, across
our input videos. Second, the energy reductions are a result of the
memory-bound behavior of these video kernels. Moving the kernels
to PIM logic (1) eliminates a majority of the data movement, and
(2) allows the kernels to benefit from the lower power consumed
by PIM logic than by the CPU without losing performance. For
example, offloading sub-pixel interpolation and the deblocking
filter to PIM-Core reduces their total energy consumption by 49.9%
and 50.1%, respectively. Of those reductions, 34.6% and 51.9% come
from the reduced energy consumption of PIM-Core compared to
the SoC CPU, while the rest of the reduction comes from decreasing
data movement. Third, we find that PIM-Acc provides, on average,
a 42.7% additional energy reduction than PIM-Core across all of the
video kernels.

Figure 20 (right) shows the runtime of CPU-Only, PIM-Core, and
PIM-Acc on our video kernels. We observe from the figure that PIM-
Core and PIM-Acc improve performance over CPU-Only by 23.6%
and 70.2%, respectively, averaged across all input videos. While
PIM-Core provides a modest speed up (12.6%) over CPU-Only for
the motion estimation kernel, PIM-Acc significantly outperforms
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Figure 20. Energy (left) and runtime (right) for all video kernels,
normalized to CPU-Only, using 100 4K frames [152] for decoding
and 10 HD [152] frames for encoding.

CPU-Only and improves performance by 2.1x. The reason is that
motion estimation kernel has relatively high computational de-
mand, compared to the other PIM targets we evaluate, and thus,
benefits much more from executing on PIM logic.

10.3.2 VP9 Hardware
Figure 21 shows the total energy consumption for the decoder (left)
and encoder (right), for three configurations: VP9 only (which uses
the baseline VP9 hardware accelerator [146] in the SoC), VP9 with
PIM-Core, and VP9 with PIM-Acc. For each configuration, we show
results without and with lossless frame compression.
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Figure 21. Total energy for VP9 hardware decoder (left) and VP9
hardware encoder (right), based on an analysis using 4K and HD
video [152].

Wemake four key observations from the figure. First, we find that
for both the VP9 decoder and encoder, off-chip datamovement is the
major source of energy consumption, consuming 69.2% and 71.5% of
the total decoder and encoder energy, respectively. Second, we find
that computation using the VP9 hardware is an order of magnitude
more energy-efficient than computation using PIM-Core. As a result,
when compression is enabled, PIM-Core actually consumes 63.4%
more energy than the VP9 baseline. Third, we find that PIM-Acc
reduces energy when compared to the VP9 hardware baseline, by
75.1% for decoding and by 69.8% for encoding. This is because PIM-
Acc embeds parts of the VP9 hardware itself in memory, retaining
the computational energy efficiency of the baseline accelerator
while reducing the amount of data movement that takes place.
Fourth, we find that PIM-Acc without compression uses less energy
than the VP9 hardware baseline with compression. This indicates
that the PIM logic is more effective at reducing data movement
than compression alone. We achieve the greatest energy reduction
by combining PIM-Acc with compression.

11 Other Related Work
To our knowledge, this is the first work to (1) conduct a comprehen-
sive analysis of Google’s consumer device workloads to identify
major sources of energy consumption, with a focus on data mo-
vement; and (2) analyze and evaluate how processing-in-memory

(PIM) benefits consumer devices, given the stringent power and
area constraints of such devices. Section 2 briefly discusses related
work on PIM. In this section, we discuss other related works.

Prior works [15, 57, 68, 113, 121] study the general performance
and energy profile of mobile applications. Narancic et al. [107] study
thememory system behavior of a mobile device. Shingari et al. [130]
characterize memory interference for mobile workloads. None of
these works analyze (1) the sources of energy consumption and
data movement in consumer workloads, or (2) the benefits of PIM
for modern consumer workloads. One prior work [114] measures
the data movement cost of emerging mobile workloads. However,
the work does not identify or analyze the sources of data movement
in consumer workloads, and does not propose any mechanism to
reduce data movement.

A number of prior works select a single consumer application
and propose techniques to improve the application. Many prior
works [16, 17, 158, 159] use a variety of techniques, such as micro-
architecture support and language extensions, to improve browsing
energy and performance. None of these works (1) conduct a de-
tailed analysis of important user interactions (page scrolling and
tab switching) when browsing real-world web pages, or (2) iden-
tify sources of energy consumption and data movement during
these interactions. Other works [13, 20, 27, 77, 88, 89, 155] attempt
to improve the efficiency of motion compensation, motion esti-
mation, and the deblocking filter in different video codec formats
using various techniques, ranging from software optimization to
hardware acceleration. None of these works (1) thoroughly ana-
lyze the data movement cost for a video codec, or (2) use PIM to
improve the energy and performance of the video codec. Several
works [19, 36, 61, 81, 119] focus on accelerating inference. While
these mechanisms can speed up inference on mobile TensorFlow,
they do not address the data movement issues related to packing
and quantization. Tetris [36] and Neurocube [81] attempt to push
the entire inference execution into PIM. While Tetris and Neuro-
cube eliminate data movement during inference, their PIM logic
incurs high area and energy overheads, which may not be practical
to implement in consumer devices given the limited area and power
budgets. In contrast, our work identifies the minimal functions of
inference that benefit from PIM, allowing us to greatly reduce data
movement without requiring a large area or energy overhead, and
making our PIM logic feasible to implement in consumer devices.

12 Conclusion
Energy is a first-class design constraint in consumer devices. In this
paper, we analyze several widely-used Google consumer workloads,
and find that data movement contributes to a significant portion
(62.7%) of their total energy consumption. Our analysis reveals
that the majority of this data movement comes from a number
of simple functions and primitives that are good candidates to be
executed on low-power processing-in-memory (PIM) logic. We
comprehensively study the energy and performance benefit of PIM
to address the data movement cost on Google consumer workloads.
Our evaluation shows that offloading simple functions from these
consumer workloads to PIM logic, consisting of either simple cores
or specialized accelerators, reduces system energy consumption
by 55.4% and execution time by 54.2%, on average across all of
our workloads. We conclude that reducing data movement via
processing-in-memory is a promising approach to improve both
the performance and energy efficiency of modern consumer devices
with tight area, power, and energy budgets.
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