‘e’\“ s,-\

ETH urich 0 R e By PR N ot DINFK

GraphMineSuite: Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining

For example, listing
all k-cliques

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining

For example, listing
all k-cliques

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining

For example, listing
all k-cliques

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining: Challenges

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining: Challenges

Example: the
Bron-Kerbosch

algorithm for
maximal
clique listing

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P :=P \ {v}
X = X U {v}

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining: Challenges Complex algorithm

structure, deeply recursive,
no notion of iterations

Example: the
Bron-Kerbosch

algorithm for
maximal
clique listing

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P :=P \ {v}
X = X U {v}

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining: Challenges Complex algorithm

structure, deeply recursive,
no notion of iterations

Example: the
Bron-Kerbosch

algorithm for
maximal
clique listing

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P :=P \ {v}
X = X U {v}

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining: Challenges

Example: the
Bron-Kerbosch

algorithm for
maximal
clique listing

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P :=P \ {v}
X = X U {v}

Complex algorithm
structure, deeply recursive,
no notion of iterations

Non-straightforward
parallelism, complicated
memory access patterns

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining: Challenges

Example: the
Bron-Kerbosch

algorithm for
maximal
clique listing

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do

BronKerbosch (R U {v}, P N N(v), X N N(v))

P :=P \ {v}
X = X U {v}

while not done
for all vertices v:
send updates over outgoing edges of v
for all vertices v:
apply updates from inbound edges of v

o&-if1ll |
sQ’e: ma?i}
ﬁ: i\@,\;’

Pagefank -

Complex algorithm
structure, deeply recursive,
no notion of iterations

Non-straightforward
parallelism, complicated
memory access patterns

spcl.inf.ethz.ch

Graph Mining: Challenges

Example: the
Bron-Kerbosch

algorithm for
maximal
clique listing

ETH:zurich

L 4 @spcl_eth

Complex algorithm
structure, deeply recursive,
no notion of iterations

Non-straightforward
parallelism, complicated
memory access patterns

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do

P :=P \ {v}
X = X U {v}

BronKerbosch (R U {v}, P N N(v), X N N(v))

while not done
for all vertices v:
send updates over outgoing edges of v
for all vertices v:
apply updates from inbound edges of v

o&-if1ll |
sQ’e: ma?i}
ﬁ: i\@,\;’

Pagefank -

...Repeat several times

spcl.inf.ethz.ch

Graph Mining: Challenges

Example: the
Bron-Kerbosch

algorithm for
maximal
clique listing

ETH:zurich

L 4 @spcl_eth

Complex algorithm
structure, deeply recursive,
no notion of iterations

Non-straightforward
parallelism, complicated
memory access patterns

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do

P :=P \ {v}
X = X U {v}

BronKerbosch (R U {v}, P N N(v), X N N(v))

while not done
for all vertices v:
send updates over outgoing edges of v
for all vertices v:
apply updates from inbound edges of v

o&-if1ll |
o % ,g
ﬁ: i\@,\;’

Pagefank -

...Repeat several times
Not very complicated

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining: Challenges

Example: the
Bron-Kerbosch

algorithm for
maximal
clique listing

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P :=P \ {v}
X = X U {v}

Complex algorithm
structure, deeply recursive,
no notion of iterations

Non-straightforward
parallelism, complicated
memory access patterns

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining: Challenges Complex algorithm
structure, deeply recursive,

Example: the no notion of iterations

Bron-Kerbosch

algorithm for
maximal
clique listing

Non-straightforward

parallelism, complicated
memory access patterns

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then Many algorithms are NP-
report R as a maximal clique complete or even EXPTIME
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P :=P \ {v}
X = X U {v}

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph Mining: Challenges Complex algorithm
structure, deeply recursive,

Example: the no notion of iterations

Many other
Bron-Kerbosch

algorithms
with similar
properties

algorithm for
maximal
clique listing

Non-straightforward

parallelism, complicated
memory access patterns

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then Many algorithms are NP-
report R as a maximal clique complete or even EXPTIME
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P :=P \ {v}
X = X U {v}

v oo ETHzUrich
Clusterin ,
Graph Mining: Challenges Dense Complex algorithm
" o th |st|ng Vertex subgraph structure, deeply recursive,
5 xapr eb eh Many other Subgraph discovery no notion of iterations
q similarity Non—sttralghtforv\./ard

with similar
properties Link pred|ct|on subgraph parallelism, complicated
mining memory access patterns

maximal
clique listing

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then Many algorithms are NP-
report R as a maximal clique complete or even EXPTIME
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P :=P \ {v}
X = X U {v}

spcl.inf.ethz.ch -
Y @spcl_eth E'HZUI”IC/’)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

" How to achieve this goal?

Goal: construct a high-performance

algorithm solving a selected graph
mining problem

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Goal: construct a high-performance > , |
: : How to achieve this goal?
algorithm solving a selected graph

. o bI
mining problem One has to address

several issues...

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

" How to achieve this goal?

One has to address
several issues...

Goal: construct a high-performance

algorithm solving a selected graph
mining problem

* What are relevant mining

baselines and datasets?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Goal: construct a high-performance > , ,
: : How to achieve this goal?
algorithm solving a selected graph
mining problem
S One has to address
several issues...

“ What are relevant mining
baselines and datasets?

How to effectively develop
new efficient baselines?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Goal: construct a high-performance > , ,
: : How to achieve this goal?
algorithm solving a selected graph
mining problem
S One has to address
several issues...

' What are relevant mining

baselines and datasets? 3
“dow to analyze performance/others,

How to effectively develop using what metrics?
new efficient baselines?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Goal: construct a high-performance > , ,
: : How to achieve this goal?
algorithm solving a selected graph
mining problem
S One has to address
several issues...

' What are relevant mining

baselines and datasets? 3
“dow to analyze performance/others,

How to effectively develop using what metrics?
new efficient baselines?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Goal: construct a high-performance > , |
: : How to achieve this goal?
algorithm solving a selected graph

. o bI
mining problem One has to address

several issues...

“ What are relevant mining
baselines and datasets? 3

“dow to analyze performance/others,

How to effectively develop using what metrics?

new efficient baselines?

@\G raphMineSuite

spcl.inf.ethz.ch -
Y @spcl_eth E'HZUFIC/’)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

GraphMineSuite (GMS) comes with...

spcl.inf.ethz.ch

L 4 @spcl_eth

raphMineSuite (GMS) comes with...

... Benchmark specification prescribing

representative problems, algorithms, and
datasets

Graph problem Corresponding algorithms E? P2 Whyincluded, what represents? (selected remarks)
o Maximal Clique Listing [87] Bron-Kerbosch [56] + optimizations (e.g. pivoting) [61, 91, 207] ©@ W Widely used, NP-complete, example of backtracking
A Edge-Parallel and Vertex-Parallel general algorithms [78], : ; :
o k-Clique Listing (78] difforent variants of Triangle Counting (164 193] @ W P (high-degree polynomial), example of backtracking
; “":f" o Dense Subgraph Discovery [5] Listing k-clique-stars [117] and k-cores [94] (exact & approximate) (3@ @ Different relaxations of clique mining
atching o subgraph isomorphism [87] VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] o " Induced vs. non-induced, and backtracking vs. indexing schemes
o Frequent Subgraph Mining [5] BFS and DFS ion strategies, different i hism kernels % Useful when one is interested in many different motifs
. Jaccard, Overlap, Adamic Adar, Resource Allocation, A building block of many more comples schemes,
® Vertex similarity [137] Common Neighbors, Preferential Attachment, Total Neighbors [179) & © % ifurent methods have difforent performance properties
Variants based te imilarit b 10, 142, 146, 202
o Link Prediction [202] e o s iy (see above) [10, 142,146, 202], 3@ W A very common problem in social network analysis
Graph a scheme for assessing link prediction accuracy [211]
Learning . i ing:
o Clustering [183] Jarvis Pgtr_lck clustering [119] based on different 00 W Avery common problem in generf\l data mining; the selectec}
vertex similarity measures (see above) [10, 142, 146, 202] scheme is an example of overlapping and single-level clustering
o Community detection Label Propagation and Louvain Method [195] W " Examples of convergence-based on non-overlapping clustering
Jones and Plassmann’s (JP) [123], Hasenplaugh et al’s (HS) [110], L
L N N . N B NP-complete; uses vertex prioritization (JP, HS),
Opti. *Minimum Graph oloring [165] Johansson’s () [121] Barenboim’s (B) 17), Elkin et al’s) 20} e letes 0, B), amd adapted distibuted schemes (E, SD)
ot sparse-dense decomposition (SD) [109]
mization
problems o Minimum Spanning Tree [76] Boruvka [53]] "® P (low complexity problem)
© Minimum Cut [76] A recent augmentation of Karger-Stein Algorithm [125]] " P (superlinear problem)
Vertex ® Degree reordering A straightforward integer parallel sort W O Asimple scheme that was shown to bring speedups
Ordering Triangle count ranking Computing triangle counts per vertex @@ O Ranking vertices based on their clustering coefficient
© Degenerecy reordering Exact and approximate [94] [127] @@ O Often used to accelerate Bron-Kerbosch and others

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

GraphMineSuite (GMS) comes with...

... Benchmark specification prescribing

representative problems, algorithms, and
datasets

Graph problem

Corresponding algorithms E? P2 Whyincluded, what represents? (selected remarks)

 Maximal Clique Listing [87]

© k-Clique Listing [78]

Bron-Kerbosch [56] + optimizations (e.g. pivoting) [61, 91, 207] <l Widely used, NP-complete, example of backtracking

Edge-Parallel and Vertex-Parallel general algorithms [78], 0%

different variants of Triangle Counting [184, 193] P (high-degree polynomial), example of backtracking

L)
L)
Graph
; ‘":f" o Dense Subgraph Discovery [5] Listing k-clique-stars [117] and k-cores [94] (exact & approximate) (3@ @ Different relaxations of clique mining
atching o §\bgraph isomorphism [87) VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] o " Induced vs. non-induced, and backtracking vs. indexing schemes
o Frequent Subgraph Mining [5] BFS and DFS ion strategies, different i hism kernels w " Useful when one is interested in many different motifs
Jaccard, Overlap, Adamic Adar, Resource Allocation, o® A building block of many more comples schemes,
Common Neighbors, Preferential Attachment, Total Neighbors [179] " different methods have different performance properties
network analysis
Graph

Learning

Opti-
mization
problems

Vertex
Ordering

W h at are re | evant E=

mining baselines

non-overlapping clustering

tion (JP, HS),
H distributed schemes (E, SD)

o bring speedups
istering coefficient

and datasets?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

o [] °
GraphMineSuite (GMS) comes with
p se e Maximal Clique Listing [87) Bron-Kerbosch [56] + optimizations (e.g., pivoting) [61, 91, 207] 0 Widely used, NP-complete, example of backtracking

L)
. Edge-Parallel and Vertex-Parallel general algorithms [78], : :)
Gragh o k-Clique Listing [78] difforent variants of Triangle Counting [184, 193] @ W P (high-degree polynomial), example of backtracking
Nf “";7" o Dense Subgraph Discovery [5] Listing k-clique-stars [117] and k-cores [94] (exact & approximate) (3@ @ Different relaxations of clique mining
atching o §\bgraph isomorphism [87) VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] s " Induced vs. non-induced, and backtracking vs. indexing schemes
o Frequent Subgraph Mining [5] BFS and DFS ion strategies, different i hism kernels w " Useful when one is interested in many different motifs
Jaccard, Overlap, Adamic Adar, Resource Allocation, o® A building block of many more comples schemes,
o (] [})) Common Neighbors, Preferential Attachment, Total Neighbors [179] " different methods have different performance properties
network analysis
ee e Graph
Learning | data mining; the selected

g and single-level clustering

non-overlapping clustering

tion (JP, HS),
H distributed schemes (E, SD)

™ mining baselines

Vertex
Ordering

representative problems, algorithms, an
datasets

o bring speedups

istering coefficient

and datasets?

... Software platform with reference
implementations based on set algebraic

Benchmark specification

Implementations
- Algorithms
- Optim :

Graph problems & algorithms.
- Pattern matching (e.g., clique

- Learning (€.g., link predictio

- Optimization (e.g., coloring, minimum ¢
- Reordering (e.g., degeneracy reorderir

presentations
uts

formulations for programmability & high
performance

- Graph compression,
- Parallelizations
Datasets
cliques.
tion.
allel, » Modular

- Fast,

1 Platform pipeline stages (toolchain execution) ﬂ a dark background and a cube indicate that a particular part of the design ~ §
larity 1

g8

with details on extensibility and modul can be substituted by the developer with their own implementation

Visualize

How does GMS omwd emm emmm Modular design of
facilitate extensibility classes & tles associated M:wd mmﬁ: %—&w m:,.:ﬂm-

@ cens s of code taciaing) ser based
at a given stage? with graph representations u;?h‘rm

The user can .. new algorithms or data structures), . using SIMD or instrinsics), and design ideas (e.g., using novel form of load balancing),

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

o [] °
GraphMineSuite (GMS) comes with
p se e Maximal Clique Listing [87) Bron-Kerbosch [56] + optimizations (e.g., pivoting) [61, 91, 207] 0 Widely used, NP-complete, example of backtracking

L)
A Edge-Parallel and Vertex-Parallel general algorithms [78], : :)
Gragh o k-Clique Listing [78] difforent variants of Triangle Counting [184, 193] @ W P (high-degree polynomial), example of backtracking
Nf ‘";7" o Dense Subgraph Discovery [5] Listing k-clique-stars [117] and k-cores [94] (exact & approximate) (3@ @ Different relaxations of clique mining
atching o §\bgraph isomorphism [87) VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] s " Induced vs. non-induced, and backtracking vs. indexing schemes
o Frequent Subgraph Mining [5] BFS and DFS ion strategies, different i hism kernels oy " Useful when one is interested in many different motifs
Jaccard, Overlap, Adamic Adar, Resource Allocation, o® A building block of many more comples schemes,
[] [[] [] ° Common Neighbors, Preferential Attachment, Total Neighbors [179] " different methods have different performance properties
network analysis
P Graph
Learning | data mining; the selected

g and single-level clustering

non-overlapping clustering

tion (JP, HS),
H distributed schemes (E, SD)

™ mining baselines

Vertex
Ordering

representative problems, algorithms, and
datasets

o bring speedups

istering coefficient

and datasets?

... Software platform with reference

.) : How to effectively
implementations based on set algebraic

evelop new
efficient baselines?

formulations for programmability & high
performance

i e eneren ==
Platform pipeline stages (toolchain execution) ﬂ +a dark background and a cube indicate that a particular part of the design

: with details on extensibility and modularity ‘oan be soethuted by the developer with their own lv\p‘emenmmw :

. ‘

. . © ceas s of code tacinaing) based
i agnenauuger” WD OIAGH [epUeSaMAIONS | rculnes o Gaph accesses et i aoh s S0 b o gk o .-.""5-‘:--

The user can 9. data structures), ., using SIMD o instrinsics), and design ideas (e.g., using novel form of load balancing).

GraphMineSuite (GMS) comes with...

... Benchmark specification prescribing
representative problems, algorithms, and
datasets

... Software platform with reference

implementations based on set algebraic
formulations for programmability & high
performance

... Performance metrics, e.g., to assesses
algorithmic throughput

Graph
Pattern
Matching

Graph
Learning

Opti-
mization
problems

Vertex
Ordering

Graph problem
 Maximal Clique Listing [87]

© k-Clique Listing [78]

o Dense Subgraph Discovery [5]

o Subgraph isomorphism [87]
o Frequent Subgraph Mining [:

What are relevant
mining baselines
and datasets?

® Minimun

* Minimu
* Minimui

o Degree

spcl.inf.ethz.ch
L 4 @spcl_eth

Corresponding algorithms
Bron-Kerbosch [56] + optimizations (e.g. pivoting) [61, 91, 207]

Edge-Parallel and Vertex-Parallel general algorithms [78],
different variants of Triangle Counting [184, 193]

Listing k-clique-stars [117] and k-cores [94] (exact & approximate)
VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59]
BFS and DFS exploration strategies, different isomorphism kernels

Jaccard, Overlap, Adamic Adar, Resource Allocation,
Common Neighbors, Preferential Attachment, Total Neighbors [179]

ETH:zurich

luded, what represents? (selected remarks)
Widely used, NP-complete, example of backtracking

P (high-degree polynomial), example of backtracking

Different relaxations of clique mining
Induced vs. non-induced, and backtracking vs. indexing schemes
Useful when one is interested in many different mot

A building block of many more comples schemes,
different methods have different performance properties
network analysis
| data mining; the selected
g and single-level clustering
non-overlapping clustering

tion (JP, HS),
H distributed schemes (E, SD)

o bring speedups
istering coefficient
bosch and others

How to effectively
develop new

raphMine
& Suite

efficient

- different origins (purch

How does GMS
facilitate extensibility
ata given stage?

)
roads

1 Platform pipeline stages (toolchain execution)
with details on extensibility and modularity

subgraphs,
)

baselines?

a dark background and a cube indicate that a particular part of the design
can be substituted by the developer with their own implementation

The user can experiment with algorithmic ideas (e.g.. new algorithms o data structures), architectural deas (e.g., using SIMD or instrinsics), and design ideas (e.g., using novel form of load balancing)

GraphMineSuite (GMS) comes with...

... Benchmark specification prescribing
representative problems, algorithms, and
datasets

... Software platform with reference

implementations based on set algebraic
formulations for programmability & high
performance

... Performance metrics, e.g., to assesses
algorithmic throughput

Graph
Pattern
Matching

Graph
Learning

Opti-
mization
problems

Vertex
Ordering

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

Graph problem Corresponding algorithms 2 Why included, what represents? (selected remarks)
o Maximal Clique Listing [87] Bron-Kerbosch [56] + optimizations (e.g. pivoting) [61, 91, 207] Widely used, NP-complete, example of backtracking

Edge-Parallel and Vertex-Parallel general algorithms [78],

different variants of Triangle Counting [184, 193] P (high-degree polynomial), example of backtracking

ique Listing [78]

® Dense Subgraph Discovery [5] Listing k-clique-stars [117] and k-cores [94] (exact & approximate) Different relaxations of clique mining
o Subgraph isomorphism [87] VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] Induced vs. non-induced, and backtracking vs. indexing schemes
o Frequent Subgraph Mining [5] BFS and DFS exploration strategies, different isomorphism kernels Useful when one is interested in many different motifs

Jaccard, Overlap, Adamic Adar, Resource Allocation, A building block of many more comples schemes,
Common Neighbors, Preferential Attachment, Total Neighbors [179] different methods have different performance properties

network analysis
| data mining; the selected
g and single-level clustering
non-overlapping clustering

tion (JP, HS).

® Minimun H distributed schemes (E, SD)

M mining baselines

* Minimui

o Degree r o bring speedups
istering coefficient

and datasets?

How to effectively
develop new
efficient baselines?

- Parallel, » Modular
- Scalable, » Fas

raphMine
& Suite

d
igins (purc

Platform pipeline stages (toolchain execution) +a dark background and a cube indicate that a particular part of the design §
with details on extensibility and modularity can be substituted by the developer with their own implementation H
)

How to analyze
performance/others, using
what metrics?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

GraphMineSuite (GMS) comes with...

... Benchmark specification prescribing

representative problems, algorithms, and
datasets

Graph problem Corresponding algorithms E? P2 Whyincluded, what represents? (selected remarks)
© Maximal Clique Listing [87] Bron-Kerbosch [56] + optimizations (e.g. pivoting) [61, 91, 207] ©@ W Widely used, NP-complete, example of backtracking
. Edge-Parallel and Vertex-Parallel general algorithms [78], : :)
Gragh o k-Clique Listing [78] difforent variants of Triangle Counting [184, 193] @ W P (high-degree polynomial), example of backtracking
Nf a":f" o Dense Subgraph Discovery [5] Listing k-clique-stars [117] and k-cores [94] (exact & approximate) (3@ @ Different relaxations of clique mining
atching o §\bgraph isomorphism [87) VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] s " Induced vs. non-induced, and backtracking vs. indexing schemes
o Frequent Subgraph Mining [5] BFS and DFS ion strategies, different i hism kernels w " Useful when one is interested in many different motifs
Jaccard, Overlap, Adamic Adar, Resource Allocation, o® A building block of many more comples schemes,
Common Neighbors, Preferential Attachment, Total Neighbors [179] " different methods have different performance properties
network analysis
Graph

Learning | data mining; the selected
g and single-level clustering

non-overlapping clustering

tion (JP, HS),
H distributed schemes (E, SD)

™ mining baselines

Vertex
Ordering

o bring speedups

istering coefficient

and datasets?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

What are the representative problems & algorithms? 1

e s v eseen ETHzUrich

What are the representative problems & algorithms?

Graph pattern matching Graph learning

s
|
Il
:

s I 0

Vertex
reordering | Optimization

e s v eseen ETHzUrich

What are the representative problems & algorithms?

Graph pattern matching Graph learning

i
|
|
[
i

Vertex f
reordering | Optimization

e s v eseen ETHzUrich

What are the representative problems & algorithms?

Graph pattern matching Graph learning

reordering | Optimization

AL | v esien ETHZzUrich

What are the representative problems & algorithms?

Graph pattern matching Graph learning

reordering = a | Optimization

AL | v esien ETHZzUrich

What are the representative problems & algorithms?

Graph pattern matching Graph learning

reordering = a | Optimization

spcl.inf.ethz.ch

ETH:zurich

L 4 @spcl_eth

What are the representative problems & algorithms? ...and datasets? 1

v
~

Graph problem Corresponding algorithms Why included, what represents? (selected remarks)

Graph
Pattern

Matching

e Maximal Clique Listing [87]
e k-Clique Listing [78]
® Dense Subgraph Discovery [5]

e Subgraph isomorphism [87]
® Frequent Subgraph Mining [5]

Bron-Kerbosch [56] + optimizations (e.g., pivoting) [61, 91, 207]

Edge-Parallel and Vertex-Parallel general algorithms [78],
different variants of Triangle Counting [184, 193]

Listing k-clique-stars [117] and k-cores [94] (exact & approximate)
VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59]
BFS and DFS exploration strategies, different isomorphism kernels

Widely used, NP-complete, example of backtracking

P (high-degree polynomial), example of backtracking

Different relaxations of clique mining
Induced vs. non-induced, and backtracking vs. indexing schemes
Useful when one is interested in many different motifs

Graph
Learning

e Vertex similarity [137]

e Link Prediction [202]

e Clustering [183]

e Community detection

Jaccard, Overlap, Adamic Adar, Resource Allocation,
Common Neighbors, Preferential Attachment, Total Neighbors [179]

Variants based on vertex similarity (see above) [10, 142, 146, 202],
a scheme for assessing link prediction accuracy [211]

Jarvis-Patrick clustering [119] based on different
vertex similarity measures (see above) [10, 142, 146, 202]

Label Propagation and Louvain Method [195]

4 444 4 43

‘
‘
‘

A building block of many more comples schemes,
different methods have different performance properties

A very common problem in social network analysis

A very common problem in general data mining; the selected
scheme is an example of overlapping and single-level clustering

Examples of convergence-based on non-overlapping clustering

Opti-
mization
problems

¢ Minimum Graph Coloring [168]

e Minimum Spanning Tree [76]
e Minimum Cut [76]

Jones and Plassmann’s (JP) [123], Hasenplaugh et al’s (HS) [110],
Johansson’s (]) [121], Barenboim’s (B) [17], Elkin et al’s (E) [90],
sparse-dense decomposition (SD) [109]

Boruvka [53]
A recent augmentation of Karger-Stein Algorithm [125]

NP-complete; uses vertex prioritization (JP, HS),
random palettes (J, B), and adapted distributed schemes (E, SD)

P (low complexity problem)
P (superlinear problem)

Vertex
Ordering

® Degree reordering
e Triangle count ranking
e Degenerecy reordering

A straightforward integer parallel sort
Computing triangle counts per vertex
Exact and approximate [94] [127]

ol &

oo 44 4

A simple scheme that was shown to bring speedups
Ranking vertices based on their clustering coefficient
Often used to accelerate Bron-Kerbosch and others

r€oracinig

n O 9 95V -

Upurrnzauol

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

What are the representative problems & algorithms? ...and datasets? 1

Details in the paper ©

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

How about datasets? 1

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

...Sparsities (a)

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

...Sparsities (a) ...Skews in degree distribution (b)

13 10 30 100 300 1“‘35‘ 13 10 30 100 300 10003000 1 3 10 30 100 300 10003000
Degree Degree Degree

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

...Sparsities (a) ...Skews in degree distribution (b)

Not enough for

graph mining!

M | =

13 10 30 100 300 W“f 13 10 30 100 300 10003000 1 3 10 30 100 300 10003000
Degree Degree Degree

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

...Sparsities (a) ...Skews in degree distribution (b)

Not enough for
graph mining!

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

...Sparsities (a) ...Skews in degree distribution (b)

Not enough for
graph mining!

: Flickr (F) photo
"o%. *relation graph

Livemocha (L)
.“social network

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

...Sparsities (a) ...Skews in degree distribution (b)

Not enough for
graph mining!

*.relation graph Both have

= similar (a)

« Livemocha (L) and (b)
. *-social network

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

...Sparsities (a) ...Skews in degree distribution (b)

Not enough for
graph mining!

f—~-relation graph Both have Yet, (L) has 4.4M
| gl similar (a) B M 4-cliques, and (F)
~ Livemocha (L) and (b) has 9.6B 4-cliques

. *-social network

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

...Sparsities (a) ...Skews in degree distribution (b)

Not enough for
graph mining!

Different
performance

Both have Yet, (L) has 4.4M
similar (a) K= 4-cliques, and (F)
and (b) has 9.6B 4-cliques

characteristics for
mining problems

. Livemocha (L)
. -social network

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

...Sparsities (a) ...Skews in degree distribution (b)

Not enough for
graph mining!

...Differences in ,complex structure” (e.g.,
#triangles per vertex)

Different

Both have Yet, (L) has 4.4M
similar (a) K= 4-cliques, and (F)
 Livemocha (L) and (b) has 9.6B 4-cliques

*.social network

performance

characteristics for
mining problems

spcl.inf.ethz.ch

L 4 @spcl_eth

ETH:zurich

How about datasets?

i

Flickr (F) photo
*.relation graph

->

Livemocha (L)

*.social network

10000
3000
1000

300
100
30

Frequency

i

3

10 30 100 300 1000

Degree

Frequency

1

310 30 100 300 10003000
Degree

=

~—

Both have
similar (a)

and (b)

When benchmarking graph workloads, one picks graphs with different...

1

Graph 7 n m = d; d, T L Why selected/special?
[so] (K) Orkut M 117TM 38.1 333k 333k 628M 2043 Common, relatively large
[so] (K) Flickr 23M 22.8M 9.9 21k 263k 838M 363.7 Large T but low m/n.
[so] (K) Libimseti 221k 17.2M 78 333k 25k 69M 3128 Large m/n
[so] (K) Youtube 3.2M 9.3M 29 917k 917k 12.2M 38 Verylowm/nand T
[so] (K) Flixster 25M 791M 3.1 1.4k 1.4k 7.89M 31 Verylowm/nand T
[so] (K) Livemocha 104k 219M 211 298k 298k 336M 323 i'l':t"?;:;ﬂ'_ji; 3:: (4.36M)
[so] (N) Ep-trust 132k 841k 6 3.6k 36k 27.9M 212 Huge T-skew {f = 108k)
[so] (N) FB comm. 35.1k 1.5M 41.5 8.2k 82k 36.4M 1k Large T-skew {f = 159k)
[wb] (K) DBpedia 121IM 288M 237 963k 963k 11.68B 961.8 Rather low m/n but high T
[wb] (K) Wikipedia 182M 127TM 69 632k 632k 328M 18.0 Common, very sparse
[wb] (K) Baidu 2.14M 17M 79 979k 25k 25.2M 11.8 Very sparse
[wb] (N) WikiEdit 943k 57M 604 107k 107k 835M 89k Large T-skew (T = 15.7M)
Very large T and T /n
[st] (N) Chebyshev4 68.1k 5.3M 77.8 681k 68.1k 445M 6.5k and T-skew {f = 5.8M)
[st] (N) Gearbox 154k 45M 292 98 o8 1M o915 LowdbutlargeT;
low T-skew (T = 1.7k)
[st] (N) Nemeth25 10k 751k 75.1 192 192 87M 9k Huge T but low T=12k
[st] (N) F2 715k 26M 365 344 344 110M 15k Medium T-skew (T = 9.6k)
[sc] (N) Gupta3 168k 47M 280 147k 147k 696M 415k Huge T-skew (T = 1.5M)
[sc] (N) Idoor 952k 20.8M 21.5 76 76 567M 595 Very low T-skew (? = 1.1k)
[re] (N) MovieRec 702k 10M 1424 353k 353k 983M 14k Huge T and T = 4.9M
[re] (N) RecDate 169k 17.4M 1025 334k 334k 286M 1.7k Enormous T-skew (f = 1.6M)
[bi] (N) sc-ht (gene) 2.1k 63k 30 472 472 42M 2%k Large T-skew (T = 27.7k)
[bi] (N) AntColonyé 164 10.3k 62.8 157 157 1.1M 6.6k Very low T-skew (f =9.7k)
[bi] (N} AntColony5 152 9.1k 59.8 150 150 897k 59k Very low T-skew (T = 8.8k)
[co] (N) Jester2 50.7k 1.7M 335 50.8k 508k 127M 25k Enormous T-skew (T = 2.3M)
K) Flickr imilar to Livemocha, b
([::31[(0 :tjatcii(lns) o6k 231M 29 Sk Sk 108M 101 i\&nyamtor: 4iliqf|c:‘(9_::53}
[ec] (N) mbeacxc 492 495k 100.5 679 679 9M 182k Large T,low T = 77.7k
[ec] (N) orani678 25k 89.9k 35.5 1.7k 1.7k 8.7M 34k Large T, low T = 80.8k
[ro] (D) USA roads 1.2 9 9 1.3M 0.1 Extremely low m/nand T

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

GraphMineSuite (GMS) comes with

... Benchmark specification prescribing

representative problems, algorithms, and
datasets

Graph problem Corresponding algorithms E? P2 Whyincluded, what represents? (selected remarks)
© Maximal Clique Listing [87] Bron-Kerbosch [56] + optimizations (e.g. pivoting) [61, 91, 207] ©@ W Widely used, NP-complete, example of backtracking
. Edge-Parallel and Vertex-Parallel general algorithms [78], : :)
Gragh o k-Clique Listing [78] difforent variants of Triangle Counting [184, 193] @ W P (high-degree polynomial), example of backtracking
Nf a":f" o Dense Subgraph Discovery [5] Listing k-clique-stars [117] and k-cores [94] (exact & approximate) (3@ @ Different relaxations of clique mining
atching o §\bgraph isomorphism [87) VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] s " Induced vs. non-induced, and backtracking vs. indexing schemes
o Frequent Subgraph Mining [5] BFS and DFS ion strategies, different i hism kernels w " Useful when one is interested in many different motifs
Jaccard, Overlap, Adamic Adar, Resource Allocation, o® A building block of many more comples schemes,
Common Neighbors, Preferential Attachment, Total Neighbors [179] " different methods have different performance properties
network analysis
Graph

Learning | data mining; the selected
g and single-level clustering

non-overlapping clustering

tion (JP, HS),
H distributed schemes (E, SD)

™ mining baselines

Vertex
Ordering

o bring speedups

istering coefficient

and datasets?

spcl.inf.ethz.ch oo o
v owien ETH ZUrich

GraphMineSuite (GMS) comes with...

)

- How to effectively

develop new
selines?

ue) subgraphs, A r different ways, and still they - Perf e (work, depth),
r0ads, ... - Scalable, -» Fast, + = Storage, » Tradeof

Q ... Software platform with reference
implementations based on set algebraic

~~~~~~

formulations for programmability and high
performance

e

aaaaaa
*****




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

GMS software platform & reference implementations 2



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Reference implementations i
@\ Details: Section 5 0 Seplesectt Usedby SR

Implementations

Benchmark specification Benchmarking platform

secsons 345

- Simple to use
- Extensible

Features

- Learning (e Kk 1, clustering) - Modular S
- Optimization (e.g., coloring, minimum cuts) - Public =l it
- Reordering (e.g D 4
- Parallelizations urrency an ~
Datasets uusual':rebn. Sets and set
- Sparse & dense, » m Features become "modules’ Aspects Details: Section 6 0
- High & low skew of degree distribution that can be implemented in
- Many dense (non-cliqu - Parallel, » Modular different ways, and still they - Performance (work, depth)
= different origins (purchases, roads, ...) - Scalable, - Fast, » can be seamlessly combined. - Storage, - Tradeoffs
| ]
| |
: Platform pipeline stages (toolchain execution) ﬂ : a dark background and a cube indicate that a particular part of the design ¢
H with details on extensibility and modularity can be substituted by the developer with their own implementation 1
.
.l;oadunph e h q
to memory 2hi e gnau ; of ; (S SUC
I.—. initial CSR graph - v . as schedu . GMS
Era———r size) : s AL L o g
-y tc = 0;init_sets() e
E=BE vt o e st ()
. — — I forvinv:
Input : - - 1 for win N
b Theusa can pg i dre prpe The e - 15 NS
ol Ty o : \cie 8 o fyi > ]
b cmmma' ) L Implementations. 2 < Jenr

How does GMS o»am-mu emw emmm %ﬁmd emmumm @ Set based
classes & files associated (based on set algebra) of routines & files associated manipulation pars various
"ﬁ.“‘}‘;?,,'.’.‘.':?."‘,':';"" with graph representations m:m“ with a single function call with graph algorithms. meﬂ- mu:u.m

The user can experiment with algorithmic ideas (e.g., new algorithms or data structures), architectural ideas (e.g., using SIMD or instrinsics), and design ideas (e.g., using novel form of load balancing).



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

GMS software platform & reference implementations 2



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

GMS software platform & reference implementations 2

Central concept for both programmability and high

performance are set-algebraic formulations




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

GMS software platform & reference implementations 2

Central concept for both programmability and high
performance are set-algebraic formulations




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

GMS software platform & reference implementations 2

Central concept for both programmability and high
performance are set-algebraic formulations




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

GMS software platform & reference implementations 2

Central concept for both programmability and high

performance are set-algebraic formulations

B
Sets I-(u)
N
U V



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

GMS software platform & reference implementations 2

Central concept for both programmability and high
performance are set-algebraic formulations

Set
operations




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Programmable and High Performance Graph Mining: A Brief Summary

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P := P \ {v}
X := X U {v}




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set

algebra building blocks

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P := P \ {v}
X := X U {v}




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set

algebra building blocks

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))
P := P \ {v;
X := X U {v}




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set

algebra building blocks

Prevalence of set
operations in graph

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique problems
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))
P := P \ {v;
X := X U {v}

mining algorithms &




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set

algebra building blocks

Prevalence of set
operations in graph
mining algorithms &

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique problems
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))

P := P \ {v;

X := X U {v}




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set
algebra building blocks

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))
P := P \ {v;
X := X U {v}

Breaking down complex graph
mining algorithms into simple

building blocks, which can be
separately optimized and coded

Prevalence of set
operations in graph
mining algorithms &

problems




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set

algebra building blocks

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))
P := P \ {v;
X := X U {v}

Breaking down complex graph
mining algorithms into simple

building blocks, which can be
separately optimized and coded

Prevalence of set
operations in graph
mining algorithms &

problems




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set

algebra building blocks

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))
P := P \ {v;
X := X U {v}

Breaking down complex graph
mining algorithms into simple

building blocks, which can be
separately optimized and coded

Prevalence of set
operations in graph
mining algorithms &

problems

Parallelism across
and within set
operations



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set
Prevalence of set
operations in graph
mining algorithms &
problems

algebra building blocks

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v)) Parallelism across

i : 1; l\J {{\:}}} and within set
operations

Breaking down complex graph

mining algorithms into simple Facilitates

prototyping and
optimization

building blocks, which can be
separately optimized and coded




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set

algebra building blocks

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))

Breaking down complex graph

mining algorithms into simple Variants of a

set operation

building blocks, which can be
separately optimized and coded

Prevalence of set
operations in graph
mining algorithms &

problems

Parallelism across
and within set
operations

Facilitates

prototyping and
optimization




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set Variants of a set

algebra building blocks representation

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))

Breaking down complex graph

mining algorithms into simple Variants of a

set operation

building blocks, which can be
separately optimized and coded

Prevalence of set
operations in graph
mining algorithms &

problems

Parallelism across
and within set
operations

Facilitates

prototyping and
optimization




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set Variants of a set

algebra building blocks representation

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))

Breaking down complex graph

mining algorithms into simple Variants of a

set operation

building blocks, which can be
separately optimized and coded

Prevalence of set
operations in graph
mining algorithms &

problems

Parallelism across
and within set
operations

Facilitates

prototyping and
optimization




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Example Advantages of Set Algebra Building Blocks

n = 16 (#vertices)
{0, ..., 15}

An example set:
{5,6,7,11,12}



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Example Advantages of Set Algebra Building Blocks

m Sparse Array (SA)

n =16 (#vertices)  Wibits]foran Size [bits]:
{0, eey 15} element (usually W x

_ a memory Word)\ #vertices
An example set:

{5,6,7,11,12y 5 6 7 11 12



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Example Advantages of Set Algebra Building Blocks

[ Input set Sparse Array (SA) Dense Bitvector (DB)
n =16 (#vertices) W [bits] foran Size [bits]: : .
{0, ..., 15} element (usually V& X ] Size [bits]: n

a memory word)\ #vertices
An example set: 0 00
{5,6,7,11,12y 5 6 7 11 12 100000...00 o n



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Example Advantages of Set Algebra Building Blocks

[ Input set Sparse Array (SA) Dense Bitvector (DB)
n =16 (#vertices) W [bits] f Size [bits]: S
{0, ..., 15} elengeln?](uosruzrllgg |zev&x| sl Size [bits]: n
amemory word)\ - #vertices
An example set: 00000 000 000
{5,6,7,11,12y 5 6 7 11 12 1 Ein Bd n

Example GMS graph representation

13 >o000000@iTHonTLLT
- 0011001001100011
- 000110f100100001
= 00000FTH000EL 000 |sinsBas

g g g :II; 15 \ usﬁtg@'ﬁ\s

-l
- The switching point

2 3 between usir?g SAs
'i’ 1 14 & DBs is determined

N Co O

by the user

s OGO On

Pointers from vertices
n to their neighborhoods



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Example Advantages of Set Algebra Building Blocks

[ Input set J
n = 16 (#vertices) W Ibits] f Si bits1: i .
{0, ..., 15} elengeln?](uosruzrll); |zev&x| sl Size [bits]: n
a memory wors \ #vertices
An example set:

{5,6,7,11,12} 5 6 7 1 12 100000...000..000n
13 ~o000000@fdolTHTE Sﬁﬁﬁim-"aﬁsﬁi-
6 = 0011001001100011 BN I . -

8 = 0001101100100001 SA, SA (sizes vary a lot)
2 > 00000MTM000EMO00 usingBas N s
TIPS T T R NG LY E—
12 = 2 3 'ght?”switchir_lg psogmt EERNEENNEEER

0 - 1 14 & DB is determined DB, DB

. by the user nllllllllllll

: NRENRRNNANEE

Pointers from vertices
n to their neighborhoods Other set operations

have similar variants



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Example Advantages of Set Algebra Building Blocks

[ Input set _ Sparse Array (SA)
n =16 (#vertices) W [bits] f Size [bits]: : .
{0, ..., 15} elengeln?](uosruzrlly; “ V&xl ] Size [bits]: n
amemory word)\ - #vertices
An example set: 00000 000 000
{5,6,7,11,12y 5 6 7 11 12 1 1o 11 n
SA, SA (similar si
13 +o000000 T 0TEHLM n-ﬁ'ﬁaﬁsf‘i-
6 =->0011001001100011 N I -
8 = 0001101100100001 5 SA, SA (sizes vary a lot)
2 = 00000MEWO00MEO00 wsingBes ~ NZT™===5™
5 = 8 9 11 15 SN SA, DB
M1 = 2 3 15 \ SHne SA I I - ,
12 = 2 3 Thgﬂswitching pé)g‘t ANERREERNEER Variants of a set
0 - 1 14 §%B§?§§§ﬁ3§mine% DB, DlB“““““ intersection,
. y the user B . .
- Pc>nters from vertices nll“““““ - opt|m|z-ed for
n totheir neighborhoods Other et operations different input set

have similar variants representations



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

This may give us performance and generality, but it
does look quite complex to manage...?




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Example Advantages of Set Algebra Building Blocks

...It’s all about abstracting away the details with set-centric formulations + modularity




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Example Advantages of Set Algebra Building Blocks

...It’s all about abstracting away the details with set-centric formulations + modularity

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P := P\ {v}
X =X U {v}




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Example Advantages of Set Algebra Building Blocks

...It’s all about abstracting away the details with set-centric formulations + modularity

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X M N(v))
P :=P \ {v}
X = X U {v}




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Example Advantages of Set Algebra Building Blocks

...It’s all about abstracting away the details with set-centric formulations + modularity

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then processing sets in GMS

report R as a maximal clique e z
choose a pivot vertex u in P U X SA, SA (similar sizes)
for each vertex v in P \ N(u) do n-------

I .

BronKerbosch (R U {v}, P N N(v), X M N(v))

P :=P\ {v} SA, SA (sizes vary a lot)
X := X U {v} n-------
] |

SA, DB
N . .
HNEMONEANMED

DB, DB

-
SNENENNNREER

Other set operations
have similar variants




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Example Advantages of Set Algebra Building Blocks

...It’s all about abstracting away the details with set-centric formulations + modularity

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then processing sets in GMS

report R as a maximal clique e z
choose a pivot vertex u in P U X SA, SA (similar sizes)
for each vertex v in P \ N(u) do n-------

I .

BronKerbosch (R U {v}, P N N(v), X M N(v))

P :=P\ {v} SA, SA (sizes vary a lot)
X := X U {v} n-------
] |

SA, DB
I -
HNEMONEANMED

. . DB, DB
A set-centric formulation of n“"""““
DOODDMmEuNEEm

a graph mining algorithm

remains simple Other set operations
have similar variants




W — o/ = B e O S aper e o e ETHziirich

e e RED 8 32 —_— 3 “.".' ‘ ;\‘\"
> B L f ~ . 2 TN

PERFORMANCE ANALYSIS = =588
. USED MACHINES & GOALS




MP:L — L : T \ —— sp;lg,;:zzzei: E'qurlc h

-— o — - - —~ s =
v - ~ 3447 T
< - . P ] N
. | ~ : = o N
S : -~ . ST >

PERFORMANCE ANALYSIS " 5%
. USED MACHINES & GOALS '

CSCS Cray Piz Daint,
64 GB per compute node




T . o 5es  ETHzirich

PERFORMANCE ANALYSIS
. USED MACHINES & GOALS

o .

~

._ CSCS Cray Piz Daint,
- 64 GB per compute node

HP MadaSment Server

4
CSCS Ault server, 768 GB of DRAM




P ASRCL s ETHzirich

‘
. NG
y
e

PERFORMANCE ANALYSIS ©
USED MACHINES & GOALS —

e DN

e B .
3R e
——— N P M
~ - — V3 SN a2
— —" - ==
———

g 2 ——

: Goal 1: GMS enables
&= accelerating the state of the art

i — p——

| CSCS Cray Piz Daint,
~ 64 GB per compute node

HP MadaSmont Server

d
CSCS Ault server, 768 GB of DRAM



MMSIPCL

spcl.inf.ethz.ch oo o
v ovien  ETHzUrich

PERFORMANCE ANALYSIS e
USED MACHINES & GOALS T i, TS

.

Goal 2: GMS facilitates =
performance analysis of various
aspects of graph mining

—

< -\ .y U 4
S PR e
PO

WO® e

: Goal 1: GMS enables
& accelerating the state of the art

Vg

CSCS Cray Piz Daint, y
~ 64 GB per compute node |

CSCS Ault server, 768 GB of DRAM



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Goal 1: Accelerate the State-of-the-Art

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Goal 1: Accelerate the State-of-the-Art

Nemeth24
3 (structural network)
5%
o
=
58 610°
22
£% 410°
= QO
£5210°
£2
O
SE 0
A >
(€ e
&

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Goal 1: Accelerate the State-of-the-Art @

Nemeth24
3 (structural network)
5%
o
=
58 610°
22
£% 410°
= QO
£5210°
£2
O
22 o}
= N
> >
&

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Goal 2: Facilitate Analysis

Goal 1: Accelerate the State-of-the-Art @

Nemeth24
3 (structural network)
5%
o
=
58 610°
22
£% 410°
= QO
£5210°
£2
O
22 o}
= N
> >
&

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Goal 2: Facilitate Analysis

Goal 1: Accelerate the State-of-the-Art @

Nemeth24
(structural network)

6-10° |
S

[ BK with the GMS code, OpenMP  [[] BK with the GMS  code, Intel TBB BK by Das et al. (a recent baseline)

W

(the higher, the better)

1 TR N
—
o O
o o 3

"Algorithmic throughput"

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Goal 1: Accelerate the State-of-the-Art @ Goal 2: Facilitate Analysis

Nemeth24
(structural network)

6-10° |
0
S

[ BK with the GMS code, OpenMP  [[] BK with the GMS  code, Intel TBB BK by Das et al. (a recent baseline)

GMS-DGR : BK with degeneracy reordering (a variant by Eppstein et al.) GMS-DEG : BK with simple degree reordering
GMS-ADG : BK with approximate degeneracy reordering (a baseline obtained with GMS)
GMS-ADG-S : BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32

w

N A
N
o O
a (8}

"Algorithmic throughput"
(the higher, the better)




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Goal 1: Accelerate the State-of-the-Art @ Goal 2: Facilitate Analysis

Nemeth24
3 (structural network)
a Q
S8 6.10°
Sa © TBB
22
£% 410°
= QO
£5210°
£.2
O
g2 o

o_-,@
>

[ BK with the GMS code, OpenMP  [[] BK with the GMS  code, Intel TBB BK by Das et al. (a recent baseline)

GMS-DGR : BK with degeneracy reordering (a variant by Eppstein et al.) GMS-DEG : BK with simple degree reordering
GMS-ADG : BK with approximate degeneracy reordering (a baseline obtained with GMS)
GMS-ADG-S : BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32




spcl.inf.ethz.ch

Goal 1: Accelerate the State-of-the-Art @

ETH:zurich

L 4 @spcl_eth

Goal 2: Facilitate Analysis

Nemeth24 Jester2 Ant-colonyd orani678
3 (structural network) (communication graph) (biological network) (economics network)

= OpenMP OpenMP OpenMP

58 610° 6.100 TBB !\ 1gg

L= .

sS4 10 4-10° 2.106 2.108

£% 2105 2108 1-108 1-10°

‘6 =

22 0 0 Q~ o 0

-~ "o ’
c_) T PY AP, 0 /?‘ / / / / / /Q /0 Q /?* Y7 /?* O‘,Q’
? @%“’@‘9 f‘% S5 @%\ BR -@%@ @‘f’c_’,f‘”@‘%‘%@& F

«@ ©) C’)COG@C'JOQ) 00~§\\C9C90C9

[ BK with the GMS code, OpenMP  [[] BK with the GMS  code, Intel TBB

GMS-DGR : BK with degeneracy reordering (a variant by Eppstein et al.)
GMS-ADG

BK by Das et al. (a recent baseline)

GMS-DEG : BK with simple degree reordering
: BK with approximate degeneracy reordering (a baseline obtained with GMS)

GMS-ADG-S : BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)

Problem: Maximal Clique Listing

System: Daint Cores/threads: 32 -



spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Goal 1: Accelerate the State-of-the-Art @ @ Goal 2: Facilitate Analysis
Nemeth24 Jester2 Ant-colonyd orani678
3 (structural network) (communication graph) (biological network) (economics network)

PN /OpenMP 6 _-OpenMP OpenviP

a2 o0 AN 2108 | m8e 410 R

28 6-10 1n6 TBB TBB

€< 4. 6

o 10 410 2108 2108

£5 2105 2108 1-108 1-10°

22

22 0 0 Y 0
c,@ /s /v/ 0 /?. /0 / / / / /Q /O 0 /?*/0 /O /?~ \Z
I @%\ BR -@%@ @‘f’c_’,f‘”@‘%‘%@& F

.@ © CUONSOONC O eoxe

[ BK with the GMS code, OpenMP  [[] BK with the GMS  code, Intel TBB BK by Das et al. (a recent baseline)

GMS-DGR : BK with degeneracy reordering (a variant by Eppstein et al.) GMS-DEG : BK with simple degree reordering
GMS-ADG : BK with approximate degeneracy reordering (a baseline obtained with GMS)
GMS-ADG-S : BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

13



e

e
o

#
&

g
&

soc-epinions-irust-direl

& ! !p!
P& F
F AT

A
&

&

&

Graph: Orkwt (n = 3M, m = 117M)

clique siza = 5 cliquesize=6 ciquesize =B clique size = 9

runtime [s]

0
0
0

15
10.0k
40 2k
101 7.5k
I N
5.0k
20 1k
5
2.5k
0 ry ry 0 0 L]

2. 2.0 o 2.0
09%9259 9"9“'\196 Osacgf‘g)v& < R
EEE GEE FEE EEE

-

runtime [s]

~

spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

1e+03 4
Tested case
= mining_time 10
= mining_time 11
—_ + preprocessing_time 10
2, 1e+01 - *+ preprocessing_time 11
] Number is
E graph scale
=
c
3 1e-01
=
o
'_
1e-03 1
Krol;‘ecketrh Missing points are timeouts
graphs wi T T T T T
il e oweriaw 1 4 16 64 256
egree dist.
areused  Average #edges / vertex
yphism ansiysis
isomorphism: induced
i :{'".‘;..T‘T;i‘é?ga
010600, p20% (ldentical
dataset to that used
1250 the VF3-Light authors)
E 1000 \\ GMS work splitting
g 750 8 ‘GMS work stealing
500 N
201 GMS [N
nrecomputeL 63
0 'GMS SIMD
1 2 4 8 16 2 . g .
Number of threads Structural, scientific, various networks
4 = N h24 2.0 y Chebyshevd Gearbox Gupta3 125 F2 4 sc-ldoor
1.00
o - 15 1.0 60 3
0] Representation " 0.75 )
i 1.0 A
© Das et al. 05 0.50
o 10 HashSet 0.5 20 025 1
@ 101 RoaringSet ' i 11 I I ' I |
4 SortedSet nnm  AHNNR 0 LTS LB S
>
5] o Social networks = T 1508
g “3, 501% =) s Legend: 'g Legend: A
i — w0 the left the left -
@ 5 o Orkut Epinions 50 Libimseti Flixster s FB comm 12  Epinions-trust %0 gr:i.lg;lnns % n o § on the le o
=  dbj ]
S = 00 10 4 9 2 X -+ Flixster % 04 % 1008 cudxsmua!sslrtglled 7
é 600 3 10 . E 30 N « pokec Fol z CPU cycles \ /
= T 503
[} 2 S 20 Flattening o z
“orapt "I 41115 II" : b ‘%m
T T T 2
graph: h-wen | s-ork  v-usa g \ incroasing | B
O%Q-C:e“ﬂn% ] Ug(,@q. %D @05 o ratios of stalled =
Sizes of constructed representations F P FOH  Fe 3 FEFOFL QV‘%Q“'Q%C’QG R | ek 13
Re ing analysis > Rt o 12 4 8 16 32 12 4 8 16 32 1 2 4 8 16 32
Graph: Youtube TSN o
raph: Youtube SFEE & e*‘/e“‘/e*'@‘\ Number of threads Number of threads Number of threads
> = 35 LA e 3
‘j{ b g S S
[6] 5 = M r r o
4 ¢ 2 g g o Cc ation, r \dation networks Road graph Economics networks Web graphs
= = 2 b3 ) H GonesSCHT ok o Jest2 80 ResDale o0 1 Rochovies 20 |, mbeac o0 m oramers 40 . Wikipeda Baids
- 5 5 = © g 30 60 15 15 30 9
€ £ © 10 15000 o
£ = k 3
E £ o 10000 0 =
il = o1 STTTRLR LT
= 5
g 5 0.0 0 e O 0
5 : IO PEE FESET Srred
3 GRS BRE ST LS
o @\L@L@L; & g%e&,f’g Q,\ue+@;>:u0 & é_/c:@.%g
.Hanrdaring Bé‘;g:‘(;'"b?sﬁr_gy



spcl.inf.ethz.ch

ETH:zurich

Work

Depth

Chiba and Nishizeki [69] e} (ndd“)
Chrobak and Eppstein [72] (0] (ndzzd )
Eppstein et al. [92] 0 (dm 3%)
Das et al. [79] (0] (3%
(2+e)d
This Paper (@] (dm 373

Chiba and Nishizeki [69] O (dzn(n - d)3d/3) (0] (dzn(n - d)3d"3).

) O (log® n +dlogn).

(o] (ndd“).
0 (ndzzd).
o (dm 3 { )

O (dlogn).

T

3 Light

WF
308 paralel)

s

1250

Erdos-Renyi graph with
= ic

0000, p=0..
ataset to that used by
the VF3-Light authors|

=0.2 (

Node Parallel [78]

Edge Parallel [78]

with ADG (§ 6.3)

(Section 6) Eppstein et al. [91] Das et al. [79]

L 4 @spcl_eth
P Algorithm AL (sorted) AM EL (unsorted) EL (sorted)
e+03 1
Tested case t
= m:gmg%:mg 19 Node Iterator (TC) O(n +m’/% log A) O(n + m3/2) O(n +m¥2(A +log m)) O(n + m5/2)
@ 1e+01 :B% Foggggm :ng ‘1”1] Rank Merge (TC) O(n+nA+m3/2) 0(n+nA+m3/z) O(n+nA+m3/2) O(n+nA+m3/2)
beri
E gr:l-:g?- scale BFS, top-down O(n+m) O(n+m) O(nlogm + m) O(nm+n+m)
E 1e-01 PageRank, pushing O(.‘n+m3/2 log A) O(n+m3/2) O(n+m3/Z(A +logm)) O(n+m5/2)
g < D-Stepping (SSSP) O(n+m+% +nD+mD) O(nz+% +nnD+mD) O(nm+ %+nD(logm+A)+mD) O(nm+m+ 5 +an+mD)
1e-03 210 Bellman-Ford (SSSP) O(n?* +nm) o(n?) O(n+nm) O(n+nm)
=211
Konecker Wissing points are timer:)uts Boruvka (MST) O(mlogn) O(n?logn) O(nmlog nlog m) O(n?m)
ra S wil T T T T
ge%%e’?i& 1 4 16 84 256 Boman (Graph Coloring) O(n + m) o(n?) o(n?) O(n+nm)
areused  Average #edges / vertex Betweenness Centrality O (nnt) 0o(n?) O(nmlog m) O (nm?)
==
raph labsied k-Clique Listing k-Clique Listing * k-Clique Listing ADG Max. Cliques Max. Cliques * Max. Cliques  Subgr. Isomorphism Link Prediction',

with ADG (§ 7.3) Node Parallel [58, 75]

JP Clustering

§ <ﬁcfus::m‘gg Work O (mk (g)k_z) o (mk (g)k_z) 0 (mk (d+ g)"*z) om) O (dmsdf3) o (3"f3) o (dm3(2+fldf3) 0 (n."_\‘r"l) O(mA)
p "Gmsw L;M‘;';.MDB =/ | | Depth 0 (n +k (%)H) o (n +k (g)H +d2) O(k(d+5)<2 +log n+d2) O (log? n) O (Am3?/2)  O(dlogn) O log” n+dlogn) O (ak~1) 0(8)

Space O(nd? +K O(md? +K O (md?+K O(m O(m
— P ( ) (m) ( Graph query AL AM  EL (unsorted) EL (sorted)
m 1 ——
i TREpTeSentaton] W W W w . F—
O, Das et al 0 40 s 2 Iterate over all vertices 0(n) A(n) ©O(n) O(n)
as et al. /
o HashSet os 05 2 050 . Iterate over all edges O(n+m) ©(n?) ©(m) O(m)
g ; - 0.25 . #
o 10 RoaringSet fnns | I | I I I i | I 11 | Iterate over a neighborhood ©(A) O(n) ©(m) O(logm +A)
5 SortedSet EEE 0.0 0 0.00 0 . R + N . "
2 L Check vertex’ degree 0(n) Q(n)" ©(m) O(logm + A)
9 . 2 i
5 A Social networks Check edge’s existence O(logA) O(1) O(m) O(log m)
] 5 s wei #
E 5 o Orkut Epinions .o Libimseti Flixster FB comm 12 Check edge S Welght o ( 1) o (n) @(m) 9(log m+ A)
15 T =
= = 900 10 4 9 2 . »gﬁ'xﬂs(er i -~ /., 21 % 1008 soumia of siated
é 600 0 3 10 230 * pokec 5‘” .- ‘ / / S CPU cycles \ / |
[o) 5 2 g 20 Flattening 2 S z
2 o 400 20 1 I II 5 III . I & swesciin | 5 la /.'/ & se
T T T +
. 10 . B \- ; ]
graph: h-wen | s-ork  v-usa L UL |L| JB0Nn ARRNE ANNRE RQNEE e (g | e, | E
Graph: Orkul (1 = 3M, m = 117M) rahe Pl (n = 2,39, m = 3300 Sizes of constructed representations PR Qv%c%eocj@c’ Qv%@%)o&og TS 5 S VQ%BQG £ @%C’QG ol ——1| Soi G
; — — e o Ppr— pr— Ri ing analysis WL EEE T &’\@é}%}'\l@’ ‘b\é@’ EW T ST ¥ 12 4 8 16 32 12 4 8 16 32 12 4 8 16 32
cique size =5 chque size =6 o 50 = . 4 =4 ciwesize= 5 R, Graph: Youtube — X e N S S & e o)
® " 5 = ¢ L PSS e *"@\i’@} FE IO e {-’{_,0‘& ek O Number of threads Number of threads Number of threads
150 oo b § T g (‘3 < k2 <
W 2 4 e 2 § g o Biological networks Communication, recommendation networks Road graph Economics networks Web graphs
I _ —_ S & Py < W % 400 5 Ant-colony6 Ant-colony5 5 . Genes-SC-HT Wikitalk Jester2 80 RecDate RecMovies USA 20 mbeacxc 9 gy orani78 40 . Wikipedia Baidu
z 100 7.5k =z 2 5 = 2 . P 3 20000 s
r a ) [CI] [} § 300 15 30 60 15 E 15 30 9
E E £ 1= © 15000
= gl E = 20 10
E oo 5 E , g- 201 1.0 20 40 10000 10 1.0 1.0 20 6
AN1.1- : : AR TR R TR e [T L TR LT
50 % ﬁ 0 o 0.0 IIII o o III o IIII 0 OI III 00%@0@ emsjoo%eu 200 5"
. = 3 5.0 5 0L O 3O DL ©00 98 DOLO D B ORXOO  OLOOD 9 O 2L 822 L KOS, TSR 2 XEPR R 20L
2 ] SHERE I S SIS SIS SIS S S SIS NS SOERE Sar e
=3 FEXGE N TG NG FE GG FNEEE KEEET O PR TR e N e YR
CREas”  oeiwe” SOt el oY Yool SRS o ST PO (G (SR80 ol
0 0 o 0 0 Sion KerBeier b %féu@e‘“:a*' e*/‘b%uo@“ @L%y%\” & @*%\uo & S SF 6‘;« Fg XK ef;« & T T FYLT (S
- ron-Kerbosc
FES FEF SEF FEF Reordering [l “Eppstein (BK.E)
St G JEET G ¢ 13




spcl.inf.ethz.ch oo o
v owien  ETH ZUrich

Algorithm AL (sorted) AM EL (unsorted) EL (sorted)
R Tested case *
Work Depth = mining_time 10 / Node Iterator (TC) O(n +m’/% log A) O(n + m3/2) O(n +m¥2(A +log m)) O(n + m5/2)
= mining_time 11
—_ *DTEDF§CBSS‘HQ fime 10 N1 fren Al A 3/2) Al A 3/2) Al A 3/2) al A 3/2)
Chiba 4
Reference / Focus on Pattern Matching Learning
. Opt V Remarks
Chiba g Infrastructure what problems? pt ¥ r
mC? kC? dS? sI? fS? vS? IP? cl? cD?
Chrobal
[B] Cyclone [201] Graph database queries X X X X X X X X % E ED™ "Onlyshortest paths. **Only degree centrality.
Eppstei ] . . . e “Support for degeneracy, but no explicit rank derivation.
[B] GBBS [84] + Ligra [192] More than 10 “low-complexity” algorithms X X X X X X x Y @E * L
Das et 4 GBBS offers a large number of optimization problems
[B] GraphBIG [165] Mostly vertex-centric schemes X E'x X X X X X X E®E *Only k=3 "0nly shortest paths and one coloring scheme.
This Py [B] GAPBS [20] Seven “low-complexity” algorithms X E'Xx X X X X X X BE*X  “Only k =3 "Only shortest paths. —
[B] LDBC [51] Graph database queries X X X X X X X Ex ®E™ X “Onlyone clustering coefficient. ** Only shortest paths.
[B] WGB [12] Mostly online queries X X X XN X X X Ex EXR *Only one clustering scheme. **Only shortest paths.
[B] PBBS [44] General parallel problems X X X %X X X xXx B x @ X Only graph optimization problems are considered
[B] Graph500 [162] Graph traversals X X X X X X %X X X @3 X  “Support for shortest paths only.
[B] HPCS [15] Two “low-complexity” algorithms X X X X X X X X X x *Just one clustering scheme is considered
[B] Han at al. [106] Evaluation of various graph processing systems X X X X X X X X x ) X *Support for Shortest Paths and Minimum ST
[B] CRONO [6] Focus on futuristic multicores X X X X X X X x @ ®ED ®ED “Onlyshortest paths. **Only triangle counting.
[B] GARDENIA [218] Focus on future accelerators X X X X X X X X X [@E B "Onlyshortest paths. ** Triangle counting and vertex coloring. - |
. . . . . * *No good performance bounds (focus on expressiveness),
[F] A framework, e.g., Peregrine [118] or Fractal [86] (more at the end of Section 1) ED* ED* ED* ED @D X X X X X x .. e L .
not competitive to specific parallel mining algorithms
[B] GMS [This paper] General graph mining () () (W) (=) (@) =) (@ Details in Table 4 and Section 4 a
' 7 = gos § 1oom | e,
2 & % °”Epu‘iyc|25\ /
2 ; 202 =
Flattening o 7
! ! ! & gesesiis | G la A/ 5
graph: h-wen | s-ork  v-usa \E_ %“ .\\"/‘J \ ncroasing | B
S — P Sizes of constructed representations FERS” FHRNT Fs e S FFE FFSE P SRS @01 T CPUcpes | &
Graph Orut (1 = M. m = 117M) Sopr P n-zmezo | Aeordering analysis LIRS (TEEET (SRS SRS c S S LSS — — — —
e -5 im0 eS8 Owe e <5 clvass -3 Smein- 4 k=S [ S mebeg ; - f‘*ﬁé’f%% ﬁ@%@“;& p&-’ Q;’ gféifﬁ}% %zi’::iiﬁ p\‘(ﬂ Q;ﬁg’;x«zf;&e ;‘:jggfi‘;% 1 ijb ;r o :!hre;az_g 32 N :ahreazs 3 b ?hreajs 3
150 m;& § PSS
10.0k; 80 2.0k -
4 4

=
GMS (ADG, &
GMS (ADG, £=0.

DEG
GMS (ADG, £=0.

sc-ht | Cheb. gear.

o Biological networks Communication, recommendation networks Road graph Economics networks Web graphs

2 — ]
0 5 400  Ant-colony6 Ant-colony5 5 . Genes-SC-HT Wikitalk Jester2 80 RecDate 1 RecMovies USA 20 mbeacxc 9 gy orani78 40 . Wikipedia Baidu

30 15
5 3 300 15 30 60 15 15 15 30 9
. © o 15000

0 0 20 20 ! 40 10 1.0 1.0 20 6
0

«
i * | h E = 1
= 100 7.5k = 1.5k g I E'
4 =
E 2 40 i E E
o f £ £
B 5.0 = 1.0k | £ 5 2 10 10000
. ® z : : AL AU ™ JUREE G RHRRE G HRRRDHRRIT,
° o 2.0 2225 o g 5 ° 5 26500
. 0 BT PR RS SRONT SORSE BESET wIid SN SO SEF SIS Sed
F& Beccd & ée'@rg' Y &, N SEEET SIS SRS S A G PSS il SIS R KPR cas
o TP Sl foidiest folotele et Tooig® WS S ONET B80T 4080 4a0NS 880
0 0 o 0 0 0 o Lt Y e*%\u Ch & e‘;.y & FGYT gD FF oy FELE & G L X G S
of ‘pop ‘2oL ‘eop 2O B Sof Henme”ng.Bwn—Ke.rbosch by .
P PP T 5o FEE PF TSN Eppstein (BK-E) §&
GeE o JEET gUT dUE §EE Geu S




spcl.inf.ethz.ch
L 4 @spcl_eth

ETH:zurich

[B] GAPBS
[B] LDBC [3
[B] WGB [1
[B] PBBS [4
[B] Graphsd
[B] HPCS [1
[B] Han at 4
[B] CRONO
| [B] GARDE!

[B] GBBS [84] + Ligra [192]
[B] GraphBIG [165]

[B] GAPBS [20]

[B] Graphalytics LDBC [51]
[B] WGB [12]

[B] PBBS [44]

[B] Graph500 [162]

[B] HPCS [15]

[B] Han et al. [106]

[B] CRONO [6]

[B] GARDENIA [218]

General graph processing
General graph processing
General graph processing
Graph databases

General graph processing
General graph processing
Graph traversals

General graph processing
Evaluation of graph processing systems
Multicore systems
Accelerators

P EL (unsorted) EL (sorted)
e+03
Tested *
Work Depth :eaggmgc_%smeg 19 Node Iterator (TC) O(n +m’/% log A) O(n + m3/2) O(n +m¥2(A +log m)) O(n + m5/2)
—_ * preprocessing_time 10 3/2) 3/2) 3/2) al A 3/2)
Chiba a
Reference / Focus on Pattern Matching
. Opt V R k
Chiba g Infrastructure what problems? P r emarks
mC? kC? dS? sI? 1S? vS? IP? cI? cD? )
Chroba
[B] Cyclone
Eppsteil Reference / Summary of focus Metrics Compres. Th lon
Infrastruct functionaliti ‘
. [B] GBBS [d Infrastructure (functionalities) t me fg of ag ba ad of on re b s
[B] GraphB [B] Cyclone [201] Graph databases scheme.

ll‘l

ns.

coloring. : |

[F] A framey

[B] GMS [T

Graph: Orkut (n = 3M, m = 117M)

clique siza = 5 clique size =6 ciique size = B clique siz

10.0k

S

[F] Arabesque [204]
[F] NScale [174]

[F] G-Thinker [219]
[F] G-Miner [66]
[F] Nuri [124])

[F] RStream [210]
[F] ASAP [116]
[F] Fractal [86]

[F] Kaleido [224]
[F] AutoMine+GraphZero [153, 154]
[F] Pangolin [67]
[F] PrefixFPM [220]
[F] Peregrine [118]

Graph pattern matching
Ego-network analysis

Graph pattern matching
Graph pattern matching
Graph pattern matching
Graph pattern matching
Graph pattern matching
Graph pattern matching
Graph pattern matching
Graph pattern matching
Graph pattern matching
Graph Pattern Mining

Graph Pattern Mining

MWW xMxxxxxxxxx

* ® % %

-

-

s5),

ing
fof stalled
cycles \

P 4 8 16 32
umber of threads

Web graphs
Wikipedia Baidu

XXX XXX XXXXXXX| XXX xxxxxx[[x

XXX TEXTXXDTXDD | XXXFMXxxxxxxXTx|w

runtime [s]

[B] GMS [This paper]

Graph mining algorithms

D DR E IO EE | xxxxExxxxxxx|w
D DRI ON [ AxxAExAEE M

D I BB B8 E 585 S 883%*888&8@8
I L LN

IEI LS R O L EEE L

D ExUxB0OEmM

W MmO xxxxxxx | OmxxxxUx@hxx|:
M| % % % 3% %% % %% XX XX xxxxﬂxx@xxxx
NN NEN ExO00ExDOONx

W | % % 3% 3% 3 3% %3 % %3 3% | %5%[Mxxxxxxxlx
B IxExxDxTEDExxE MxxxxxxDxEN x
W W %xx [ % xxxxx([ x| xxxxxxxxxxllx
W xxIxPxxxxxxPl xxxxxxxxxx[x

| % %% % %% % %% %% %% | %%XXXXXXXXX[Tx
M| XXXXXXXKXXKKXXK [ XXXXXXXXXXX X |
M| %% %% % % 3% %% XX | %5%%XX%XXXxX[x

M| % %% 3 3% X% XX XX |%3XXXXXXXXXX

0 2k =
100 7.5k
5.0k
20 1k
50
2.5k ]
N ;
&

ra
SoS

L& i
_ < 9(. Q‘(: w Reordering
O FEE GEE

NIRUIRLLLLLNE. LE ...

S SO 5 S
Bron-Kerbosch by g"‘g?g é{g’g \é’g?cjéo
Eppstein (BK-E) SFC &FC SFO &&
Q Q Q Q

o
<(\G‘ B
© -
\ogc‘ B
% -

M| %% [ %% %33 X[ %X |%XXXXXXKXXXKX|T
G
%
Ol |
o™
3

4;510%

5%

b,

g
o)

"
0,
0,

0T

>
0,
>,

oo I | % %X XXX XXXXXXX (XX xxxxxxTM x|z

E;m %% % (M Moo M M M [ [Mxxxxxxx|:

o
ok
X

()
7

)
A

o
g
7
G,
%
‘6‘4;
A

RS
"G,

'C/

S
S,
G

o
s,
o
4:

©)

AT IO DEDE | xxxx[xxXXXXXX|3

)
'S
S

S,

S

4
8

o
R
R

% O o
5,
% o

Q o o

80

‘G%\ogi L

5%,

Y
%

209
Q
o

G‘,l,&\

Ry |

P S
S R
%g}’@u FFY

@L%L%\L Q,%\L%LP o

9
6
3
0

TP EE

OO IR © 200 O 5.0
ST IOV
SR % o A
&

%

%

pV)

QS

)
o
SO

G
G,

.
a5,
Gy

0, N
0,




‘e’\“ s,-\

ETH urich 0 R e By PR N ot DINFK

GraphMineSuite: Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra




‘e’\“ s,-\

ETH urich 0 R e By PR N ot DINFK

GraphMineSuite: Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra

MACIEJ BESTA, ZUR VONARBURG-SHMARIA, YANNICK SCHAFFNER, LEONARDO SCHWARZ, GRZEGORZ KWASNIEWSKI, LUKAS GlANu\IAzil JAKW #
BERANEK, KACPER JANDA, TOBIAS HOLENSTEIN, SEBASTIAN LEISINGER, PETER TATKOWSKI, ESREF QZDElVﬂB ADRIAN BAJ.LA MAaeﬂQ prnC,a

PHILIPP LINDENBERGER, PAVEL KAL DA, MAREKKQ @Qu‘ ”Q.D}UR Mu;n.u '[ogsTIEN
) DS I RS s . " {t‘: A | { - v e v 7 '.‘

Wi




ETHzurich Vowiwn DINFK
GraphMineSuite: Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra

MACIEJ BESTA, ZUR VONARBURG-SHMARIA, YANNICK SCHAFFNER, LEONARDO SCHWARZ, GRZEGORZ KWASNIEWSKI, LUKAS GIANINAZZI, JAKUB
BERANEK, KACPER JANDA, TOBIAS HOLENSTEIN, SEBASTIAN LEISINGER, PETER TATKOWSKI, ESREF OZDEMIR, ADRIAN BALLA, MARCIN COPIK,
PHILIPP LINDENBERGER, PAVEL KAL ‘- , MAREK KONIECZNY ONUR MUTLU TORSTEN HOEFLER ' '

\\
QL |

VoL R T e S W SN S U D DA o'} G vl
. . i

GraphMineSuite GMS  SISA  Docs  Code

'
IS i w

k]

e 1
)

Y /E0IE A%

Design Run Compare Profile

Creating high-performance graph mining algorithms made simple using set algebra

Choose Graph & set representations high-performance 1dentify and plugin modular blocks
10 $ orithm
____—» or build your own dlec act Of deve p ef Operathns* into graph mlnlng alg s

I NS #pragma omp parallel for schedule (...)
forvin V: 1
for win N(v» Y
bit set counter + |N(v)n N(w)|
sorted Vector ‘
hash set  triangle counting SR

\B
Q 4



ETHz(rich e S B s Venian DINFK
GraphMineSuite: Enabling High-Performance and Programmable Graph Mining Algorithms with Set Algebra

MACIEJ BESTA, ZUR VONARBURG-SHMARIA, YANNICK SCHAFFNER, LEONARDO SCHWARZ, GRZEGORZ KWASNIEWSKI, LUKAS GIANINAZZI, JAKUB
BERANEK, KACPER JANDA, TOBIAS HOLENSTEIN, SEBASTIAN LEISINGER, PETER TATKOWSKI, ESREF OZDEMIR, ADRIAN BALLA, MARCIN COPIK,
PHILIPP LINDENBERGER, PAVEL KAL /ODA MAREK KONIECZNY ONUR MUTLU TORSTEN HOEFLER i 15 Tz

| ’;iif“?lj"tfzz e, i?»ﬁ%ﬁ & ."5 b g
httpS //graphmmesulte spcl.inf.ethz. ch/ & 2

; "'.‘. ,,,,, = I \\
- QL |

..............

Thank you for GraphMineSuite GMS  SISA  Docs  Code
_your attention

Bl g

¥
>,

k]

e

Design Run Compare Profile

Creating high-performance graph mining algorithms made simple using set algebra

Choose Graph & set representations high-performance 1dentify and plugin modular blocks
10 S orithm
___) or build your own ectof develop et O,Uerathns* into graph mining alg s

— "N #pragma omp parallel for schedule (...)

forvin V:
_Qiiﬁ%t_
sorted Vector

for win N(v)-
hash set triangle counting Set algebra

counter + |N(v)ﬂ N(w)l
building block




