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Graph Mining: Challenges

Example: the
Bron-Kerbosch

algorithm for
maximal
clique listing

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P :=P \ {v}
X = X U {v}
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Graph Mining: Challenges

Example: the
Bron-Kerbosch

algorithm for
maximal
clique listing

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do

BronKerbosch (R U {v}, P N N(v), X N N(v))

P :=P \ {v}
X = X U {v}

while not done
for all vertices v:
send updates over outgoing edges of v
for all vertices v:
apply updates from inbound edges of v

o&-if1ll |
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Complex algorithm
structure, deeply recursive,
no notion of iterations

Non-straightforward
parallelism, complicated
memory access patterns
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Complex algorithm
structure, deeply recursive,
no notion of iterations

Non-straightforward
parallelism, complicated
memory access patterns

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do

P :=P \ {v}
X = X U {v}

BronKerbosch (R U {v}, P N N(v), X N N(v))

while not done
for all vertices v:
send updates over outgoing edges of v
for all vertices v:
apply updates from inbound edges of v
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...Repeat several times
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Complex algorithm
structure, deeply recursive,
no notion of iterations

Non-straightforward
parallelism, complicated
memory access patterns

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do

P :=P \ {v}
X = X U {v}

BronKerbosch (R U {v}, P N N(v), X N N(v))

while not done
for all vertices v:
send updates over outgoing edges of v
for all vertices v:
apply updates from inbound edges of v
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...Repeat several times
Not very complicated
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Graph Mining: Challenges Complex algorithm
structure, deeply recursive,

Example: the no notion of iterations

Bron-Kerbosch

algorithm for
maximal
clique listing

Non-straightforward

parallelism, complicated
memory access patterns

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then Many algorithms are NP-
report R as a maximal clique complete or even EXPTIME
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P :=P \ {v}
X = X U {v}
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Graph Mining: Challenges Complex algorithm
structure, deeply recursive,

Example: the no notion of iterations

Many other
Bron-Kerbosch

algorithms
with similar
properties

algorithm for
maximal
clique listing

Non-straightforward

parallelism, complicated
memory access patterns

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then Many algorithms are NP-
report R as a maximal clique complete or even EXPTIME
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P :=P \ {v}
X = X U {v}
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maximal
clique listing

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then Many algorithms are NP-
report R as a maximal clique complete or even EXPTIME
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P :=P \ {v}
X = X U {v}
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raphMineSuite (GMS) comes with...

... Benchmark specification prescribing

representative problems, algorithms, and
datasets

Graph problem Corresponding algorithms E? P2 Whyincluded, what represents? (selected remarks)
o Maximal Clique Listing [87] Bron-Kerbosch [56] + optimizations (e.g. pivoting) [61, 91, 207] ©@ W Widely used, NP-complete, example of backtracking
A Edge-Parallel and Vertex-Parallel general algorithms [78], : ; :
o k-Clique Listing (78] difforent variants of Triangle Counting (164 193] @ W P (high-degree polynomial), example of backtracking
; “":f" o Dense Subgraph Discovery [5]  Listing k-clique-stars [117] and k-cores [94] (exact & approximate) (3@ @ Different relaxations of clique mining
atching o subgraph isomorphism [87] VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] o " Induced vs. non-induced, and backtracking vs. indexing schemes
o Frequent Subgraph Mining [5]  BFS and DFS ion strategies, different i hism kernels % Useful when one is interested in many different motifs
. Jaccard, Overlap, Adamic Adar, Resource Allocation, A building block of many more comples schemes,
® Vertex similarity [137] Common Neighbors, Preferential Attachment, Total Neighbors [179) & © % ifurent methods have difforent performance properties
Variants based te imilarit b 10, 142, 146, 202
o Link Prediction [202] e o s iy (see above) [10, 142,146, 202], 3@ W A very common problem in social network analysis
Graph a scheme for assessing link prediction accuracy [211]
Learning . i ing:
o Clustering [183] Jarvis Pgtr_lck clustering [119] based on different 00 W Avery common problem in generf\l data mining; the selectec}
vertex similarity measures (see above) [10, 142, 146, 202] scheme is an example of overlapping and single-level clustering
o Community detection Label Propagation and Louvain Method [195] W " Examples of convergence-based on non-overlapping clustering
Jones and Plassmann’s (JP) [123], Hasenplaugh et al’s (HS) [110], L
L N N . N B NP-complete; uses vertex prioritization (JP, HS),
Opti. *Minimum Graph oloring [165]  Johansson’s () [121] Barenboim’s (B) 17), Elkin et al’s ) 20} e letes 0, B), amd adapted distibuted schemes (E, SD)
ot sparse-dense decomposition (SD) [109]
mization
problems o Minimum Spanning Tree [76] Boruvka [53] ] "® P (low complexity problem)
© Minimum Cut [76] A recent augmentation of Karger-Stein Algorithm [125] ] " P (superlinear problem)
Vertex ® Degree reordering A straightforward integer parallel sort W O Asimple scheme that was shown to bring speedups
Ordering  Triangle count ranking Computing triangle counts per vertex @@ O Ranking vertices based on their clustering coefficient
© Degenerecy reordering Exact and approximate [94] [127] @@ O Often used to accelerate Bron-Kerbosch and others
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GraphMineSuite (GMS) comes with...

... Benchmark specification prescribing

representative problems, algorithms, and
datasets

Graph problem

Corresponding algorithms E? P2 Whyincluded, what represents? (selected remarks)

 Maximal Clique Listing [87]

© k-Clique Listing [78]

Bron-Kerbosch [56] + optimizations (e.g. pivoting) [61, 91, 207] <l Widely used, NP-complete, example of backtracking

Edge-Parallel and Vertex-Parallel general algorithms [78], 0%

different variants of Triangle Counting [184, 193] P (high-degree polynomial), example of backtracking

L)
L)
Graph
; ‘":f" o Dense Subgraph Discovery [5]  Listing k-clique-stars [117] and k-cores [94] (exact & approximate) (3@ @ Different relaxations of clique mining
atching o §\bgraph isomorphism [87) VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] o " Induced vs. non-induced, and backtracking vs. indexing schemes
o Frequent Subgraph Mining [5]  BFS and DFS ion strategies, different i hism kernels w " Useful when one is interested in many different motifs
Jaccard, Overlap, Adamic Adar, Resource Allocation, o® A building block of many more comples schemes,
Common Neighbors, Preferential Attachment, Total Neighbors [179] " different methods have different performance properties
network analysis
Graph

Learning

Opti-
mization
problems

Vertex
Ordering

W h at are re | evant E=

mining baselines

non-overlapping clustering

tion (JP, HS),
H distributed schemes (E, SD)

o bring speedups
istering coefficient

and datasets?
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o (] [} ) ) Common Neighbors, Preferential Attachment, Total Neighbors [179] " different methods have different performance properties
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g and single-level clustering

non-overlapping clustering

tion (JP, HS),
H distributed schemes (E, SD)

™ mining baselines

Vertex
Ordering

representative problems, algorithms, an
datasets

o bring speedups

istering coefficient

and datasets?

... Software platform with reference
implementations based on set algebraic

Benchmark specification

Implementations
- Algorithms
- Optim :

Graph problems & algorithms.
- Pattern matching (e.g., clique

- Learning (€.g., link predictio

- Optimization (e.g., coloring, minimum ¢
- Reordering (e.g., degeneracy reorderir

presentations
uts

formulations for programmability & high
performance

- Graph compression,
- Parallelizations
Datasets
cliques.
tion.
allel, » Modular

- Fast,

1 Platform pipeline stages (toolchain execution) ﬂ a dark background and a cube indicate that a particular part of the design ~ §
larity 1

g8

with details on extensibility and modul can be substituted by the developer with their own implementation

Visualize

How does GMS omwd emm emmm Modular design of
facilitate extensibility classes & tles associated M:wd mmﬁ: %—&w m:,.:ﬂm-

@ cens s of code taciaing ) ser based
at a given stage? with graph representations u;?h‘rm

The user can .. new algorithms or data structures), . using SIMD or instrinsics), and design ideas (e.g., using novel form of load balancing),
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algorithmic throughput
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Graph problem
 Maximal Clique Listing [87]

© k-Clique Listing [78]

o Dense Subgraph Discovery [5]
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o Frequent Subgraph Mining [:
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mining baselines
and datasets?
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Corresponding algorithms
Bron-Kerbosch [56] + optimizations (e.g. pivoting) [61, 91, 207]

Edge-Parallel and Vertex-Parallel general algorithms [78],
different variants of Triangle Counting [184, 193]

Listing k-clique-stars [117] and k-cores [94] (exact & approximate)
VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59]
BFS and DFS exploration strategies, different isomorphism kernels

Jaccard, Overlap, Adamic Adar, Resource Allocation,
Common Neighbors, Preferential Attachment, Total Neighbors [179]

ETH:zurich

luded, what represents? (selected remarks)
Widely used, NP-complete, example of backtracking

P (high-degree polynomial), example of backtracking

Different relaxations of clique mining
Induced vs. non-induced, and backtracking vs. indexing schemes
Useful when one is interested in many different mot

A building block of many more comples schemes,
different methods have different performance properties
network analysis
| data mining; the selected
g and single-level clustering
non-overlapping clustering

tion (JP, HS),
H distributed schemes (E, SD)

o bring speedups
istering coefficient
bosch and others

How to effectively
develop new

raphMine
& Suite

efficient

- different origins (purch

How does GMS
facilitate extensibility
ata given stage?

)
roads

1 Platform pipeline stages (toolchain execution)
with details on extensibility and modularity

subgraphs,
)

baselines?

a dark background and a cube indicate that a particular part of the design
can be substituted by the developer with their own implementation

The user can experiment with algorithmic ideas (e.g.. new algorithms o data structures), architectural deas (e.g., using SIMD or instrinsics), and design ideas (e.g., using novel form of load balancing)
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Graph problem Corresponding algorithms 2 Why included, what represents? (selected remarks)
o Maximal Clique Listing [87] Bron-Kerbosch [56] + optimizations (e.g. pivoting) [61, 91, 207] Widely used, NP-complete, example of backtracking

Edge-Parallel and Vertex-Parallel general algorithms [78],

different variants of Triangle Counting [184, 193] P (high-degree polynomial), example of backtracking

ique Listing [78]

® Dense Subgraph Discovery [5] Listing k-clique-stars [117] and k-cores [94] (exact & approximate) Different relaxations of clique mining
o Subgraph isomorphism [87] VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] Induced vs. non-induced, and backtracking vs. indexing schemes
o Frequent Subgraph Mining [5]  BFS and DFS exploration strategies, different isomorphism kernels Useful when one is interested in many different motifs

Jaccard, Overlap, Adamic Adar, Resource Allocation, A building block of many more comples schemes,
Common Neighbors, Preferential Attachment, Total Neighbors [179] different methods have different performance properties

network analysis
| data mining; the selected
g and single-level clustering
non-overlapping clustering

tion (JP, HS).

® Minimun H distributed schemes (E, SD)

M mining baselines

* Minimui

o Degree r o bring speedups
istering coefficient

and datasets?

How to effectively
develop new
efficient baselines?

- Parallel, » Modular
- Scalable, » Fas

raphMine
& Suite

d
igins (purc

Platform pipeline stages (toolchain execution) +a dark background and a cube indicate that a particular part of the design  §
with details on extensibility and modularity can be substituted by the developer with their own implementation H
)

How to analyze
performance/others, using
what metrics?
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GraphMineSuite (GMS) comes with...

... Benchmark specification prescribing

representative problems, algorithms, and
datasets

Graph problem Corresponding algorithms E? P2 Whyincluded, what represents? (selected remarks)
© Maximal Clique Listing [87] Bron-Kerbosch [56] + optimizations (e.g. pivoting) [61, 91, 207] ©@ W Widely used, NP-complete, example of backtracking
. Edge-Parallel and Vertex-Parallel general algorithms [78], : : )
Gragh o k-Clique Listing [78] difforent variants of Triangle Counting [184, 193] @ W P (high-degree polynomial), example of backtracking
Nf a":f" o Dense Subgraph Discovery [5]  Listing k-clique-stars [117] and k-cores [94] (exact & approximate) (3@ @ Different relaxations of clique mining
atching o §\bgraph isomorphism [87) VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] s " Induced vs. non-induced, and backtracking vs. indexing schemes
o Frequent Subgraph Mining [5]  BFS and DFS ion strategies, different i hism kernels w " Useful when one is interested in many different motifs
Jaccard, Overlap, Adamic Adar, Resource Allocation, o® A building block of many more comples schemes,
Common Neighbors, Preferential Attachment, Total Neighbors [179] " different methods have different performance properties
network analysis
Graph

Learning | data mining; the selected
g and single-level clustering

non-overlapping clustering

tion (JP, HS),
H distributed schemes (E, SD)

™ mining baselines

Vertex
Ordering

o bring speedups
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and datasets?
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What are the representative problems & algorithms? ...and datasets? 1

v
~

Graph problem Corresponding algorithms Why included, what represents? (selected remarks)

Graph
Pattern

Matching

e Maximal Clique Listing [87]
e k-Clique Listing [78]
® Dense Subgraph Discovery [5]

e Subgraph isomorphism [87]
® Frequent Subgraph Mining [5]

Bron-Kerbosch [56] + optimizations (e.g., pivoting) [61, 91, 207]

Edge-Parallel and Vertex-Parallel general algorithms [78],
different variants of Triangle Counting [184, 193]

Listing k-clique-stars [117] and k-cores [94] (exact & approximate)
VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59]
BFS and DFS exploration strategies, different isomorphism kernels

Widely used, NP-complete, example of backtracking

P (high-degree polynomial), example of backtracking

Different relaxations of clique mining
Induced vs. non-induced, and backtracking vs. indexing schemes
Useful when one is interested in many different motifs

Graph
Learning

e Vertex similarity [137]

e Link Prediction [202]

e Clustering [183]

e Community detection

Jaccard, Overlap, Adamic Adar, Resource Allocation,
Common Neighbors, Preferential Attachment, Total Neighbors [179]

Variants based on vertex similarity (see above) [10, 142, 146, 202],
a scheme for assessing link prediction accuracy [211]

Jarvis-Patrick clustering [119] based on different
vertex similarity measures (see above) [10, 142, 146, 202]

Label Propagation and Louvain Method [195]

4 444 4 43

‘
‘
‘

A building block of many more comples schemes,
different methods have different performance properties

A very common problem in social network analysis

A very common problem in general data mining; the selected
scheme is an example of overlapping and single-level clustering

Examples of convergence-based on non-overlapping clustering

Opti-
mization
problems

¢ Minimum Graph Coloring [168]

e Minimum Spanning Tree [76]
e Minimum Cut [76]

Jones and Plassmann’s (JP) [123], Hasenplaugh et al’s (HS) [110],
Johansson’s (]) [121], Barenboim’s (B) [17], Elkin et al’s (E) [90],
sparse-dense decomposition (SD) [109]

Boruvka [53]
A recent augmentation of Karger-Stein Algorithm [125]

NP-complete; uses vertex prioritization (JP, HS),
random palettes (J, B), and adapted distributed schemes (E, SD)

P (low complexity problem)
P (superlinear problem)

Vertex
Ordering

® Degree reordering
e Triangle count ranking
e Degenerecy reordering

A straightforward integer parallel sort
Computing triangle counts per vertex
Exact and approximate [94] [127]

ol &

oo 44 4

A simple scheme that was shown to bring speedups
Ranking vertices based on their clustering coefficient
Often used to accelerate Bron-Kerbosch and others

r€oracinig

n O 9 95V -

Upurrnzauol
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What are the representative problems & algorithms? ...and datasets? 1

Details in the paper ©
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...Sparsities (a) ...Skews in degree distribution (b)
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Degree Degree Degree
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How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

...Sparsities (a) ...Skews in degree distribution (b)

Not enough for

graph mining!

M | =
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...Sparsities (a) ...Skews in degree distribution (b)

Not enough for
graph mining!

: Flickr (F) photo
"o%. *relation graph

Livemocha (L)
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graph mining!

*.relation graph Both have
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. *-social network
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...Sparsities (a) ...Skews in degree distribution (b)
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graph mining!

f—~-relation graph Both have Yet, (L) has 4.4M
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~ Livemocha (L) and (b) has 9.6B 4-cliques

. *-social network
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How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

...Sparsities (a) ...Skews in degree distribution (b)

Not enough for
graph mining!

Different
performance

Both have Yet, (L) has 4.4M
similar (a) K= 4-cliques, and (F)
and (b) has 9.6B 4-cliques

characteristics for
mining problems

. Livemocha (L)
. -social network
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How about datasets? When benchmarking graph workloads, one picks graphs with different... 1

...Sparsities (a) ...Skews in degree distribution (b)

Not enough for
graph mining!

...Differences in ,complex structure” (e.g.,
#triangles per vertex)

Different

Both have Yet, (L) has 4.4M
similar (a) K= 4-cliques, and (F)
 Livemocha (L) and (b) has 9.6B 4-cliques

*.social network

performance

characteristics for
mining problems
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How about datasets?

i

Flickr (F) photo
*.relation graph

->

Livemocha (L)

*.social network

10000
3000
1000

300
100
30

Frequency

i

3

10 30 100 300 1000

Degree

Frequency

1

310 30 100 300 10003000
Degree

=

~—

Both have
similar (a)

and (b)

When benchmarking graph workloads, one picks graphs with different...

1

Graph 7 n m = d; d, T L Why selected/special?
[so] (K) Orkut M 117TM 38.1 333k 333k 628M 2043 Common, relatively large
[so] (K) Flickr 23M  22.8M 9.9 21k 263k 838M  363.7 Large T but low m/n.
[so] (K) Libimseti 221k 17.2M 78 333k 25k 69M 3128 Large m/n
[so] (K) Youtube 3.2M 9.3M 29 917k 917k 12.2M 38 Verylowm/nand T
[so] (K) Flixster 25M  791M 3.1 1.4k 1.4k 7.89M 31 Verylowm/nand T
[so] (K) Livemocha 104k 219M 211 298k 298k  336M 323 i'l':t"?;:;ﬂ'_ji; 3:: (4.36M)
[so] (N) Ep-trust 132k 841k 6 3.6k 36k 27.9M 212 Huge T-skew {f = 108k)
[so] (N) FB comm. 35.1k 1.5M 41.5 8.2k 82k  36.4M 1k  Large T-skew {f = 159k)
[wb] (K) DBpedia 121IM  288M 237 963k 963k 11.68B 961.8 Rather low m/n but high T
[wb] (K) Wikipedia 182M  127TM 69 632k 632k 328M 18.0 Common, very sparse
[wb] (K) Baidu 2.14M 17M 79 979k 25k 25.2M 11.8  Very sparse
[wb] (N) WikiEdit 943k 57M 604 107k 107k  835M 89k Large T-skew (T = 15.7M)
Very large T and T /n
[st] (N) Chebyshev4 68.1k 5.3M 77.8 681k 68.1k 445M 6.5k and T-skew {f = 5.8M)
[st] (N) Gearbox 154k  45M 292 98 o8 1M o915 LowdbutlargeT;
low T-skew (T = 1.7k)
[st] (N) Nemeth25 10k 751k 75.1 192 192 87M 9k  Huge T but low T=12k
[st] (N) F2 715k 26M 365 344 344 110M 15k  Medium T-skew (T = 9.6k)
[sc] (N) Gupta3 168k 47M 280 147k 147k 696M 415k  Huge T-skew (T = 1.5M)
[sc] (N) Idoor 952k  20.8M 21.5 76 76 567M 595  Very low T-skew (? = 1.1k)
[re] (N) MovieRec 702k 10M 1424 353k 353k 983M 14k Huge T and T = 4.9M
[re] (N) RecDate 169k 17.4M 1025 334k 334k 286M 1.7k Enormous T-skew (f = 1.6M)
[bi] (N) sc-ht (gene) 2.1k 63k 30 472 472 42M 2%k  Large T-skew (T = 27.7k)
[bi] (N) AntColonyé 164 10.3k 62.8 157 157 1.1M 6.6k  Very low T-skew (f =9.7k)
[bi] (N} AntColony5 152 9.1k 59.8 150 150 897k 59k  Very low T-skew (T = 8.8k)
[co] (N) Jester2 50.7k 1.7M 335 50.8k 508k 127M 25k Enormous T-skew (T = 2.3M)
K) Flickr imilar to Livemocha, b
([::31[(0 :tjatcii(lns) o6k  231M 29 Sk Sk 108M 101 i\&nyamtor: 4iliqf|c:‘(9_::53}
[ec] (N) mbeacxc 492 495k  100.5 679 679 9M 182k Large T,low T = 77.7k
[ec] (N) orani678 25k  89.9k 35.5 1.7k 1.7k 8.7M 34k Large T, low T = 80.8k
[ro] (D) USA roads 1.2 9 9 1.3M 0.1  Extremely low m/nand T
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GraphMineSuite (GMS) comes with

... Benchmark specification prescribing

representative problems, algorithms, and
datasets

Graph problem Corresponding algorithms E? P2 Whyincluded, what represents? (selected remarks)
© Maximal Clique Listing [87] Bron-Kerbosch [56] + optimizations (e.g. pivoting) [61, 91, 207] ©@ W Widely used, NP-complete, example of backtracking
. Edge-Parallel and Vertex-Parallel general algorithms [78], : : )
Gragh o k-Clique Listing [78] difforent variants of Triangle Counting [184, 193] @ W P (high-degree polynomial), example of backtracking
Nf a":f" o Dense Subgraph Discovery [5]  Listing k-clique-stars [117] and k-cores [94] (exact & approximate) (3@ @ Different relaxations of clique mining
atching o §\bgraph isomorphism [87) VF2 [75], TurbolSO [108], Glasgow [155], VF3 [58, 60], VF3-Light [59] s " Induced vs. non-induced, and backtracking vs. indexing schemes
o Frequent Subgraph Mining [5]  BFS and DFS ion strategies, different i hism kernels w " Useful when one is interested in many different motifs
Jaccard, Overlap, Adamic Adar, Resource Allocation, o® A building block of many more comples schemes,
Common Neighbors, Preferential Attachment, Total Neighbors [179] " different methods have different performance properties
network analysis
Graph

Learning | data mining; the selected
g and single-level clustering

non-overlapping clustering

tion (JP, HS),
H distributed schemes (E, SD)

™ mining baselines

Vertex
Ordering

o bring speedups

istering coefficient

and datasets?
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GraphMineSuite (GMS) comes with...

)

- How to effectively

develop new
selines?

ue) subgraphs, A r different ways, and still they - Perf e (work, depth),
r0ads, ... - Scalable, -» Fast, + = Storage, » Tradeof

Q ... Software platform with reference
implementations based on set algebraic

~~~~~~

formulations for programmability and high
performance

e

aaaaaa
*****
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GMS software platform & reference implementations 2
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Reference implementations i
@\ Details: Section 5 0 Seplesectt Usedby SR

Implementations

Benchmark specification Benchmarking platform

secsons 345

- Simple to use
- Extensible

Features

- Learning (e Kk 1, clustering) - Modular S
- Optimization (e.g., coloring, minimum cuts) - Public =l it
- Reordering (e.g D 4
- Parallelizations urrency an ~
Datasets uusual':rebn. Sets and set
- Sparse & dense, » m Features become "modules’ Aspects Details: Section 6 0
- High & low skew of degree distribution that can be implemented in
- Many dense (non-cliqu - Parallel, » Modular different ways, and still they - Performance (work, depth)
= different origins (purchases, roads, ...) - Scalable, - Fast, » can be seamlessly combined. - Storage, - Tradeoffs
| ]
| |
: Platform pipeline stages (toolchain execution) ﬂ : a dark background and a cube indicate that a particular part of the design ¢
H with details on extensibility and modularity can be substituted by the developer with their own implementation 1
.
.l;oadunph e h q
to memory 2hi e gnau ; of ; (S SUC
I.—. initial CSR graph - v . as schedu . GMS
Era———r size) : s AL L o g
-y tc = 0;init_sets() e
E=BE vt o e st ()
. — — I forvinv:
Input : - - 1 for win N
b Theusa can pg i dre prpe The e - 15 NS
ol Ty o : \cie 8 o fyi > ]
b cmmma' ) L Implementations. 2 < Jenr

How does GMS o»am-mu emw emmm %ﬁmd emmumm @ Set based
classes & files associated (based on set algebra) of routines & files associated manipulation pars various
"ﬁ.“‘}‘;?,,'.’.‘.':?."‘,':';"" with graph representations m:m“ with a single function call with graph algorithms. meﬂ- mu:u.m

The user can experiment with algorithmic ideas (e.g., new algorithms or data structures), architectural ideas (e.g., using SIMD or instrinsics), and design ideas (e.g., using novel form of load balancing).
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GMS software platform & reference implementations 2
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Central concept for both programmability and high

performance are set-algebraic formulations
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Central concept for both programmability and high

performance are set-algebraic formulations

B
Sets I-(u)
N
U V
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GMS software platform & reference implementations 2

Central concept for both programmability and high
performance are set-algebraic formulations

Set
operations
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Programmable and High Performance Graph Mining: A Brief Summary

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P := P \ {v}
X := X U {v}
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Key idea for both: use set

algebra building blocks

algorithm BronKerbosch (R, P, X) is
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for each vertex v in P \ N(u) do
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Key idea for both: use set

algebra building blocks

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))
P := P \ {v;
X := X U {v}
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Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set

algebra building blocks

Prevalence of set
operations in graph

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique problems
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))
P := P \ {v;
X := X U {v}

mining algorithms &
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Key idea for both: use set

algebra building blocks

Prevalence of set
operations in graph
mining algorithms &

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique problems
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))

P := P \ {v;

X := X U {v}
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Key idea for both: use set
algebra building blocks

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))
P := P \ {v;
X := X U {v}

Breaking down complex graph
mining algorithms into simple

building blocks, which can be
separately optimized and coded

Prevalence of set
operations in graph
mining algorithms &

problems
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Key idea for both: use set

algebra building blocks

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v))
P := P \ {v;
X := X U {v}

Breaking down complex graph
mining algorithms into simple

building blocks, which can be
separately optimized and coded

Prevalence of set
operations in graph
mining algorithms &

problems

Parallelism across
and within set
operations
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Programmable and High Performance Graph Mining: A Brief Summary

Key idea for both: use set
Prevalence of set
operations in graph
mining algorithms &
problems

algebra building blocks

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then
report R as a maximal clique
choose a pivot vertex u in P U X
for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P 1 N(v), X N N(v)) Parallelism across

i : 1; l\J {{\:}}} and within set
operations

Breaking down complex graph

mining algorithms into simple Facilitates

prototyping and
optimization

building blocks, which can be
separately optimized and coded
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Example Advantages of Set Algebra Building Blocks

n = 16 (#vertices)
{0, ..., 15}

An example set:
{5,6,7,11,12}
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Example Advantages of Set Algebra Building Blocks

m Sparse Array (SA)

n =16 (#vertices)  Wibits]foran Size [bits]:
{0, eey 15} element (usually W x

_ a memory Word)\ #vertices
An example set:

{5,6,7,11,12y 5 6 7 11 12
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Example Advantages of Set Algebra Building Blocks

[ Input set Sparse Array (SA) Dense Bitvector (DB)
n =16 (#vertices) W [bits] foran Size [bits]: : .
{0, ..., 15} element (usually V& X ] Size [bits]: n

a memory word)\ #vertices
An example set: 0 00
{5,6,7,11,12y 5 6 7 11 12 100000...00 o n
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Example Advantages of Set Algebra Building Blocks

[ Input set Sparse Array (SA) Dense Bitvector (DB)
n =16 (#vertices) W [bits] f Size [bits]: S
{0, ..., 15} elengeln?](uosruzrllgg |zev&x| sl Size [bits]: n
amemory word)\ - #vertices
An example set: 00000 000 000
{5,6,7,11,12y 5 6 7 11 12 1 Ein Bd n

Example GMS graph representation

13 >o000000@iTHonTLLT
- 0011001001100011
- 000110f100100001
= 00000FTH000EL 000 |sinsBas

g g g :II; 15 \ usﬁtg@'ﬁ\s

-l
- The switching point

2 3 between usir?g SAs
'i’ 1 14 & DBs is determined

N Co O

by the user

s OGO On

Pointers from vertices
n to their neighborhoods
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Example Advantages of Set Algebra Building Blocks

[ Input set J
n = 16 (#vertices) W Ibits] f Si bits1: i .
{0, ..., 15} elengeln?](uosruzrll); |zev&x| sl Size [bits]: n
a memory wors \ #vertices
An example set:

{5,6,7,11,12} 5 6 7 1 12 100000...000..000n
13 ~o000000@fdolTHTE Sﬁﬁﬁim-"aﬁsﬁi-
6 = 0011001001100011 BN I . -

8 = 0001101100100001 SA, SA (sizes vary a lot)
2 > 00000MTM000EMO00 usingBas N s
TIPS T T R NG LY E—
12 = 2 3 'ght?”switchir_lg psogmt EERNEENNEEER

0 - 1 14 & DB is determined DB, DB

. by the user nllllllllllll

: NRENRRNNANEE

Pointers from vertices
n to their neighborhoods Other set operations

have similar variants
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Example Advantages of Set Algebra Building Blocks

[ Input set _ Sparse Array (SA)
n =16 (#vertices) W [bits] f Size [bits]: : .
{0, ..., 15} elengeln?](uosruzrlly; “ V&xl ] Size [bits]: n
amemory word)\ - #vertices
An example set: 00000 000 000
{5,6,7,11,12y 5 6 7 11 12 1 1o 11 n
SA, SA (similar si
13 +o000000 T 0TEHLM n-ﬁ'ﬁaﬁsf‘i-
6 =->0011001001100011 N I -
8 = 0001101100100001 5 SA, SA (sizes vary a lot)
2 = 00000MEWO00MEO00 wsingBes ~ NZT™===5™
5 = 8 9 11 15 SN SA, DB
M1 = 2 3 15 \ SHne SA I I - ,
12 = 2 3 Thgﬂswitching pé)g‘t ANERREERNEER Variants of a set
0 - 1 14 §%B§?§§§ﬁ3§mine% DB, DlB“““““ intersection,
. y the user B . .
- Pc>nters from vertices nll“““““ - opt|m|z-ed for
n totheir neighborhoods Other et operations different input set

have similar variants representations
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This may give us performance and generality, but it
does look quite complex to manage...?
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Example Advantages of Set Algebra Building Blocks

...It’s all about abstracting away the details with set-centric formulations + modularity
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Example Advantages of Set Algebra Building Blocks

...It’s all about abstracting away the details with set-centric formulations + modularity

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X N N(v))
P := P\ {v}
X =X U {v}
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Example Advantages of Set Algebra Building Blocks

...It’s all about abstracting away the details with set-centric formulations + modularity

algorithm BronKerbosch (R, P, X) is

if P and X are both empty then
report R as a maximal clique

choose a pivot vertex u in P U X

for each vertex v in P \ N(u) do
BronKerbosch (R U {v}, P N N(v), X M N(v))
P :=P \ {v}
X = X U {v}
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Example Advantages of Set Algebra Building Blocks

...It’s all about abstracting away the details with set-centric formulations + modularity

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then processing sets in GMS

report R as a maximal clique e z
choose a pivot vertex u in P U X SA, SA (similar sizes)
for each vertex v in P \ N(u) do n-------

I .

BronKerbosch (R U {v}, P N N(v), X M N(v))

P :=P\ {v} SA, SA (sizes vary a lot)
X := X U {v} n-------
] |

SA, DB
N . .
HNEMONEANMED

DB, DB

-
SNENENNNREER

Other set operations
have similar variants
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Example Advantages of Set Algebra Building Blocks

...It’s all about abstracting away the details with set-centric formulations + modularity

algorithm BronKerbosch (R, P, X) is
if P and X are both empty then processing sets in GMS

report R as a maximal clique e z
choose a pivot vertex u in P U X SA, SA (similar sizes)
for each vertex v in P \ N(u) do n-------

I .

BronKerbosch (R U {v}, P N N(v), X M N(v))

P :=P\ {v} SA, SA (sizes vary a lot)
X := X U {v} n-------
] |

SA, DB
I -
HNEMONEANMED

. . DB, DB
A set-centric formulation of n“"""““
DOODDMmEuNEEm

a graph mining algorithm

remains simple Other set operations
have similar variants
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Goal 1: Accelerate the State-of-the-Art

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32
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Goal 1: Accelerate the State-of-the-Art

Nemeth24
3 (structural network)
5%
o
=
58 610°
22
£% 410°
= QO
£5210°
£2
O
SE 0
A >
(€ e
&

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32
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Goal 1: Accelerate the State-of-the-Art @

Nemeth24
3 (structural network)
5%
o
=
58 610°
22
£% 410°
= QO
£5210°
£2
O
22 o}
= N
> >
&

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32
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Goal 2: Facilitate Analysis

Goal 1: Accelerate the State-of-the-Art @

Nemeth24
3 (structural network)
5%
o
=
58 610°
22
£% 410°
= QO
£5210°
£2
O
22 o}
= N
> >
&

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32
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Goal 2: Facilitate Analysis

Goal 1: Accelerate the State-of-the-Art @

Nemeth24
(structural network)

6-10° |
S

[ BK with the GMS code, OpenMP  [[] BK with the GMS  code, Intel TBB BK by Das et al. (a recent baseline)

W

(the higher, the better)

1 TR N
—
o O
o o 3

"Algorithmic throughput"

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32
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Goal 1: Accelerate the State-of-the-Art @ Goal 2: Facilitate Analysis

Nemeth24
(structural network)

6-10° |
0
S

[ BK with the GMS code, OpenMP  [[] BK with the GMS  code, Intel TBB BK by Das et al. (a recent baseline)

GMS-DGR : BK with degeneracy reordering (a variant by Eppstein et al.) GMS-DEG : BK with simple degree reordering
GMS-ADG : BK with approximate degeneracy reordering (a baseline obtained with GMS)
GMS-ADG-S : BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32

w

N A
N
o O
a (8}

"Algorithmic throughput"
(the higher, the better)
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Goal 1: Accelerate the State-of-the-Art @ Goal 2: Facilitate Analysis

Nemeth24
3 (structural network)
a Q
S8 6.10°
Sa © TBB
22
£% 410°
= QO
£5210°
£.2
O
g2 o
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>

[ BK with the GMS code, OpenMP  [[] BK with the GMS  code, Intel TBB BK by Das et al. (a recent baseline)

GMS-DGR : BK with degeneracy reordering (a variant by Eppstein et al.) GMS-DEG : BK with simple degree reordering
GMS-ADG : BK with approximate degeneracy reordering (a baseline obtained with GMS)
GMS-ADG-S : BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32
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Goal 2: Facilitate Analysis

Nemeth24 Jester2 Ant-colonyd orani678
3 (structural network) (communication graph) (biological network) (economics network)

= OpenMP OpenMP OpenMP

58 610° 6.100 TBB !\ 1gg

L= .

sS4 10 4-10° 2.106 2.108

£% 2105 2108 1-108 1-10°

‘6 =

22 0 0 Q~ o 0

-~ "o ’
c_) T PY AP, 0 /?‘ / / / / / /Q /0 Q /?* Y7 /?* O‘,Q’
? @%“’@‘9 f‘% S5 @%\ BR -@%@ @‘f’c_’,f‘”@‘%‘%@& F

«@ ©) C’)COG@C'JOQ) 00~§\\C9C90C9

[ BK with the GMS code, OpenMP  [[] BK with the GMS  code, Intel TBB

GMS-DGR : BK with degeneracy reordering (a variant by Eppstein et al.)
GMS-ADG

BK by Das et al. (a recent baseline)

GMS-DEG : BK with simple degree reordering
: BK with approximate degeneracy reordering (a baseline obtained with GMS)

GMS-ADG-S : BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)

Problem: Maximal Clique Listing

System: Daint Cores/threads: 32 -
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Goal 1: Accelerate the State-of-the-Art @ @ Goal 2: Facilitate Analysis
Nemeth24 Jester2 Ant-colonyd orani678
3 (structural network) (communication graph) (biological network) (economics network)

PN /OpenMP 6 _-OpenMP OpenviP

a2 o0 AN 2108 | m8e 410 R

28 6-10 1n6 TBB TBB

€< 4. 6

o 10 410 2108 2108

£5 2105 2108 1-108 1-10°
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22 0 0 Y 0
c,@ /s /v/ 0 /?. /0 / / / / /Q /O 0 /?*/0 /O /?~ \Z
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[ BK with the GMS code, OpenMP  [[] BK with the GMS  code, Intel TBB BK by Das et al. (a recent baseline)

GMS-DGR : BK with degeneracy reordering (a variant by Eppstein et al.) GMS-DEG : BK with simple degree reordering
GMS-ADG : BK with approximate degeneracy reordering (a baseline obtained with GMS)
GMS-ADG-S : BK-GMS-ADG plus subgraph optimization (a baseline obtained with GMS)

Problem: Maximal Clique Listing  System: Daint Cores/threads: 32
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Work

Depth

Chiba and Nishizeki [69] e} (ndd“)
Chrobak and Eppstein [72] (0] (ndzzd )
Eppstein et al. [92] 0 (dm 3%)
Das et al. [79] (0] (3%
(2+e)d
This Paper (@] (dm 373

Chiba and Nishizeki [69] O (dzn(n - d)3d/3) (0] (dzn(n - d)3d"3).

) O (log® n +dlogn).

(o] (ndd“).
0 (ndzzd).
o (dm 3 { )

O (dlogn).

T

3 Light

WF
308 paralel)

s

1250

Erdos-Renyi graph with
= ic

0000, p=0..
ataset to that used by
the VF3-Light authors|

=0.2 (

Node Parallel [78]

Edge Parallel [78]

with ADG (§ 6.3)

(Section 6) Eppstein et al. [91] Das et al. [79]
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Algorithm AL (sorted) AM EL (unsorted) EL (sorted)
R Tested case *
Work Depth = mining_time 10 / Node Iterator (TC) O(n +m’/% log A) O(n + m3/2) O(n +m¥2(A +log m)) O(n + m5/2)
= mining_time 11
—_ *DTEDF§CBSS‘HQ fime 10 N1 fren Al A 3/2) Al A 3/2) Al A 3/2) al A 3/2)
Chiba 4
Reference / Focus on Pattern Matching Learning
. Opt V Remarks
Chiba g Infrastructure what problems? pt ¥ r
mC? kC? dS? sI? fS? vS? IP? cl? cD?
Chrobal
[B] Cyclone [201] Graph database queries X X X X X X X X % E ED™ "Onlyshortest paths. **Only degree centrality.
Eppstei ] . . . e “Support for degeneracy, but no explicit rank derivation.
[B] GBBS [84] + Ligra [192] More than 10 “low-complexity” algorithms X X X X X X x Y @E * L
Das et 4 GBBS offers a large number of optimization problems
[B] GraphBIG [165] Mostly vertex-centric schemes X E'x X X X X X X E®E *Only k=3 "0nly shortest paths and one coloring scheme.
This Py [B] GAPBS [20] Seven “low-complexity” algorithms X E'Xx X X X X X X BE*X  “Only k =3 "Only shortest paths. —
[B] LDBC [51] Graph database queries X X X X X X X Ex ®E™ X “Onlyone clustering coefficient. ** Only shortest paths.
[B] WGB [12] Mostly online queries X X X XN X X X Ex EXR *Only one clustering scheme. **Only shortest paths.
[B] PBBS [44] General parallel problems X X X %X X X xXx B x @ X Only graph optimization problems are considered
[B] Graph500 [162] Graph traversals X X X X X X %X X X @3 X  “Support for shortest paths only.
[B] HPCS [15] Two “low-complexity” algorithms X X X X X X X X X x *Just one clustering scheme is considered
[B] Han at al. [106] Evaluation of various graph processing systems X X X X X X X X x ) X *Support for Shortest Paths and Minimum ST
[B] CRONO [6] Focus on futuristic multicores X X X X X X X x @ ®ED ®ED “Onlyshortest paths. **Only triangle counting.
[B] GARDENIA [218] Focus on future accelerators X X X X X X X X X [@E B "Onlyshortest paths. ** Triangle counting and vertex coloring. - |
. . . . . * *No good performance bounds (focus on expressiveness),
[F] A framework, e.g., Peregrine [118] or Fractal [86] (more at the end of Section 1) ED* ED* ED* ED @D X X X X X x .. e L .
not competitive to specific parallel mining algorithms
[B] GMS [This paper] General graph mining () () (W) (=) (@) =) (@ Details in Table 4 and Section 4 a
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