HARP: Practically and Effectively Identifying
Uncorrectable Errors in Memory Chips
That Use On-Die Error-Correcting Codes

Minesh Patel, Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/abs/2109.12697
https://github.com/CMU-SAFARI/HARP

ETH:zirich SAFARI

https://github.com/CMU-SAFARI/HARP
https://arxiv.org/abs/2109.12697

HARP Summary

Motivation: state-of-the-art memory error mitigations often require
the processor to identify which bits are at risk of error (i.e., profiling)

Problem: on-die ECC complicates error profiling by altering how errors
appear outside of the memory chip

Goal: understand and address the challenges on-die ECC introduces

Contributions:

1. Analytically study on-die ECC’s effects and identify three key challenges
i. Exponentially increases the number of at-risk bits
ii. Makes individual at-risk bits harder to identify
iii. Interferes with commonly-used memory data patterns

2. Hybrid Active-Reactive Profiling (HARP):
i. Separately identifies (1) raw bit errors and (2) errors introduced by on-die ECC
ii. Effectively reduces profiling with on-die ECC into profiling without on-die ECC

Evaluation: demonstrate that HARP overcomes the three challenges
 HARP identifies all errors faster than two baselines, which sometimes fail to
achieve full coverage of at-risk bits

* Case study showing that HARP identifies all errors faster than the best-
performing baseline (e.g., by 3.7x for a raw per-bit error probability of 0.75)

SAFARI https://github.com/CMU-SAFARI/HARP 2

https://github.com/CMU-SAFARI/HARP

HARP Outline

1. Memory Error Mitigation and Profiling
2. On-Die ECC’s Impact on Error Profiling
3. HARP: Practical and Effective Profiling
4. Evaluations

5. Conclusion and Takeaways

SAFARI

Scaling-Related Memory Errors

* Density scaling increases memory error rates

Data Write Variable
Retention Recovery Retention Time
<%\§ 1 <%\§ 1 '

T T ' ” |_ |_

shrinking capacitance increasing bitline and shrinking capacitance
worsening leakage contact resistances worsening leakage

Y

Uncorrelated single-bit errors are the primary
challenge with continued DRAM process scaling

SAFARI

Increasing Single-Bit Error Rates

*Higher error rates require more sophisticated solutions

Past Present Near Future
ﬂ On-Die ECC 2
No Mitigation Row/Column | | Single-Error | | Advanced
Necessary Sparing Correction Solutions
/ ' \7 ' N ' \
| | I | | |
< | I | | I I >
1014 10712 10719 108 10° 104

Raw Bit Error Rate (RBER)
Reproduced from prior work [Kline+,HPCA’20], [Nair+,ISCA’13]

SAFARI 5

Error Mitigation at High Error Rates

Software

)

Page retirement
Task replication

In-Processor

In-Memory

Bit-Repair Mechanisms
state-of-the-art

Application fault tolerance for addressin g

scaling-related errors

Row/Column Sparing
On-Die ECC

* Cost and efficiency depend on error characteristics

SAFARI

Memory Repair Mechanisms

* ldentify and repair any bits that are at-risk of error

Memory Controller Unreliable Memory
N e | :

- M Repa|r I
. | . | |

a, |writedata | Mechanism | !Writedata :
= l — i i | Error-Prone :
Hg i repaired | ! Error i ; ! Data Store | |
S _| readdata i_ Profile |1 | | oqd data ! |
_ ———¥———— M]
. - J I

Must know which bits are at-risk

L» Determined through

SAFARI/ Error Profiling

Error Profiling Algorithms

Active Induce worst-case
conditions

Profiler
Type?

Check for errors

Passively monitor
Reactive | the memory chip

Repeat until all at-risk bits identified

Mark erroneous
bits as at-risk

SAFARI

Error Profiling

requires observing
at-risk bits fail

Check for errors

Mark erroneous
bits as at-risk

ml_____

SAFARI 9

-----r-

Profiling a Memory Chip with On-Die ECC

* On-die ECC changes how errors appear to the profiler

Q: How does on-die ECC

affect error profiling? Unreliable Memory
N EEN BN NN BN BN BN BN BN B B B —F-------------------------------}
[write data | ll i
| Profiler i On-Die : Error-Prone | !
: : ECC |j Data Store i
[read data 1 [:
LL e :

Goal: understand and address the challenges
that on-die ECC introduces for error profiling

SAFARI 10

HARP Outline

1. Memory Error Mitigation and Profiling

2. On-Die ECC’s Impact on Error Profiling

3. HARP: Practical and Effective Profiling
4. Evaluations

5. Conclusion and Takeaways

SAFARI

1

Profiling a Memory Chip

* Profiler’'s goal: identify all bits that are at risk of error

Profiler cannot see into the memory

Memory Chip
(Without On-Die ECC)

Data Store

On-Die ECC

r

post-correction data

Profiler marks the bits
SAFARI that are observed to fail

Error Profiling Without On-die ECC

* Only one source of errors: when the physical bit fails

Memory Chip @ Error

- E|-|-]
“Direct” error IEI No Error

Same errors inside

and outside of the chip
E|-|-]

Profiler identifies these bits

error profile = union(direct errors)

SAFARI 13

Error Profiling With On-Die ECC

* Two different sources of errors
Memory Chip @ Error
data metadata
B —‘—H—EE‘ IEINoError
|

‘ On-Die ECC |-/systematic
encoding
Direct error — e Indirect error
Appears before and E‘ = ‘E‘ = Occurs when on-die ECC
after error correction — mistakenly corrects a bit

Profiler identifies these bits

SAFARI 14

A Closer Look at Indirect Errors

*Indirect errors depend on the raw bit error pattern

data metadata At Risk
‘—‘—“—‘X‘X‘ Not at risk
P2

\EI-\-\-H-\E\E\ \EI-\-\-H-\E\-\

- --{on- D|e ECC | Pre-correction | On- D|e ECC |- -

Post-correction

BE.___ B3

Direct error Indirect error
SAFARI (same position) (different positions) 15

A Closer Look at Indirect Errors

Key observation:
Any bit can be at-risk of indirect errors
with different combinations of raw bit errors

On-die ECC causes statistical dependence
between otherwise independent bits

SAFARI 16

Challenges Introduced by On-Die ECC

Exponentially increases the at-risk bits

A small set of raw bit errors creates a combinatorially
larger set of at-risk post-correction bits

At-risk post-correction bits can only be exposed by
specific raw bit error patterns

@ Harder to observe each at-risk bit

Interferes with data patterns

Data patterns must consider combinations of raw bits
instead of just individual bits alone

SAFARI 17

Challenge 1: Combinatorial Explosion

*N at-risk bits can fail in 2V ways

1

23 unique
error patterns
A

SAFARI

5 |Z| At-Risk Bit

X|-|1-|-1-1X
0 e 9 Normal Bit
1O (oY1)
10} {02}
{1}, {142}
_ |18} 0.0.0;

Correctable

Uncorrectable

18

Challenge 1: Combinatorial Explosion

Every uncorrectable pattern

can cause a unique indirect error

{0.0]

{0.8]

(LX)
{0.0.0}

Uncorrectable
SAFARI 19

Challenge 1: Combinatorial Explosion

*Exponential increase in the number of at-risk
bits that the profiler must identify

Worst-Case Explosion of At-Risk Bits

At-Risk Pre-Correction At-Risk Post-Correction
3

7
15
255

QO H W N

SAFARI 20

Challenge 2: Identifying At-Risk Bits

*Indirect errors only appear for specific ECC-dependent
combinations of pre-correction errors

* This makes identifying indirect errors slow and difficult
* The profiler can neither see nor control pre-correction errors

* Instead, the profiler is forced to blindly explore different pre-
correction error combinations to achieve high coverage

The slow exploration can only be overcome

by transparency into on-die ECC

SAFARI 21

Challenge 3: Data Patterns

*Profilers employ carefully-designed data patterns

012 014 O |4 O [1 O 12 O |45 O |31 O [
012 0 14 O |3 O [L0 OO 0
L1111 ({1]1 11111 (1[{1]1
0100101010100 11111 (1[1]1

 Data-patterns induce worst-case circuit behavior
* Maximizes the chance of identifying errors
* Exercises different failure modes

SAFARI

Challenge 3: Data Patterns

*On-die ECC breaks these data patterns in two ways

Memory Chip
O |35 O |35 O |3 O | : ?[2[?[?[?[?]?]?
@ 1o101010_’\0”'D'GECC|"????????
Carefully-Designed Obfuscated

Multi-bit data patterns are
difficult to design and use
(discussed in our paper)

Conventional data patterns induce | On-die ECC requires multiple bits to
single-bit worst case conditions fail concurrently to expose errors

SAFARI 23

HARP Outline

1. Memory Error Mitigation and Profiling

2. On-Die ECC’s Impact on Error Profiling

3. HARP: Practical and Effective Profiling

4. Evaluations

5. Conclusion and Takeaways

SAFARI

24

Key Observation

*Indirect errors are an artifact of on-die ECC
data metadata

[E]-T-T-][-[[=]

Direct error

_______ e i e e e e e e]

@ = ‘E‘ ' Upper-bounded

*An N-error correcting ECC can only cause at
most N indirect errors at a time

SAFARI

by the ECC algorithm

25

Key Observation

SAFARI 26

Hybrid Active-Reactive Profiling (HARP)
Active Profiling

Quickly identifies direct errors

Memory Controller Memory Chip
I -------------------------------- I I ------------------
—t—y | — . —p I—.—l_y' =N
21| S [write data | Repair S 1|
kE) I Mechanism a._g : I | On-Die
S | g‘ repdaged Error g 1! ECC Data
N T | read data : I
E l : £ Pro%flle — 2 le |' : < Store
o
- Ao B
[on error detected , : ECC bypass

Reactive Profiling
Safely identifies the indirect errors

SAFARI 27

Active Profiling Design

Memory Controller Memory Chip
[S — — I
| Repair s : :
i | Mechanism =| 1" | on-Die :
i Error 2 i 17| ECC “*| Data |
l Profile o | 1! Store | |
1 A 2 1 : 1
| T £ 1! |
: e — D PO T S — i
| onerror detected : :

d

Bypass only for reads
(returns data bits, ignores ECC metadata)

* ECC bypass is a simple, low-overhead change
* No change to data transfer granularity or ECC algorithm

* Enables using existing profiling algorithms to identify bits at
risk of direct errors as if there is no on-die ECC

SAFARI 28

Active Profiling Design

Reduces the task of profiling with on-die ECC

into a task of profiling without on-die ECC
with minimal modifications to on-die ECC

SAFARI 29

Reactive Profiling Design

Memory Controller Memory Chip

| — — PP — —
: Repair] |
I : 11 0

1 | Secondary Mechanism | | | [On-Die Data | !
I Ecc v ®| [Error T ecc [*”] store i
: on error Profile D '
: detected I :
R R R R R R R e B R d

* System designer must choose a suitable secondary ECC

*Large ECC design space - only one requirement:

* Secondary ECC must correct N errors per on-die ECC word
given an N-error-correcting on-die ECC

* Requires aligning the two ECC words (details in our paper)

SAFARI 30

Improving Reactive Profiling

* Reactive profiling slowly identifies indirect errors one-
at-a-time as they occur during runtime

*We can shorten this process by anticipating indirect
error locations from the already-observed direct errors

IE At-Risk of Direct Errors
? | Unknown

[D|D[?]>

Can predict a subset of indirect errors by knowing the
on-die ECC implementation (i.e., its parity-check matrix)

*We introduce two HARP variants:
* HARP-A(ware) — knows the parity-check matrix
* HARP-U(naware) — does not know the parity-check matrix

SAFARI 31

HARP Outline

1. Memory Error Mitigation and Profiling
2. On-Die ECC’s Impact on Error Profiling
3. HARP: Practical and Effective Profiling
4. Evaluations

5. Conclusion and Takeaways

SAFARI

32

Evaluation Methodology

*We evaluate HARP using Monte-Carlo simulation
* Enables accurately measuring coverage (using a SAT solver)

* 1,036,980 total ECC words

* Across 2769 randomly-generated (71, 64) and (136, 128) ECC codes
=14 CPU-years (20 days on 256 cores) of simulation time

* Artifacts are open-sourced

DOI 10.5281/zen0do0.5148592

https:/github.com/CMU-SAFARI/HARP

SAFARI 33

https://github.com/CMU-SAFARI/HARP

Baseline Profiling Algorithms

* We compare HARP with two baseline algorithms:

1. Naive: round-based profiling that ignores on-die ECC
 Each round uses different data patterns (e.g., random data)
* Profiler marks observed errors as at-risk bits

2. BEEP [patel+ MICRO20]: knows the exact on-die ECC
implementation (i.e., its parity-check matrix)
* Same overall round-based strategy as Naive
* Data patterns designed using the known parity-check matrix

SAFARI 34

Coverage of Bits at Risk of Direct Errors

Per-Bit Probability of Pre-Correction Error
25% 50% 75% 100%

-
WESPTS 710N 215 FFS TS TN

=
o
I

Pre-Correction Errors %'/ mmm HARP-U
—= 5 =—f 3 7 pm Naive
i -6 4 —) Im BEEP

-

O
o
I

Direct Error Coverage
o
un
1

1 41664 1 4 1664 1 4 1664 1 4 16 64
Number of Profiling Rounds

1. HARP achieves full coverage in all cases,
outperforming both baseline algorithms

* BEEP fails to achieve full coverage because it does not explore
different pre-correction error patterns

2. HARP is independent of the number of pre-correction
errors because it directly reads raw data bit values

SAFARI 35

Coverage of Bits at Risk of Direct Errors

HARP overcomes all three profiling challenges

by separating direct and indirect errors

SAFARI ' 36

Profiling Speed Evaluation
* Goal: determine how many profiling rounds are
necessary to prevent” N-bit error patterns

*We inject 2 raw bit errors per ECC word
* Per-bit error probability = 1.0 (fails in every profiling round)

BEEP and Naive are
e A order(s) of magnitude slower = EEiEvPe
0 B HARP-U
80 1 B HARP-A
HARP only needs 3 rounds

to prevent multi-bit errors

S
o
1

N
o
1

Number of Profiling Rounds
[<2]
o

o
l

: ; ; N =
’ Maximum Number of Simultaneous Post-Correction Errors Possible K
Requires ECC-1 Requires ECC-6

SAFARI *for 99th percentile coverage 37

Profiling Speed Evaluation

Number of Pre-Correction Errors per ECC Word

| I Lo |

..
S T T
el L R T

1/21314al5l6l 11121314516l 11121314]5]6
Maximum Number of Simultaneous Post-Correction Errors Possible

%SL %00T

Ajljlgeqoud 1ig-1ad

%065

40443 Uu0I31294i10)-9.1d

N
o
o

Number of Profiling Round
w
(o))

*HARP achieves high coverage of at-risk bits
much faster than the baseline algorithms

SAFARI 38

Profiling Speed Evaluation

Number of Pre-Correction Errors per ECC Word
2 3 4 5

9 961 = e |-] i .
cg‘z‘: == HARPA |] i] 3
3 Todbd | 1 |] Lo _ |7 J_J_L_O-UF'-?
o4]] 3 1
> 25 - i SIS
= 32 - o\r—rg
Egg Qr
< 64 S o
© 32 =
g 0 .g
96 A - o
5 €4-] >
Z %51 1 e | S
1121314al5l6] |1]213l4]5]6] [1]2]3]4]5]|6|[1]/2(3]4]5]6

Maximum Number of Simultaneous Post-Correction Errors Possible

HARP performs 20.6- to 62.1% faster

than the best-performing baseline

SAFARI 39

Case Study: DRAM Data-Retention

*We consider a system that uses an ideal repair

mechanism to safely reduce the DRAM refresh rate

* We study how the end-to-end bit error rate (BER)
changes when using different profilers

BEEP fails to
reach zero BER c)Per—Bit Proba(i)lty of Pre-Corgction Error

e)

LNt

e
A

"\,

| = BEEP] 6
~—— HARP-U =& 10
—— Naive — 1078

! i - e S
HARP always 1 A1l 4l6ds 1 41664 1 4 16 64

reaches zero BER Number of Profiling Rounds

SAFARI

'—I
o
©

EARAT S —

BER After
Reactive Profiling
=
N

[

9
=
~l

40

Case Study: DRAM Data-Retention

HARP reaches zero BER 3.7x faster

than the best-performing baseline

Per-Bit Probability of Pre-Correction Error
25% 50% y 100%

BER After
Reactive Profiling
=
<

=

N
=
~l

1 41664 1 4 1664 1 4 1664 1 4 16 64
Number of Profiling Rounds

SAFARI 41

HARP Outline

1. Memory Error Mitigation and Profiling
2. On-Die ECC’s Impact on Error Profiling
3. HARP: Practical and Effective Profiling
4. Evaluations

5. Conclusion and Takeaways

SAFARI

42

Other Information in the Paper

* Detailed analysis of on-die ECC

* How on-die ECC introduces statistical dependence between
post-correction errors

* Differences between direct and indirect errors
* Discussion about HARP’s design decisions

* More evaluation results
* Coverage of direct and indirect errors
* Analysis of profiler bootstrapping
* Case study on the end-to-end memory bit error rate (BER)

* Detailed artifact description

SAFARI 43

Other Information in the Paper

HARP: Practically and Effectively
Identifying Uncorrectable Errors in Memory Chips
That Use On-Die Error-Correcting Codes

Minesh Patel Geraldo F. Oliveira Onur Mutlu
ETH Ziirich ETH Ziirich ETH Ziirich
ABSTRACT profiler impacts the system’s overall bit error rate (BER) when using

Aggressive storage density scaling in modern main memories causes
increasing error rates that are addressed using error-mitigation
techniques. State-of-the-art techniques for addressing high error
rates identify and repair bits that are at risk of error from within
the memory controller. Unfortunately, modern main memory chips
internally use on-die error correcting codes (on-die ECC) that ob-
fuscate the memory controller’s view of errors, complicating the
process of identifying at-risk bits (i.e., error profiling).

To understand the problems that on-die ECC causes for error
profiling, we analytically study how on-die ECC changes the way
that memory errors appear outside of the memory chip (e.g., to the
memory controller). We show that on-die ECC introduces statistical
dependence between errors in different bit positions, raising three
key challenges for practical and effective error profiling: on-die
ECC (1) exponentially increases the number of at-risk bits the pro-
filer must identify; (2) makes individual at-risk bits more difficult
to identify; and (3) interferes with commonly-used memory data
patterns that are designed to make at-risk bits easier to identify.

a repair mechanism to tolerate DRAM data-retention errors. We
show that HARP identifies all errors faster than the best-performing
baseline algorithm (e.g., by 3.7x for a raw per-bit error probability
of 0.75). We conclude that HARP effectively overcomes the three
error profiling challenges introduced by on-die ECC.

CCS CONCEPTS

+ Computer systems organization — Dependable and fault-
tolerant systems and networks; +» Hardware — Memory test
and repair.

KEYWORDS

On-Die ECC, DRAM, Memory Test, Repair, Error Profiling, Error
Modeling, Memory Scaling, Reliability, Fault Tolerance

ACM Reference Format:

Minesh Patel, Geraldo F. Oliveira, and Onur Mutlu. 2021. HARP: Practically

and Effectively Identifying Uncorrectable Errors in Memory Chips That Use
On-Die Error-Correcting Codes. In Proceedings of the 54th Annual IEEE/ACM

https://arxiv.org/abs/2109.12697

SAFARI

44

https://arxiv.org/abs/2109.12697

Artifacts are Open-Sourced

F CMU-SAFARI / HARP | Public

<> Code

@ lIssues

e

master ~ § 1branch

71 mpatelh [first commit

evaluation
lib

script

sic
gitmodules
AUTHORS
CHANGES
Doxyfile
LICENSE

READMEmd

DR ODEREDR

makefile

= READMEmd

HARP

1 Pull requests

Q0 tags

@® Actions [Projects

] first commit
7] first commit
7] first commit
7] first commit
7] first commit
7] first commit
[*] first commit
[#] first commit
7] first commit
7] first commit

[*] first commit

mwiki @

Go to file

© Watch ~ | 2 1 sar 0 Pk 0

Security |~ Insights.

Add file ~ <> Code +

e15da22 6daysago &) 1commit
6 days ago
6 days ago
6 days ago
6 days ago
6 days ago
6 days ago
6 days ago
6 days ago
6 days ago
6 days ago

6 days ago

z

This software provides the artifacts for evaluating Hybrid Active-Reactive Profiling (HARP) as described in our

SAFARI

8 Settings

About e

A Monte-Carlo simulation tool for
DRAM error injection and profiling
used for evaluating HARP as
described in the 2021 MICRO paper
by Patel et al:
https://aniv.org/abs/2109.12697.

0 Readme

&5 MIT License

Releases

No releases published
Create a new release

Packages

No packages published
Publish your first package

Languages

————————
® Co-31.0% @ Fortran 107%

® CMake25% ® C23%
® Dython 1.1% @ Cuda 1%

July 31,2021

HARP Artifacts

Patel

Artifacts used to reproduce the experiments and data given in the paper:

Minesh Patel, Geraldo F. Oliveira, and Onur Mutlu, "HARP:

Main Memory Chips That Use On-Die ECC," 1o appear in the

Microarchitecture (MICRO), 2021.

Preview

[®) harp-artifacts zip X B

ly and

of the 54rd

Errors in

on

v

! The previewer is not showing all the files

m harp-ariifacts

o [JAUTHORS

o [3 Doxyfile

o [ILICENSE

o [README.md

o MmiD

= Meigen-339

= [gitignore
= [3.hgeol
= [CMakeLists.ixt
= [COPYING.GPL
= [COPYING.LGPL
= [3 COPYING.MINPACK
= [COPYING MPL2
= [3 COPYING.README
= [CTestConfig.cmake

145 Bytes
207 Bytes
1.1kB
6.5kB

268 Bytes
180 Bytes
24.53 kB
35.1kB
265kB
22kB
16.7kB
779 Bytes
527 Bytes

25 5

® views & downloads

See more details.

Indexed in

OpenAlRE

Publication date:
July 31,2021
Dol
DOI 10.5281/zeno:
License (for files):
[Creative Commons Attribution 4.0 Intemational

Versions

https://github.com/CMU-SAFARI/HARP

HARP Summary

Motivation: state-of-the-art memory error mitigations often require
the processor to identify which bits are at risk of error (i.e., profiling)

Problem: on-die ECC complicates error profiling by altering how errors
appear outside of the memory chip

Goal: understand and address the challenges on-die ECC introduces

Contributions:

1. Analytically study on-die ECC’s effects and identify three key challenges
i. Exponentially increases the number of at-risk bits
ii. Makes individual at-risk bits harder to identify
iii. Interferes with commonly-used memory data patterns

2. Hybrid Active-Reactive Profiling (HARP):
i. Separately identifies (1) raw bit errors and (2) errors introduced by on-die ECC
ii. Effectively reduces profiling with on-die ECC into profiling without on-die ECC

Evaluation: demonstrate that HARP overcomes the three challenges
 HARP identifies all errors faster than two baselines, which sometimes fail to
achieve full coverage of at-risk bits

* Case study showing that HARP identifies all errors faster than the best-
performing baseline (e.g., by 3.7x for a raw per-bit error probability of 0.75)

SAFARI https://github.com/CMU-SAFARI/HARP 46

https://github.com/CMU-SAFARI/HARP

HARP: Practically and Effectively Identifying
Uncorrectable Errors in Memory Chips
That Use On-Die Error-Correcting Codes

Minesh Patel, Geraldo F. Oliveira, Onur Mutlu
Session 6A: Wednesday 20 October, 7:45 PM CEST

https://arxiv.org/abs/2109.12697
https://github.com/CMU-SAFARI/HARP

ETH:zirich SAFARI

https://github.com/CMU-SAFARI/HARP
https://arxiv.org/abs/2109.12697

Backup Slides

Addressing High Error Rates

e Unfortunately, coarse-grained mitigation is typically
impractical at high error rates (e.g., >1074)

Low BER
00000000
QOO000OO00OOK
OO0O0O0OO0O0O0OQ acceptable
O O O O O O O O mttigation cost
00000000 /
O0O000000 unreasonable

O0000000 mitigation cost
O000000O0 Q0000000

High BERs demand fine-grained mitigation
SAFARI 49

Challenge 1: Combinatorial Explosion

Pre-Correction IZI e Rick Bit
-RIS |
X|-|-|-|-|x|[X
IEI Normal Bit
ECCFED EECEEEE FEEEEE EEEEEE
On-Die ECC On-Die ECC On-Die ECC On-Die ECC

DII|-|— pIEE D|-|-|T

direct and indirect @ Direct error Indirect error

error coincide

Y

X|IX| XX

Post-Correction
S A) HARP (MICRO’21) 50

Challenge 2: Bootstrapping (2/2)

* The profiler cannot draw conclusions from having
observed a bit not fail

Memory Chip Memory Chip with on-die ECC
‘ 2 ‘ 2] ‘ 2 ‘ data metadata

HHHHE HHE

| On-Die ECC |
E|E[-]-] \E\ELH
\/ \/
Physical bit did not fail Unknown!

(i.e., no direct error)

S A) REAPER(SCAT) > EN(DSN1g) > BEER(MICRO’zo)- Position (Ongoing) » 51

Combinatorial Explosion of Errors

Bits at risk of pre-correction errors n 1234 8

Unique pre-correction error patterns 2™ —1 1 3 7 15 255
Uncorrectable pre-correction error patterns 2" —n—-1 0 2 4 11 247
Bits at risk of post-correction errors 2™ -1 1 37 15 255

SAFARI 52

Example Granularity Matching

* Goal: The system designer wants to protect each on-die
ECC word with at least as strong an ECC as on-die ECC

ToDRAM ToDRAM ToDRAM ToDRAM ToDRAM
Chip [0] Chip [1] Chip [2] Chip [3] Chip [4]

t t t t
120+8 |t 120+8 |t 120+8 bit 120+3 bit 32+6 bit
1EC Ham codeword codeword codeword codeword

2EC BCH 112 bits | 112 bits | 112 bits | 112 bits 64 b

(128, 112) DEC
(128, 120) SEC

Current ECC 512 bits 64 bits

120 bits | 120bits | 120bits | 120bits | 32 b

Y

SAFARI 60B (480b) cache line 53

Per-Bit Error Probability of Each At-Risk Bit

« 70K ECC words per 1600 (71, 64) SEC Hamming codes

Pre-Correction
Post-Correction

© o 9
e (o)) 00
! | !

O
N
|

Per-Bit Probability
of Post-Correction Error

O
o
!
|
I
I
|

2 3 4 5 §) 7 8
Number of Pre-Correction Errors Per ECC Word

Figure 4: Distribution of each at-risk bit’s error probability before
and after application of on-die ECC.

SAFARI 54

Challenge 1: Combinatorial Explosion

Pre-Correction

v I R R R vy @AtR,skB,t
Normal Bit
0 O 0
23 Possible pre-correction error combinations
0] || 0.0}
i} 10} || {08} {006}
9} || 0.6}

Correctable

Uncorrectable

SAFARI

55

Challenge 1: Combinatorial Explosion

Every combination can potentially

cause a unique indirect error

SAFARI 56

Challenge 1: Combinatorial Explosion

Memory Chip

data metadata

[X] -

aREmE

| On-Die ECC |

SAFARI

|

EIEIEYEd

@ At Risk of
Direct Errors
At Risk of
Indirect Errors

57

Key Idea (1/2)

If we “somehow identify” all direct errors...

.. we can safely rely on a secondary ECC
to identify remaining indirect errors

Memory Controller

i
S — | Repair | o
S Mechani ' S
: i Secondary conantm i g :
S i ECC Error RSN
S ! Profile I =5
. < 4-!— =

SAFARI 58

Key Idea (2/2)

If we can read the raw data (but not metadata)...

... we can use existing profiling techniques
to quickly identify all direct errors

Memory Controller Memory Chip

jmEEEEEEEEEmEmEmmm———— i Ir--------------------------1
5 — 1 :
= | . | I [On-Die :
S | Active : : ECC Error-Prone |
3 4-i— Profiler <'i_!_l €= Data Store i
= : | ECC Bypass i

| I | :

SAFARI 59

Hybrid Active-Reactive Profiling (HARP)
Active Profiling

Quickly identifies direct errors

Memory Controller Memory Chip
I -------------------------------- I I ------------------
—t—y | — . —p I—.—l_y' =N
21| S [write data | Repair S 1|
kE) I Mechanism a._g : I | On-Die
S | g‘ repdaged Error g 1! ECC Data
N T | read data : I
E l : £ Pro%flle — 2 le |' : < Store
)
: é ------------ A i <--: :— -----------
: on error detected : : ECC bypass

Reactive Profiling
Safely identifies the indirect errors

SAFARI 60

Active Profiling Design
data metadata

e 1 1

[E] -

Low hardware cost:

skipping ECC decoding ‘ On-Die ECC ‘
V
El-[-]-] E|-[E]-]
Bypass read Normal read

(returns raw data, ignores metadata)

* Able to use existing profiling algorithms as if there is no
on-die ECC to identify bits at risk of direct errors

*Does not identify bits at risk of indirect errors
SAFARI 61

Active Profiling Design

Reduces the task of profiling with on-die ECC

into a task of profiling without on-die ECC
with minimal modifications to on-die ECC

SAFARI 62

ECC Bypass Costs

data metadata

e 1 1

[E] -

Low hardware cost:

skipping ECC decoding ‘ On-Die ECC ‘
!
E[-]-|-] E|-[E[-
Bypass read Normal read

(returns raw data, ignores metadata)

* Simply skips on-die ECC decoding
* Details

SAFARI 63

Reactive Profiling Design

Memory Controller Memory Chip

S Teeoma . s Tomoie | i

Secondary ' On-Die | .

S ™ Ecc ¢ ™ Ecc |

S ——— : — |
—

* System designer must choose a suitable secondary ECC

* Huge ECC design space - only one requirement:

* For N-error-correcting on-die ECC, secondary ECC can
correct N errors per on-die ECC word

* Requires aligning on-die ECC and secondary ECC words
(details in our paper)

SAFARI 64

Hybrid Active-Reactive Profiling (HARP)

Memory M Chi
. - Controller emory L-nip
@ Active Profiling ~—_______ B :
| I |
| M onoie| | |
Quickly identifies all directerrors 1| , .. |1 (|OnDief |
* Bypasses on-die ECConreads || p sior 1'!-:1 ECC Store |!
* Uses existing profiling techniques | t !
1 1ECChypass L}

@ Reactive Profiling ([| : -------- |

i
i |
M secone cepar |
. e . . econdaar epair
Safely identifies indirect errors | ECC y Mechr;nism i
* Uses asecondary ECC at least 4'!' [—l -
i |
. |

as strong as on-die ECC

SAFARI 65

Challenge 2: Bootstrapping

* Identifying a bit at risk of indirect errors is hard!
* Requires a specific pre-correction error pattern to occur
* However, the profiler cannot see pre-correction errors

*|eadsto a viciou?yclg-’\

Profiler must Profiler does not know if
test a bit the bit has been tested

The profiler can only identify indirect errors

one-at-a-time in a guess-and-check process
SAFARI 66

