Understanding Power Consumption and Reliability of High-Bandwidth Memory with Voltage Underscaling

Saber Nabavi Adrian Cristal Behzad Salami Hamid Sarbazi-Azad Osman Unsal

Onur Mutlu

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Executive Summary

- **DRAM** has problems and one of them is **Bandwidth**.
 - **HBM** puts DRAM chips inside a package with GPU, FPGA, etc.
- **HBM** uses the package's **power** budget
 - ✓ Undervolting reduces power WITHOUT losing bandwidth.
- Push undervolting too far, it will result unwanted bit-flips
 - ✓ This Work: power, bit flips and trade-offs
- Evaluation Setup
 - ✓ Xilinx FPGA with **2 Stacks**
 - ✓ HBM voltage rail
- <u>Main Results</u>
 - ✓ 19% voltage guardband
 - ✓ 2.3X power savings
 - Fault-map to aid users to take advantage of undervolting

- Why HBM?
- What is HBM?
- Undervolting
- Methodology
- Results
 - Power
 - Reliability
 - The Trade-off

- Why HBM?
- What is HBM?
- Undervolting
- Methodology
- Results
 - Power
 - Reliability
 - The Trade-off

Why HBM?

• DRAM Limitations: Power, Latency, Bandwidth, etc.

✓ Specially in data-intensive applications

• Replace DRAM: PCM, MRAM, etc.

✓ Have their own limitations

• Improve DRAM:

✓ Reduced Latency DRAM (RLDRAM)

✓ Graphics DDR (GDDR)

✓ Low-Power DDR (LPDDR)

✓ <u>High Bandwidth Memory (HBM) -> Bandwidth</u>

• HBM Use cases

✓ NVIDIA A100, Xilinx Virtex Ultrascale+ HBM, AMD Radeon Pro

 \checkmark The Summit Supercomputer

• Why HBM?

- What is HBM?
- Undervolting
- Methodology
- Results
 - Power
 - Reliability
 - The Trade-off

What is HBM?

• IDEA: Integrate stacks DRAM chips into the computing package

 \checkmark Use TSVs, µBumps and Silicon Interposer to connect everything

✓ **Eight 128bits** wide channels per stack

• Benefits:

✓ An order of magnitude Higher Bandwidth

✓ Smaller form factor

Lower energy per bit (7pJ vs 25pJ in DDRx)

• Challenge:

✓ Uses the package's **power** budget

✓ Save power but **NOT** lose bandwidth: **Undervolting**

Xilinx VCU128

- Why HBM?
- What is HBM?
- Undervolting
- Methodology
- Results
 - Power
 - Reliability
 - The Trade-off

Undervolting

• IDEA: Reduce supply voltage but keep Frequency

✓ We can do this because of **Voltage Guardband**

✓ Save power WITHOUT losing bandwidth

• Catch:

✓ Pushed beyond guardband, bit flips will appear!

 \checkmark But we can save even more power at the cost of these faults!

• <u>Our Work:</u>

✓ Undervolt HBM

✓ Then push in too far!

✓ Report power saving and bit flips

✓ Trade-off among memory capacity, power and fault-rate

- Why HBM?
- What is HBM?
- Undervolting
- Methodology
- Results
 - Power
 - Reliability
 - The Trade-off

Methodology

• Undervolting Mechanism

- \checkmark HBM supply voltage is driven by an on-board regulator
- \checkmark We control it from the host
- ✓ 10mV voltage steps

• Power Measurements:

 \checkmark Change bandwidth utilization by enabling/disabling AXI ports

- ✓ Measure power at all voltage steps
- ✓ Measure idle power by disabling all AXI ports

• Reliability Test

- \checkmark Test the entire memory vs. pseudo-channel
- Write all 1s (to detect 1-to-0 bit flips)
- Write all 0s (to detect 0-to-1 bit flips)

- Why HBM?
- What is HBM?
- Undervolting
- Methodology
- Results
 - Power
 - Reliability
 - The Trade-off

Power: Active and Idle

• Active Power = $\alpha \times C_L \times f \times V_{dd}^2$

Power: α

- Active Load Capacitance = $\alpha \times C_L \times f$
- Unit: *farads per second*
- **f** and **C**_Lare constant

- Why HBM?
- What is HBM?
- Undervolting
- Methodology
- Results
 - Power
 - Reliability
 - The Trade-off

Reliability: the Regions

Exponential No Bit Flips Guardband: HBM0, 0-to-1 bit flips ✓ Below nominal level ($V_{nom} = 1.2V$) % Cells in Stack 05 00 % •• HBM1, 0-to-1 bit flips ✓ No faults ··· ·· HBM1, 1-to-0 bit flips **Unsafe**: **GUARBAND** \checkmark Below guardband ($V_{min} = 0.98V$) ✓ **Exponential** growth in bit-flips min ✓ Max out at **0.84V** 0 **Failure**: 800 .95 20 8 0.8508. 0.7 \checkmark HBM crash point ($V_{critical} = 0.81V$) HBM Supply Voltage (V) ✓ Restart with nominal voltage

Reliability: the Variations

	HBM0												HBM1																					
	AXI#	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
iage (V)	≤0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94	64 66 63 59 13 36 12 0 0 0 0 0 0 0 0	59 65 61 59 59 51 2 0 0 0 0 0 0	56 65 64 62 2 37 0 0 0 0 0 0 0 0	62 58 63 61 61 3 4 0 0 0 0 0 0 0 0 0 NF	63 65 63 62 37 64 71 0 0 0 0 0 9 38 0	54 64 62 61 38 62 61 60 24 16 5 0 0 0	66 61 60 56 51 33 1 0 0 0 0 0 0 0 0	stem 63 58 61 62 62 56 0 5 0 0 0 0 0 0 0	Failu 68 72 54 27 16 12 14 0 0 0 0 0 0 0	re 64 72 55 46 36 58 46 0 0 0 0 0 0 0 0 0	61 63 62 62 61 61 3 0 44 0 0 0 0 NF	60 62 61 62 14 11 2 0 0 0 0 0 0 0 0	42 41 38 37 0 25 50 0 0 0 0 0 0 0 0	45 41 38 40 8 8 50 0 16 1 0 0 0 0 0	61 60 57 58 63 55 3 5 0 0 0 0 0 0 0	56 48 57 59 63 6 3 1 0 0 0 0 0 0	63 65 65 34 30 27 0 0 0 0 0 0 0 0	62 60 62 58 38 60 31 3 0 2 0 0 0 0 0 NF	30 33 20 25 10 6 1 71 67 48 48 20 2 2	56 39 36 31 0 1 2 15 69 87 96 82 46 0	54 54 23 35 38 43 6 0 0 0 0 0 0 0 0	59 57 55 38 38 27 1 0 0 0 0 0 0	Sy 64 66 61 41 3 20 0 0 0 0 0 0 0 0 0 0 0	stem 56 60 60 62 52 2 17 0 0 0 0 0 0 0	Fail 61 63 59 59 59 59 59 59 59 55 0 0 0 0 0 0 0 0	ITE 59 63 60 59 44 52 14 10 0 0 0 0 0	64 65 66 63 60 17 21 37 0 0 0 0 0 0	60 58 67 64 22 57 17 18 16 0 0 0 0 0	59 58 51 19 3 74 52 0 0 0 0 0 0 0	51 59 55 55 0 7 25 0 0 0 0 0 0 0 0 0	57 60 59 54 47 0 28 51 2 0 0 0 0 0 0 NF	49 55 59 48 26 20 2 0 0 0 0 0 0 0 0	ing 0, detecting 0-to-1 bit flips
olt	0.96	NF	NF	NF	NF	NF	NF	0	NF	NF	0	NF	NF	NF	NF	NF	NF	NF	NF	NF	NF	NF	NF	0	NF	NF	NF	NF	NF	NF	0	NF	NI	Ųτ
HBM Supply V	20.97 ≤0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91 0.92 0.93 0.94 0.95 0.94 0.95 0.97 20.97 20.97	36 33 37 0 33 7 3 0 0 0 0 0 0 0 0 0 0 0 0	41 35 38 40 25 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	44 35 36 35 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 41 35 37 38 10 1 0 0 0 0 0 0 0 0 0 0 0 0 NF NF	37 35 37 38 63 36 3 14 19 21 23 2 14 0 0 NF	46 36 38 39 62 36 39 40 36 65 50 24 9 0 0 0	S 34 39 39 38 18 3 0 0 0 0 0 0 0 0 0 0 0 0 0	IN 37 42 38 37 31 5 0 </th <th>Failu 31 28 45 71 65 44 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>36 28 42 51 59 6 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>39 37 38 38 39 36 2 0 1 0 0 0 0 0 0 NF NF</th> <th>40 39 39 37 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>58 58 61 61 1 7 17 7 0 0 0 0 0 0 0 0 0 0 NF NF</th> <th>54 58 60 47 62 7 50 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>39 32 43 39 37 45 5 0 0 0 0 0 0 0 0 0 NF NF</th> <th>43 40 43 40 37 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>36 35 33 31 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>37 37 38 40 62 40 17 3 0 0 0 0 0 0 0 0 0 NF NF</th> <th>70 56 74 72 78 89 93 98 22 1 0 0 0 0 0 0 0 NF</th> <th>44 52 64 66 83 91 98 82 13 5 2 1 0 0 0 0</th> <th>46 45 19 30 40 21 48 42 25 25 25 25 25 25 6 0 0 0</th> <th>40 41 44 62 38 80 14 0 0 0 0 0 0 0 NF</th> <th>Sy 36 34 39 53 42 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>stem 44 40 39 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>Fail 34 37 42 41 41 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>ITE 38 36 40 39 36 48 42 40 25</th> <th>35 35 34 37 37 7 3 2 0 0 0 0 0 0 0 0 0 0 0 0 NF</th> <th>39 42 33 25 20 18 21 11 0 0 0 0 0 0 0 0 NF</th> <th>41 42 46 1 13 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>50 39 44 43 42 11 23 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>39 39 42 45 30 7 15 2 0 0 0 0 0 0 0 0 0 NF NF</th> <th>51 45 40 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>Wr ting 1, detecting 1-to-0 bit flips</th>	Failu 31 28 45 71 65 44 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36 28 42 51 59 6 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	39 37 38 38 39 36 2 0 1 0 0 0 0 0 0 NF NF	40 39 39 37 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58 58 61 61 1 7 17 7 0 0 0 0 0 0 0 0 0 0 NF NF	54 58 60 47 62 7 50 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	39 32 43 39 37 45 5 0 0 0 0 0 0 0 0 0 NF NF	43 40 43 40 37 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	36 35 33 31 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	37 37 38 40 62 40 17 3 0 0 0 0 0 0 0 0 0 NF NF	70 56 74 72 78 89 93 98 22 1 0 0 0 0 0 0 0 NF	44 52 64 66 83 91 98 82 13 5 2 1 0 0 0 0	46 45 19 30 40 21 48 42 25 25 25 25 25 25 6 0 0 0	40 41 44 62 38 80 14 0 0 0 0 0 0 0 NF	Sy 36 34 39 53 42 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	stem 44 40 39 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fail 34 37 42 41 41 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ITE 38 36 40 39 36 48 42 40 25	35 35 34 37 37 7 3 2 0 0 0 0 0 0 0 0 0 0 0 0 NF	39 42 33 25 20 18 21 11 0 0 0 0 0 0 0 0 NF	41 42 46 1 13 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 39 44 43 42 11 23 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	39 39 42 45 30 7 15 2 0 0 0 0 0 0 0 0 0 NF NF	51 45 40 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Wr ting 1, detecting 1-to-0 bit flips
		v	•	-	~	<u> </u>	5	Ŭ	HB	M0	-	10		12	10		10		1,	10	17	20			HB	M1	20	20	- '	20		50	51	

18

- Why HBM?
- What is HBM?
- Undervolting
- Methodology
- Results
 - Power
 - Reliability
 - The Trade-off

The Trade-Off

Understanding Power Consumption and Reliability of High-Bandwidth Memory with Voltage Underscaling

Saber Nabavi Adrian Cristal Behzad Salami Hamid Sarbazi-Azad **Osman Unsal**

Onur Mutlu

