Understanding Power Consumption and Reliability of HighBandwidth Memory with Voltage Underscaling

Saber Nabavi	Behzad Salami	Osman Unsal
Adrian Cristal	Hamid Sarbazi-Azad	Onur Mutlu

Barcelona
BSC Supercomputing
Center
Centro Nacional de Supercomputación

ONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
EMHzürich

Executive Summary

- DRAM has problems and one of them is Bandwidth.
\checkmark HBM puts DRAM chips inside a package with GPU, FPGA, etc.
- HBM uses the package's power budget
\checkmark Undervolting reduces power WITHOUT losing bandwidth.
- Push undervolting too far, it will result unwanted bit-flips
\checkmark This Work: power, bit flips and trade-offs

- Evaluation Setup

\checkmark Xilinx FPGA with 2 Stacks
\checkmark HBM voltage rail

- Main Results

\checkmark 19\% voltage guardband
\checkmark 2.3X power savings
\checkmark Fault-map to aid users to take advantage of undervolting

Outline

-Why HBM?

- What is HBM?
- Undervolting
- Methodology
- Results
- Power
- Reliability
- The Trade-off

Outline

-Why HBM?

Undervolting
Methodologv
Results

- Power
- Reliahility
- The Trade-off

Why HBM?

- DRAM Limitations: Power, Latency, Bandwidth, etc.
\checkmark Specially in data-intensive applications
- Replace DRAM: PCM, MRAM, etc.
\checkmark Have their own limitations
- Improve DRAM:
\checkmark Reduced Latency DRAM (RLDRAM)
\checkmark Graphics DDR (GDDR)
\checkmark Low-Power DDR (LPDDR)
\checkmark High Bandwidth Memory (HBM) -> Bandwidth
- HBM Use cases
\checkmark NVIDIA A100, Xilinx Virtex Ultrascale+ HBM, AMD Radeon Pro
\checkmark The Summit Supercomputer

Outline

- What is HBM?

Undervolting
Methodology

- Power
- Reliability
- The Trade-of

What is HBM?

- IDEA: Integrate stacks DRAM chips into the computing package
\checkmark Use TSVs, μ Bumps and Silicon Interposer to connect everything
\checkmark Eight 128bits wide channels per stack
- Benefits:
\checkmark An order of magnitude Higher Bandwidth
\checkmark Smaller form factor
\checkmark Lower energy per bit (7 pJ vs 25 pJ in DDRx)
- Challenge:
\checkmark Uses the package's power budget
\checkmark Save power but NOT lose bandwidth: Undervolting

Xilinx VCU128

Outline

-Why HBM? - What is HBIV?
 - Undervolting

- Power
- Reliability
- The Trade-off

Undervolting

- IDEA: Reduce supply voltage but keep Frequency

\checkmark We can do this because of Voltage Guardband
\checkmark Save power WITHOUT losing bandwidth

- Catch:
\checkmark Pushed beyond guardband, bit flips will appear!
\checkmark But we can save even more power at the cost of these faults!
- Our Work:
\checkmark Undervolt HBM
\checkmark Then push in too far!
\checkmark Report power saving and bit flips
\checkmark Trade-off among memory capacity, power and fault-rate

Outline
-Why HBM?

- What is HBI
- Undervolting
- Methodology
- Power
- Reliability
- The Trade-off

Methodology

- Undervolting Mechanism
\checkmark HBM supply voltage is driven by an on-board regulator
\checkmark We control it from the host
$\checkmark 10 \mathrm{mV}$ voltage steps
- Power Measurements:
\checkmark Change bandwidth utilization by enabling/disabling AXI ports
\checkmark Measure power at all voltage steps
\checkmark Measure idle power by disabling all AXI ports
- Reliability Test
\checkmark Test the entire memory vs. pseudo-channel
\checkmark Write all 1s (to detect 1-to-0 bit flips)
\checkmark Write all 0s (to detect 0-to-1 bit flips)

Outline
-Why HBM?
M/hat is HRM Undervolting Methodology

- Results
- Power
- Reliability
- The Trade-off

Power: Active and Idle

- Active Power $=\alpha \times C_{L} \times f \times V_{d d}{ }^{2}$

Power: α

- Active Load Capacitance $=\alpha \times C_{L} \times f$
- Unit: farads per second
- f and C_{L} are constant

Outline
-Why HBM?- What is HBI-Undervolting- Methodology

- Results

\author{

- Reliability
}

Reliability: the Regions

- Guardband:

\checkmark Below nominal level $\left(V_{\text {nom }}=1.2 V\right)$
\checkmark No faults

- Unsafe:
\checkmark Below guardband ($V_{\text {min }}=0.98 \mathrm{~V}$)
\checkmark Exponential growth in bit-flips
\checkmark Max out at 0.84 V
- Failure:
\checkmark HBM crash point $\left(V_{\text {critical }}=0.81 \mathrm{~V}\right)$
\checkmark Restart with nominal voltage

Reliability: the Variations

HBM0 HBM1

Outline
-Why HBM?

What is HBI ? - Undervolting Methodology

- Results
- Power
- Reliability
- The Trade-off

Understanding Power Consumption and Reliability of HighBandwidth Memory with Voltage Underscaling

Saber Nabavi
Adrian Cristal
Behzad Salami
Hamid Sarbazi-Azad
Osman Unsal
Onur Mutlu

