Understanding Power Consumption and Reliability of High-Bandwidth Memory with Voltage Underscaling

Saber Nabavi Behzad Salami Osman Unsal
Adrian Cristal Hamid Sarbazi-Azad Onur Mutlu
Executive Summary

- **DRAM** has problems and one of them is **Bandwidth**.
 - ✓ **HBM** puts DRAM chips inside a package with GPU, FPGA, etc.

- **HBM** uses the package’s **power budget**
 - ✓ **Undervolting** reduces power **WITHOUT** losing bandwidth.

- **Push** undervolting **too far**, it will result **unwanted bit-flips**
 - ✓ **This Work**: **power, bit flips and trade-offs**

Evaluation Setup
- ✓ Xilinx FPGA with **2 Stacks**
- ✓ **HBM voltage rail**

Main Results
- ✓ **19% voltage guardband**
- ✓ **2.3X power savings**
- ✓ **Fault-map** to aid users to take advantage of undervolting
Outline

• Why HBM?
• What is HBM?
• Undervolting
• Methodology
• Results
 • Power
 • Reliability
 • The Trade-off
Outline

• Why HBM?
• What is HBM?
• Undervolting
• Methodology
• Results
 • Power
 • Reliability
 • The Trade-off
Why HBM?

• **DRAM Limitations:** Power, Latency, Bandwidth, etc.
 ✓ Specially in *data-intensive* applications

• Replace DRAM: PCM, MRAM, etc.
 ✓ Have their own *limitations*

• **Improve** DRAM:
 ✓ Reduced Latency DRAM (RLDRAM)
 ✓ Graphics DDR (GDDR)
 ✓ Low-Power DDR (LPDDR)
 ✓ *High Bandwidth Memory (HBM)* -> *Bandwidth*

• HBM Use cases
 ✓ NVIDIA A100, Xilinx Virtex Ultrascale+ HBM, AMD Radeon Pro
 ✓ The Summit Supercomputer
Outline

• Why HBM?
• What is HBM?
• Undervolting
• Methodology
• Results
 • Power
 • Reliability
 • The Trade-off
What is HBM?

IDEA: Integrate **stacks** DRAM chips into the computing package
- Use **TSVs**, **µBumps** and **Silicon Interposer** to connect everything
- Eight **128bits** wide channels per stack

Benefits:
- An order of magnitude **Higher Bandwidth**
- **Smaller** form factor
- **Lower energy per bit** (7pJ vs 25pJ in DDRx)

Challenge:
- Uses the package’s **power budget**
- Save power but **NOT** lose bandwidth: **Undervolting**
Xilinx VCU128

SLR=Super Logic Region
(Reconfigurable Fabric)

HBM Stacks

AXI Ports

Switches

Memory Controllers (MC)
Pseudo Channels (PC)

Memory Array
Outline

• Why HBM?
• What is HBM?
• Undervolting
• Methodology
• Results
 • Power
 • Reliability
 • The Trade-off
Undervolting

• **IDEA:** Reduce supply voltage but keep Frequency
 - ✓ We can do this because of *Voltage Guardband*
 - ✓ Save power *WITHOUT* losing bandwidth

• **Catch:**
 - ✓ Pushed *beyond* guardband, *bit flips* will appear!
 - ✓ But we can save even more power at the cost of these faults!

• **Our Work:**
 - ✓ Undervolt HBM
 - ✓ Then push in too far!
 - ✓ Report power saving and bit flips
 - ✓ Trade-off among memory capacity, power and fault-rate
Outline

• Why HBM?
• What is HBM?
• Undervolting
• Methodology
• Results
 • Power
 • Reliability
 • The Trade-off
Methodology

• Undervolting Mechanism
 ✓ HBM supply voltage is driven by an on-board regulator
 ✓ We control it from the host
 ✓ 10mV voltage steps

• Power Measurements:
 ✓ Change bandwidth utilization by enabling/disabling AXI ports
 ✓ Measure power at all voltage steps
 ✓ Measure idle power by disabling all AXI ports

• Reliability Test
 ✓ Test the entire memory vs. pseudo-channel
 ✓ Write all 1s (to detect 1-to-0 bit flips)
 ✓ Write all 0s (to detect 0-to-1 bit flips)
Outline

• Why HBM?
• What is HBM?
• Undervolting
• Methodology

• Results
 • Power
 • Reliability
 • The Trade-off
Power: Active and Idle

- Active Power $= \alpha \times C_L \times f \times V_{dd}^2$
Power: α

- **Active Load Capacitance** = $\alpha \times C_L \times f$

- Unit: *farads per second*

- f and C_L are constant

![Graph showing normalized $\alpha \times C_L \times f$ vs. HBM Supply Voltage (V) with Bit Flips indicated at <3% and 14% bandwith (GB/sec) for different values: 310, 232, 154, 77, and Average.]
Outline

• Why HBM?
• What is HBM?
• Undervolting
• Methodology

• Results
 • Power
 • Reliability
 • The Trade-off
Reliability: the Regions

- **Guardband:**
 - Below nominal level ($V_{nom} = 1.2V$)
 - No faults

- **Unsafe:**
 - Below guardband ($V_{min} = 0.98V$)
 - Exponential growth in bit-flips
 - Max out at 0.84V

- **Failure:**
 - HBM crash point ($V_{critical} = 0.81V$)
 - Restart with nominal voltage
Reliability: the Variations

HBM0

<table>
<thead>
<tr>
<th>AX#</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

HBM1

<table>
<thead>
<tr>
<th>AX#</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

System Failure

- HBM0
- HBM1

HBV Supply Voltage (V)

<table>
<thead>
<tr>
<th>AX#</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

System Failure

- HBM0
- HBM1

HBM Supply Voltage (V)

<table>
<thead>
<tr>
<th>AX#</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

System Failure

- HBM0
- HBM1

Notes

- AX# refers to the axis number.
- System Failure indicates the failure scenarios for HBM0 and HBM1.
- HBV Supply Voltage (V) and HBM Supply Voltage (V) provide voltage levels for different axes.
- System Failure columns show the fault conditions for each voltage level.
Outline

• Why HBM?
• What is HBM?
• Undervolting
• Methodology

• Results
 • Power
 • Reliability
 • The Trade-off
The Trade-Off

The diagram illustrates the trade-off between HBM Supply Voltage (V) and Tolerable Fault Rate (% of Memory Cells) with various values shown in the table. The annotations 2.3X and 1.6X highlight specific regions of interest.
Understanding Power Consumption and Reliability of High-Bandwidth Memory with Voltage Underscaling

Saber Nabavi Behzad Salami Osman Unsal
Adrian Cristal Hamid Sarbazi-Azad Onur Mutlu