Evaluating Homomorphic Operations on a Real-World Processing-In-Memory System

Harshita Gupta* Mayank Kabra*

Juan Gómez-Luna Konstantinos Kanellopoulos

Onur Mutlu

Motivation

Homomorphic operations suffer from large memory capacity and data movement bottlenecks

Acceleration Techniques

Motivation

These approaches face challenges in resource limitations, data movement, and practical implementation

Our Goal

Evaluate the suitability of real-world generalpurpose processing-in-memory (PIM) architectures to perform homomorphic operations.

Our Goal

Evaluate the suitability of real-world generalpurpose processing-in-memory (PIM) architectures to perform homomorphic operations.

UPMEM: First Real World PIM Architecture

Our Goal

Evaluation Methodology

Evaluation of homomorphic addition and multiplication on UPMEM PIM system

Evaluation Methodology

Evaluation of homomorphic addition and multiplication on UPMEM PIM system

Evaluation with statistical workloads (mean, variance, linear regression)

Evaluation Methodology

Evaluation: Homomorphic Addition

Evaluation: Homomorphic Addition

50 - 100× speedup provided by PIM over CPU 2 - 15× speedup over GPU

Evaluation: Homomorphic Multiplication

Evaluation: Homomorphic Multiplication

PIM lags 10 - 15× behind the GPU due to the lack of native multiplication support

Evaluation: Linear Regression

Evaluation: Linear Regression

PIM is 6.4-7.5x faster than the custom CPU implementation

CPU-SEAL and GPU are faster than PIM

Key Takeaways

UPMEM PIM system natively supports 32-bit integer addition and outperformsCPU and GPU for homomorphic *addition*

Key Takeaways

UPMEM PIM system natively supports 32-bit integer addition and outperformsCPU and GPU for homomorphic *addition*

The lack of native support for 32-bit integer multiplication hampers the performance of PIM for homomorphic multiplication.

Key Takeaways

1

UPMEM PIM system natively supports 32-bit integer addition and outperformsCPU and GPU for homomorphic *addition*

- 2
- The lack of native support for 32-bit integer multiplication hampers the performance of PIM for homomorphic multiplication.
- 3
- The computational power of PIM scales with memory capacity via the addition of more memory banks and PIM cores

Evaluating Homomorphic Operations on a Real-World Processing-In-Memory System

Harshita Gupta* Mayank Kabra*

Juan Gómez-Luna Konstantinos Kanellopoulos

Onur Mutlu

