
Evaluating Homomorphic Operations
on a Real-World Processing-In-Memory System

Harshita Gupta∗ Mayank Kabra∗ Juan Gómez-Luna Konstantinos Kanellopoulos Onur Mutlu
ETH Zürich

Computing on encrypted data is a promising approach to re-
duce data security and privacy risks, with homomorphic encryp-
tion serving as a facilitator in achieving this goal. In this work,
we accelerate homomorphic operations using the Processing-in-
Memory (PIM) paradigm to mitigate the large memory capacity
and frequent data movement requirements. Using a real-world
PIM system, we accelerate the Brakerski-Fan-Vercauteren (BFV)
scheme for homomorphic addition and multiplication. We evalu-
ate the PIM implementations of these homomorphic operations
with statistical workloads (arithmetic mean, variance, linear re-
gression) and compare to CPU and GPU implementations. Our
results demonstrate 50 − 100× speedup with a real PIM system
(UPMEM) over the CPU and 2 − 15× over the GPU in vector
addition. For vector multiplication, the real PIM system outper-
forms the CPU by 40 − 50×. However, it lags 10 − 15× behind
the GPU due to the lack of native sufficiently wide multiplication
support in the evaluated first-generation real PIM system. For
mean, variance, and linear regression, the real PIM system per-
formance improvements vary between 30× and 300× over the
CPU and between 10× and 30× over the GPU, uncovering real
PIM system trade-offs in terms of scalability of homomorphic
operations for varying amounts of data. We plan to make our
implementation open-source in the future.

1. Introduction
Traditional security measures that operate on plain (unen-
crypted) data often expose the actual data during processing,
creating security and privacy vulnerabilities. Homomorphic
Encryption (HE) [1-8] addresses this by enabling calculations
on encrypted data without revealing sensitive information.
A user can (1) encrypt data, and (2) send it to the server.

Then, (3) computing resources in the server operate on the
data without decrypting it, using HE, and (4) the encrypted
results are returned to the user, preserving data privacy [5,
9-11]. However, HE is very costly due to the use of large ci-
phertexts and computation intensive operations [12-15]. For
example, performing homomorphic multiplication on two fully
homomorphic (FHE) encrypted integers may require tens of
millions of operations [16-18]. The complexity is further com-
pounded by intricate mathematical operations, as each of these
operations is executed on data that can be up to 1000× larger
in size than the original plain data [2, 16, 19].

Recent research proposes the implementation of homomor-
phic operations on CPUs [17, 20-22], GPUs [4, 22-25], FP-
GAs [26-31], and ASICs [13, 32-37], but these implementations

*Equal contribution.

do not fundamentally solve the data movement bottleneck as-
sociated with homomorphic operations.
Processing-in-Memory (PIM), i.e., equipping memory with

compute capabilities [16, 38-61], can effectively alleviate the
data movement needs. Recent PIM-based HE solutions [11,
16, 62, 63] leverage high parallelism and memory bandwidth
inside the memory chips for acceleration. However, there is no
evaluation of homomorphic operations on real PIM systems,
which have recently been introduced [38-47, 50].

To our knowledge, this study is the first to implement and
evaluate homomorphic operations on a real PIM system. Using
a real PIM system (UPMEM) [38, 44, 64], we accelerate the
Brakerski-Fan-Vercauteren (BFV) scheme [65, 66] for homo-
morphic addition and multiplication. Our evaluation shows
that the real PIM system accelerates the homomorphic addition
operation by 50 − 100× over a state-of-the-art CPU and by
2−15× over a state-of-the-art GPU. For the homomorphic mul-
tiplication operation, the real PIM system provides a speedup
of 30 − 50× over the CPU, but lags 10 − 15× behind the GPU
due to the lack of native sufficiently wide multiplication sup-
port on the evaluated first-generation UPMEM PIM system.
We also evaluate our implementation of three statistical work-
loads (mean, variance, linear regression) using homomorphic
addition and homomorphic multiplication. In our evaluation,
the real PIM system achieves up to 300× speedup over the CPU
for all workloads and up to 30× over the GPU for arithmetic
mean. However, it lags by up to 50× compared to the GPU for
variance and linear regression, due to the low performance of
multiplication on the first real-world PIM system.

Our work makes the following contributions:
• We develop the first implementation of homomorphic addi-
tion and multiplication on a real PIM system.

• We evaluate the performance of homomorphic addition and
multiplication on a real PIM system for different bit-key se-
curity levels (27-109 bits). We use three real-world statistical
workloads (arithmetic mean, variance, linear regression) for
evaluation.

• Our findings demonstrate the capabilities and tradeoffs of
real PIM systems for efficient cryptographic operations, pro-
viding a foundation for future developments in this direction.

2. Background and Motivation
Homomorphic encryption (HE) [1-8] enables processing (e.g.,
addition, multiplication, rotation) on encrypted data while
preserving privacy. We focus on the BFV (Brakerski-Fan-
Vercauteren) scheme for HE [65, 66], but the implementation
techniques that we propose are also applicable to other HE
schemes (e.g., BGV [67] and CKKS [68]). HE types include

1



Fully Homomorphic Encryption (FHE), Partially Homomor-
phic Encryption (PHE), and Somewhat Homomorphic Encryp-
tion (SHE) [69]. FHE enables unrestricted operations, PHE
permits one type of operation, and SHE supports both addition
and multiplication with constraints on multiplicative depth.
FHE, SHE, and PHE offer different trade-offs between security
and efficiency [1, 5, 7, 8, 70-72]. In this paper, we focus on
SHE as it provides a balance between security and efficiency,
allowing some computations (e.g., addition, multiplication) on
encrypted data while still maintaining a high level of security.
HE poses two main challenges that limit its use in real-

world applications.
1) Large memory footprint: HE schemes require very long
vectors with wide elements to encode information [13]. Prior
work [32] shows that multiplying 2MB ciphertexts requires
32MB of auxiliary data, and 25MB ciphertexts would require
over 1.4GB of auxiliary data. This amount of auxiliary data
is too large to fit on a processor-centric chip which limits the
scalability and performance of HE.
2) Frequent data movement: The large amount of data that
homomorphic algorithms need to operate on is moved back-
and-forth between off-chipmemory/storage units and compute
units. Prior work [73] shows that homomorphic operations
exhibit low arithmetic intensity (<1 operations/byte). As a
result, in processor-centric systems, such as CPUs and GPUs, it
is challenging to efficiently offset the performance and energy
expenses incurred when transferring large amounts of data.

Several recent works [4, 13, 22-37] explore domain-specific
architectures, such as GPUs, FPGAs, and ASICs, to accelerate
homomorphic operations. These efforts have achieved sig-
nificant speedups compared to CPUs. However, challenges
remain in resource limitations, data movement, and practical
implementation of especially ASIC-based accelerators [35].
In this work, our goal is to evaluate the suitability of real-

world general-purpose processing-in-memory architectures to
compute homomorphic operations. To this end, we implement
homomorphic addition and multiplication on the UPMEM PIM
system [38, 39, 44], and evaluate them on real-world statistical
and machine learning workloads.

Processing-in-memory (PIM) [16, 38-61] systems can accel-
erate memory-intensive applications [46, 64, 74-76] by equip-
ping memory arrays with compute capabilities. These systems
can potentially address the challenge of large ciphertexts in HE
algorithms by reducing the overhead of data transfers between
the memory and the CPU [45, 77]. In addition to reducing
data movement, PIM also offers high levels of parallelism [38,
39], which are useful for performing costly homomorphic op-
erations. Thus, by computing directly in memory, PIM can
significantly improve the performance of HE. Various real-
world PIM systems have recently been introduced [38-47, 50].
These real-world PIM systems have some common charac-
teristics [64]: there is a central host processor connected to
conventional main memory, alongside PIM-enabled memory
chips with processing elements that access memory with high
bandwidth and low latency. In this work, we use the UPMEM

PIM system [38, 39, 44, 78], which consists of fine-grained mul-
tithreaded PIM cores near DRAM banks. For more details on
the UPMEM PIM system, we refer the reader to [16, 38, 39, 44,
48-60].

3. Implementation
We consider an environment where users offload computa-
tions on encrypted data to a PIM system. Users handle key
generation, encryption, and decryption to guarantee their data
privacy. Computation of homomorphic operations takes place
in a PIM system. In this work, we implement addition and
multiplication operations.
The security level of HE relies on the polynomial modu-

lus degree [79], affecting ciphertext length, vulnerability to
attacks, and noise tolerance. For instance, for 27-bit security,
we need a polynomial that has 1024 27-bit coefficients, which
indicates a relatively lower security level in HE. Increasing the
bit length enhances security. In this work, we also evaluate 54-
bit (2048-coefficient polynomial) and 109-bit (4096-coefficient
polynomial) security levels. To represent 27-, 54-, and 109-bit
coefficients, we use integers of 32, 64, and 128 bits, respectively.
The reason is that the UPMEM PIM system that we use in our
evaluation has native support for 32-bit integers.
Homomorphic Addition. We implement homomorphic ad-
dition using polynomial addition [80, 81] on the UPMEM PIM
system. Each PIM thread running on a PIM core performs
the element-wise addition of the coefficients of two polyno-
mials. UPMEM PIM cores [44] support native 32-bit integer
addition (add) and 32-bit integer addition with carry-in (addc),
which we use to implement 64- and 128-bit addition (and can
be extended to any multiple of 32 bits).
Homomorphic Multiplication. We implement homomor-
phic multiplication using polynomial multiplication and poly-
nomial addition [82-85]. Each PIM thread running on a PIM
core performs the polynomial multiplication and polynomial
addition of the coefficients of two polynomials to generate the
desired result. For 32-bit coefficients, we rely on the compiler-
generated 32-bit shift-and-add based multiplication.1 For 64-
and 128-bit multiplications, we divide the bits into chunks of
32-bits and apply the Karatsuba algorithm [86], which requires
less operations than the traditional multiplication algorithm.
We do not incorporate Number Theoretic Transform (NTT) [87,
88] techniques to optimize multiplication. We leave them for
future work.
Statistical Workloads. We implement three statistical work-
loads (arithmetic mean, variance, linear regression) using ho-
momorphic addition and homomorphic multiplication tech-
niques. The arithmetic mean [89, 90] workload employs poly-
nomial addition performed on the UPMEM PIM cores and
scalar division performed on the host processor. The vari-
ance [91, 92] workload uses polynomial multiplication which
is performed on the UPMEM PIM cores and a final scalar di-

1The UPMEM PIM system performs 8-bit and 16-bit multiplications using
the native 8-bit hardware multipliers, but employs a software-based shift-and-
add algorithm for higher bit widths [38, 44, 64].

2



vision performed on the host processor. Similarly, linear re-
gression [93, 94] workload uses both polynomial addition and
multiplication to perform the vector-matrix multiplication,
which is employed on the UPMEM PIM cores.

4. Evaluation
4.1. Methodology
We evaluate homomorphic addition and multiplication on a
first-generation UPMEM PIM system [38, 39, 44, 78], a 4-core
Intel i5-8250U CPU [95], and an NVIDIA A100 GPU [96]. The
UPMEM system contains 2,524 PIM cores (running at 425 MHz)
and 158GB of PIM-enabled memory with a total bandwidth of
2,145 GB/s. We compare our PIM implementations to our own
custom CPU and GPU implementations. We also compare to
an optimized CPU implementation, the SEAL CPU library [79],
which leverages the Residue Number System (RNS) [97] and
the Number Theoretic Transform (NTT) [98] implementations
for faster operations.

We first evaluate microbenchmarks for vector addition and
vector multiplication (Section 4.2). We experiment with dif-
ferent numbers of ciphertexts between 20,480 to 327,680 for
addition, and between 5,120 and 81,920 for multiplication. We
run experiments for integers of 32 bits (27-bit coefficients),
64 bits (54-bit coefficients), and 128 bits (109-bit coefficients).
We then evaluate SHE implementations of three statistical
workloads (arithmetic mean, variance, linear regression) that
employ our PIM-based homomorphic encryption operations
(Section 4.3). We plan to open-source all workloads.

4.2. Vector Addition and Multiplication
Figure 1 shows the execution time of vector addition (1(a)) and
multiplication (1(b)) on homomorphically encrypted cipher-
texts for our real-world UPMEM PIM-based implementation
(PIM), our custom CPU and GPU implementations, and the
SEAL library (CPU-SEAL). The figure also shows the speedup
of PIM over the custom CPU implementations.

We make several observations about these experimental re-
sults. First, the performance of PIM implementations saturates
at 11 or more PIM threads (not shown in Figure 2). This is
in line with the observations in prior works [38, 45, 64]. Sec-
ond, the large number of PIM cores and the native support for
32-bit integer addition in PIM cores result in fast execution
of vector addition on the PIM system. Figure 1(a) shows the
results for 128-bit addition. The trends are the same for 32-bit
and 64-bit addition. For 32-, 64-, and 128-bit addition, the PIM
implementation outperforms CPU, CPU-SEAL, and GPU by
20 − 150×, 35 − 80×, and 15 − 50×, respectively.
Key Takeaway 1. With native hardware support for 32-bit
integer addition and large number of PIM cores, the UPMEM PIM
system outperforms CPU and GPU for homomorphic addition.
Third, vector multiplication on the UPMEM PIM system

suffers from the lack of native 32-bit multiplication hardware,
as multiplication wider than 16 bits is based on compiler gener-
ated shift-and-add algorithm. Figure 1(b) shows the results for
128-bit multiplication. We observe similar trends for 32-bit and
64-bit multiplication. For 32-, 64-, and 128-bit multiplication,

20480 40960 81920 163840 327680
1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

CPU PIM CPU-SEAL GPU

Number of Ciphertexts

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
)

21.4x
27.7x

26.5x
25.1x

24.2x

(a) 128-bit ciphertext vector addition

5120 10240 20480 40960 81920
1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

CPU PIM CPU-SEAL GPU

Number of Ciphertexts

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
) 41.5x 41.6x 33.4x 21.4x41.4x

(b) 128-bit ciphertext vector multiplication

Figure 1: Execution time (ms) of ciphertext vector addition (a)
and vector multiplication (b) for 128-bit (109-bit) wide polyno-
mial coefficients on CPU, PIM, CPU-SEAL and GPU.
the PIM implementation outperforms CPU by 40 − 50×, and
CPU-SEAL for 32 bits by 2×. However, the PIM implementa-
tion is 12 − 15× slower than GPU, and 2 − 4× slower than
CPU-SEAL for 64 and 128 bits.
Key Takeaway 2. The lack of native support for 32-bit integer
multiplication hampers the performance of PIM for homomorphic
multiplication. Future PIM systems with native 32-bit multipli-
cation hardware could potentially outperform CPUs and GPUs.
4.3. Statistical Workloads
We implement and evaluate the performance of three real-
world statistical workloads (arithmetic mean, variance, linear
regression) that utilize homomorphic addition and multiplica-
tion for the CPU, real-world PIM, CPU-SEAL and GPU imple-
mentations. Figure 2 shows the execution times of the three
workloads on CPU, PIM, CPU-SEAL, and GPU. For arithmetic
mean and variance, we evaluate scenarios with 640, 1280, and
2560 users. For linear regression, we evaluate 640 users, and
32 and 64 ciphertexts per user (data samples with 3 features).
We make several observations from Figure 2. First, arith-

metic mean uses only homomorphic addition. As a result,
PIM is significantly faster than CPU, CPU-SEAL, and GPU. Fig-
ure 2(a) shows PIM speedups of 25−100× over CPU, 11−50×
over CPU-SEAL, and 9 − 34× over GPU for different numbers
of users. Second, as variance uses the square operation (i.e.,
homomorphic multiplication of two equal numbers), the PIM
implementation is heavily burdened by the slow multiplica-
tion. In Figure 2(b), we observe that PIM outperforms only the
custom CPU implementation (by 6 − 25×) for different num-
bers of users. CPU-SEAL and GPU are, respectively, 2 − 10×
and 13 − 50× faster than PIM. Third, for linear regression the

3



640 USERS 1280 USERS 2560 USERS
1E+2

1E+3

1E+4

1E+5
CPU PIM CPU-SEAL GPU

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

25.2x
50.6x

101.2x

(a) Arithmetic Mean

640 USERS 1280 USERS 2560 USERS
1E+4

1E+5

1E+6

1E+7

1E+8
CPU PIM CPU-SEAL GPU

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

6.2x
12.4x

24.4x

(b) Variance

32 Ciphertexts 64 Ciphertexts
1E+4

1E+5

1E+6

1E+7

1E+8
CPU PIM CPU-SEAL GPU

E
x
e

c
u

ti
o

n
 t

im
e
 (

m
s
)

7.4x
6.5x

(c) Linear Regression
Figure 2: Execution time (ms) of aritmeticmean (a), variance (b),
and linear regression (c) for 128-bit (109-bit) wide polynomial
coefficients on CPU, PIM, CPU-SEAL and GPU.

trends are the same as for variance, given that linear regression
also uses multiplication heavily. Figure 2(c) shows that PIM is
only faster than the custom CPU implementation (by 7.5×) for
32 ciphertexts. CPU-SEAL and GPU are, respectively, 11.4×
and 54.9× faster than PIM for 64 ciphertexts. Fourth, we ob-
serve that PIM execution time remains constant for different
numbers of users. This is achieved by dynamically adjusting
the utilization of PIM cores, which is particularly beneficial in
our experiments as they involve a large number of users. This
approach differs from CPUs and GPUs, which have a limited
number of cores and must use them regardless of the number
of users in our experiment.
Key Takeaway 3. The computational power of PIM scales
with memory capacity [99, 100] via the addition of more mem-
ory banks and corresponding PIM cores. This memory-capacity-
proportional performance scalability provided by PIM holds
promise for accommodating expanding numbers of users and
more parallel computations as memory capacity grows.

5. Related Work
Several recent works explore the suitability of real-world
processing-in-memory (PIM) architectures [16, 38-61] to accel-
erate a variety of memory-intensive tasks [46, 64, 74-76]. To

our knowledge, this is the first work to explore the use of a
real PIM system to accelerate homomorphic operations.

Acceleration of homomorphic operations on GPUs, FPGAs,
or ASICs is the subject of various recent works. All these
processor-centric techniques suffer from data movement bot-
tlenecks between memory and compute units. GPUs can accel-
erate HE schemes [4, 22-25]. However, GPUs suffer from high
power consumption for homomorphic operations [101, 102].
FPGAs can also accelerate homomorphic operations [26-31],
but they are limited in hardware resources and suffer from
data movement bottlenecks [103, 104]. Several recent works
propose ASIC designs [13, 32-37] for CKKS algorithms, but
they are only evaluated in simulation. Similarly, PIM-based so-
lutions [11, 16, 105] for accelerating homomorphic operations
are also limited to simulation.

6. Conclusion
We presented initial results on the use of a real-world general-
purpose PIM architecture (i.e., the UPMEM PIM system [38,
50]) to accelerate homomorphic operations. Our PIM imple-
mentations of homomorphic addition, multiplication and sta-
tistical workloads (mean, variance, linear regression) show
great promise when compared to CPU and GPU implementa-
tions, as long as the necessary integer operations are natively
supported by the PIM hardware. We aim to implement more
homomorphic operations and optimizations as future work.

References
[1] M. Ogburn et al., “Homomorphic Encryption,” Procedia Computer Science, 2013.
[2] D. Tourky et al., “Homomorphic Encryption The “Holy Grail” of Cryptography,” in

ICCC 2016.
[3] C. Gentry and S. Halevi, “Implementing Gentry’s Fully Homomorphic Encryption

Scheme,” in EUROCRYPT 2011.
[4] A. Al Badawi et al., “Towards The Alexnet Moment For Homomorphic Encryption:

HCNN, The First Homomorphic CNN on Encrypted Data With GPUs,” TETC 2020.
[5] C. Gentry, “Fully Homomorphic Encryption using Ideal Lattices,” in STOC 2009.
[6] M. Van Dijk et al., “Fully Homomorphic Encryption over the Integers,” in EURO-

CRYPT 2010.
[7] D. Boneh et al., “Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE, and

Compact Garbled Circuits,” IACR 2014.
[8] D. Boneh et al., “Private Database Queries using Somewhat Homomorphic Encryp-

tion,” in ACNS, 2013.
[9] C. Moore et al., “Practical Homomorphic Encryption: A Survey,” in ISCAS 2014.
[10] P. Chaudhary et al., “Analysis and Comparison of Various Fully Homomorphic

Encryption Techniques,” in GUCON 2019.
[11] S. Gupta and T. Š. Rosing, “Accelerating Fully Homomorphic Encryption with

Processing-in-memory,” in DAC 2021.
[12] N. Samardzic et al., “F1: A Fast and Programmable Accelerator for Fully Homomor-

phic Encryption,” in MICRO 2021.
[13] N. Samardzic et al., “Craterlake: A Hardware Accelerator for Efficient Unbounded

Computation on Encrypted Data,” in ISCA 2022.
[14] B. Alaya et al., “Homomorphic Encryption Systems Statement: Trends and Chal-

lenges,” CSR 2020.
[15] K. El Makkaoui et al., “Challenges of Using Homomorphic Encryption to Secure

Cloud Computing,” in CloudTech 2015.
[16] S. Gupta et al., “MemFHE: End-to-end Computing with Fully Homomorphic En-

cryption in Memory,” TECS 2022.
[17] X. Cao et al., “Optimised Multiplication Architectures For Accelerating Fully Ho-

momorphic Encryption,” TC 2015.
[18] Y. Su et al., “A Highly Unified Reconfigurable Multicore Architecture to Speed-up

NTT/INTT for Homomorphic Polynomial Multiplication,” TVLSI 2022.
[19] Y. Doröz et al., “Homomorphic AES Evaluation using the Modified LTV Scheme,”

DCC 2016.
[20] A. C. Mert et al., “Design and Implementation of Encryption/Decryption Architec-

tures for BFV Homomorphic Encryption Scheme,” TVLSI 2019.
[21] S. Meftah et al., “Towards High Performance Homomorphic Encryption for Infer-

ence Tasks on CPU: An MPI Approach,” FGCS 2022.
[22] T. Morshed et al., “CPU and GPU Accelerated Fully Homomorphic Encryption,” in

HOST 2020.

4



[23] W. Dai and B. Sunar, “cuHE: A Homomorphic Encryption Accelerator Library,” in
BalkanCryptSec 2016.

[24] A. Al Badawi et al., “Multi-GPU Design and Performance Evaluation of Homomor-
phic Encryption on GPU Clusters,” TPDS 2020.

[25] W. Dai et al., “Accelerating NTRU based Homomorphic Encryption using GPUs,”
in HPEC 2014.

[26] W. Wang and H. Xinming, “FPGA Implementation Of a Large-number Multiplier
for Fully Homomorphic Encryption,” in ISCAS 2013.

[27] R. Agrawal et al., “FAB: An FPGA-based Accelerator for Bootstrappable Fully
Homomorphic Encryption,” in HPCA 2023.

[28] D. B. Cousins et al., “Designing an FPGA-accelerated Homomorphic Encryption
Co-processor,” TETC 2016.

[29] D. B. Cousins et al., “An FPGA Co-processor Implementation of Homomorphic
Encryption,” in HPEC 2014.

[30] I. Syafalni et al., “Efficient Homomorphic Encryption Accelerator with Integrated
PRNG using Low-cost FPGA,” IEEE Access 2022.

[31] C. Jayet-Griffon et al., “Polynomial Multipliers for Fully Homomorphic Encryption
on FPGA,” in ReConFig 2015.

[32] A. Feldmann et al., “F1: A Fast and Programmable Accelerator for Fully Homomor-
phic Encryption,” MICRO 2021.

[33] Y. Yang et al., “Poseidon: Practical Homomorphic Encryption Accelerator,” in HPCA
2023.

[34] E. Öztürk et al., “A Custom Accelerator for Homomorphic Encryption Applications,”
TC 2016.

[35] S. Kim et al., “BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryp-
tion,” in ISCA 2022.

[36] M. Nabeel et al., “CoFHEE: A Co-processor for Fully Homomorphic Encryption
Execution,” in DATE 2023.

[37] X. Cao et al., “High-speed Fully Homomorphic Encryption over the Integers,” in FC
2014.

[38] J. Gómez-Luna et al., “Benchmarking Memory-centric Computing Systems: Analy-
sis of Real Processing-in-Memory Hardware,” in IGSC 2021.

[39] J. Gómez-Luna et al., “Benchmarking a New Paradigm: Experimental Analysis and
Characterization of a Real Processing-in-memory System,” IEEE Access 2022.

[40] J. H. Kim et al., “Aquabolt-XL: Samsung HBM2-PIM with In-memory Processing
for ML Accelerators and Beyond,” in HCS 2021.

[41] J. H. Kim et al., “Aquabolt-XL HBM2-PIM, LPDDR5-PIM with In-memory Process-
ing, and AXDIMM with Acceleration Buffer,” IEEE MICRO 2022.

[42] D. Lee et al., “Improving In-Memory Database Operations with Acceleration DIMM
(AxDIMM),” in DaMoN, 2022.

[43] L. Ke et al., “Near-Memory Processing in Action: Accelerating Personalized Recom-
mendation with AxDIMM,” IEEE Micro, 2021.

[44] “UPMEM SDK,” https://sdk.upmem.com/2023.1.0/.
[45] J. Gómez-Luna et al., “Machine Learning Training on a Real Processing-in-Memory

System,” in ISVLSI 2022.
[46] M. Item et al., “TransPimLib: Efficient Transcendental Functions for Processing-in-

Memory Systems,” in ISPASS, 2023.
[47] J. Kim and Y. Kim, “HBM: Memory Solution for Bandwidth-hungry Processors,” in

HCS, 2014.
[48] S. Ghose et al., “The Processing-in-Memory Paradigm: Mechanisms to Enable

Adoption,” in Beyond-CMOS Technologies for Next Generation Computer Design 2019.
[49] G. F. Oliveira et al., “DAMOV: A New Methodology And Benchmark Suite For

Evaluating Data Movement Bottlenecks,” IEEE Access 2021.
[50] F. Devaux, “The True Processing in Memory Accelerator,” in HCS, 2019.
[51] S. Ghose et al., “Processing-in-memory: A Workload-driven Perspective,” IBM JRD

2019.
[52] O. Mutlu et al., “A Modern Primer on Processing-in-memory,” in Emerging Com-

puting: From Devices to Systems: Looking Beyond Moore and Von Neumann 2022.
[53] V. Seshadri et al., “Ambit: In-memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology,” in MICRO 2017.
[54] H. S. Stone, “A Logic-in-Memory Computer,” IEEE TC, 1970.
[55] W. H. Kautz, “Cellular Logic-in-Memory Arrays,” IEEE TC, 1969.
[56] A. Farmahini-Farahani et al., “DRAMA: An Architecture for Accelerated Processing-

near-memory,” IEEE Computer Architecture Letters, 2014.
[57] G. Singh et al., “A Review of Near-memory Computing Architectures: Opportunities

and Challenges,” in Euromicro DSD 2018.
[58] Y. Kwon et al., “TensorDIMM: A Practical Near-memory Processing Architecture

for Embeddings and Tensor Operations in Deep Learning,” in MICRO 2019.
[59] S. F. Yitbarek et al., “Exploring Specialized Near-memory Processing for Data-

intensive Operations,” in DATE 2016.
[60] N. Hajinazar et al., “SIMDRAM: A Framework for Bit-serial SIMD Processing-using-

DRAM,” in ASPLOS 2021.
[61] C. Lim et al., “Design and Analysis of a Processing-in-DIMM Join Algorithm: A

Case Study with UPMEM DIMMs,” ACM SIGMOD, 2023.
[62] W. Li et al., “Leveraging Memory PUFs and PIM-based Encryption to Secure Edge

Deep Learning Systems,” in VTS 2019.
[63] D. Reis et al., “Computing-in-memory for Performance and Energy-efficient Homo-

morphic Encryption,” TVLSI 2020.
[64] J. Gómez-Luna et al., “An Experimental Evaluation of Machine Learning Training

on a Real Processing-in-Memory System,” arXiv preprint arXiv:2207.07886, 2022.
[65] S. Halevi et al., “An Improved RNS Variant of the BFV Homomorphic Encryption

Scheme,” in CT-RSA 2019.
[66] F. Wibawa et al., “BFV-Based Homomorphic Encryption for Privacy-Preserving

CNN Models,” Cryptography 2022.
[67] J. Mono et al., “Finding and Evaluating Parameters for BGV,” Cryptology ePrint

Archive, 2022.
[68] J. H. Cheon et al., “Remark on the Security of CKKS Scheme in Practice,” Cryptology

ePrint Archive, 2020.
[69] A. Acar et al., “A Survey on Homomorphic Encryption Schemes: Theory and

Implementation,” ACM CSUR 2018.
[70] A. B. Alexandru et al., “Cloud-based Quadratic Optimization with Partially Homo-

morphic Encryption,” IEEE TAC, 2020.
[71] I. Damgård et al., “Multiparty Computation From Somewhat Homomorphic En-

cryption,” in CRYPTO 2012.
[72] M. Yasuda et al., “Practical PackingMethod in SomewhatHomomorphic Encryption,”

in DPM 2013 and SETOP 2013.
[73] L. de Castro et al., “Does Fully Homomorphic Encryption Need Compute Accelera-

tion?” IACR 2021.
[74] S. Diab et al., “A Framework for High-throughput Sequence Alignment using Real

Processing-in-Memory Systems,” Bioinformatics, 2023.
[75] C. Giannoula et al., “Towards Efficient Sparse Matrix Vector Multiplication on Real

Processing-in-Memory Architectures,” in SIGMETRICS, 2022.
[76] G. F. Oliveira et al., “Accelerating Neural Network Inference with Processing-in-

DRAM: From the Edge to the Cloud,” IEEE Micro 2022.
[77] O. Mutlu et al., “Processing Data Where It Makes Sense: Enabling In-memory

Computation,” MICPRO, 2019.
[78] J. Gómez-Luna et al., “Evaluating Machine LearningWorkloads on Memory-Centric

Computing Systems,” in ISPASS 2023.
[79] “Microsoft SEAL,” https://www.microsoft.com/en-us/research/project/

microsoft-seal/.
[80] E. D. Sontag, “Real Addition and the Polynomial Hierarchy,” IPL 1985.
[81] R. Zippel, "Effective Polynomial Computation". SSBM 1993.
[82] R. T. Moenck, “Practical Fast Polynomial Multiplication,” in SYMSAC 1976.
[83] D. Harvey et al., “Faster Polynomial Multiplication over Finite Fields,” JACM 2017.
[84] D. Harvey et al., “Polynomial multiplication over finite fields in time,” JACM 2022.
[85] D. D. Chen et al., “High-speed PolynomialMultiplication Architecture for Ring-LWE

and SHE Cryptosystems,” TCAS-I 2014.
[86] C. Eyupoglu, “Performance Analysis of Karatsuba Multiplication Algorithm for

Different Bit Lengths,” Procedia: SBS 2015.
[87] M. Bisheh-Niasar et al., “High-Speed NTT-based Polynomial Multiplication Accel-

erator For CRYSTALS-Kyber Post-Quantum Cryptography,” ICAR 2021.
[88] T. Fritzmann and J. Sepúlveda, “Efficient and Flexible Low-Power NTT for Lattice-

Based Cryptography,” in HOST 2019.
[89] E. Jacquier et al., “Geometric or Arithmetic Mean: A Reconsideration,” FAJ, 2003.
[90] T.-H. Zhao et al., “On Approximating the Quasi-arithmetic Mean,” JIA, 2019.
[91] M. G. Larson, “Analysis of Variance,” Circulation, 2008.
[92] M. Davidian et al., “Variance Function Estimation,” JASA, 1987.
[93] X. Su et al., “Linear Regression,” WIREs Comp Stats, 2012.
[94] D. Maulud et al., “A Review on Linear Regression Comprehensive in Machine

Learning,” JASTT, 2020.
[95] Intel, “Intel® Core™ i5-8250U Processor,” https://ark.intel.com/content/www/us/

en/ark/products/124967/intel-core-i58250u-processor-6m-cache-up-to-3-40-ghz.
html, 2017.

[96] NVIDIA, “NVIDIA A100 Tensor Core GPU Architecture. White Pa-
per,” https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf, 2020.

[97] M. Gomathisankaran et al., “HORNS: A Homomorphic Encryption Scheme for
Cloud Computing using Residue Number System,” in IEEE CISS 2011.

[98] A. W. Mohsen et al., “Performance Analysis of Number Theoretic Transform for
Lattice-based Cryptography,” in ICCES 2018.

[99] J. Ahn et al., “A Scalable Processing-in-memory Accelerator for Parallel Graph
Processing,” in ISCA, 2015.

[100] J. Ahn et al., “Retrospective: A Scalable Processing-in-memory Accelerator for
Parallel Graph Processing,” arXiv preprint arXiv:2306.15577, 2023.

[101] S. Tan et al., “CryptGPU: Fast Privacy-preserving Machine Learning on the GPU,”
in SP 2021.

[102] W. Wang et al., “Exploring the Feasibility of Fully Homomorphic Encryption,” IEEE
TC 2013.

[103] S. S. Roy et al., “HEPCloud: An FPGA-based Multicore Processor for FV Somewhat
Homomorphic Function Evaluation,” TC 2018.

[104] S. S. Roy et al., “FPGA-based High-performance Parallel Architecture For Homo-
morphic Computing on Encrypted Data,” in HPCA 2019.

[105] H. Nejatollahi et al., “CryptoPIM: In-memory Acceleration for Lattice-based Cryp-
tographic Hardware,” in DAC 2020.

5

https://sdk.upmem.com/2023.1.0/
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://www.microsoft.com/en-us/research/project/microsoft-seal/
https://ark.intel.com/content/www/us/en/ark/products/124967/intel-core-i58250u-processor-6m-cache-up-to-3-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/124967/intel-core-i58250u-processor-6m-cache-up-to-3-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/124967/intel-core-i58250u-processor-6m-cache-up-to-3-40-ghz.html
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

	Introduction
	Background and Motivation
	Implementation
	Evaluation
	Methodology
	Vector Addition and Multiplication
	Statistical Workloads

	Related Work
	Conclusion

