Computer Architecture
Lecture 18b:

Hermes: Accelerating LLong-Latency Memory Requests
via Perceptron-Based Off-Chip L.oad Prediction

Rahul Bera
ETH Zurich
Fall 2022
25 November 2022

The (Memory) Latency Problem

Conventional Latency Tolerance Techniques

Out-of-order execution [initially by Tomasulo, 1967]
o Tolerates cache misses that cannot be prefetched
o Requires extensive hardware resources for tolerating long latencies

Multithreading [initially in CDC 6600, 1964]
o Works well if there are multiple threads

o Improving single thread performance using multithreading hardware is an
ongoing research effort

Caching [initially by Wilkes, 1965]
o Widely used, simple, effective, but inefficient, passive
o Not all applications/phases exhibit temporal or spatial locality

Prefetching [initially in IBM 360/91, 1967] < Pythia
o Works well for regular memory access patterns

o Prefetching irregular access patterns is difficult, inaccurate, and hardware-
intensive

SAFARI 3

Conventional Latency Tolerance Techniques

|Out-of—order execution [initially by Tomasulo, 1967] |
0 Tolerates cache misses that cannot be prefetched
o Requires extensive hardware resources for tolerating long latencies

Multithreading [initially in CDC 6600, 1964]
o Works well if there are multiple threads

o Improving single thread performance using multithreading hardware is an
ongoing research effort

| caching [initially by Wilkes, 1965] |
o Widely used, simple, effective, but inefficient, passive
o Not all applications/phases exhibit temporal or spatial locality

| Prefetching [initially in IBM 360/91, 1967] |
o Works well Tor regular memory access patterns

o Prefetching irregular access patterns is difficult, inaccurate, and hardware-
intensive

SAFARI 4

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

https://github.com/CMU-SAFARI/Hermes

SAFARI ETH:iirich L@LIRMM

SAFARI Research Group
afari.ethz.

https://github.com/CMU-SAFARI/Hermes

The Key Problem

Long-latency off-chip load requests

) 4

Often stall processor by
blocking instruction retirement from
Reorder Buffer (ROB)

¥

Limit performance

SAFARI

Traditional Solutions

.

Employ sophisticated prefetchers

Increase size of on-chip caches

SAFARI

Key Observation 1

Many loads still go off-chip

50%
50% still go off-chip even with

successfully prefetched a state-of-the-art prefetcher

70% of the off-chip loads
block the ROB

off-chip loads without any prefetcher

SAFARI 8

Key Observation 2 <\
4

On-chip cache access latency
significantly contributes to off-chip load latency

L1 | L2 LLC Main Memory

¥

Saved cycles

40% of the stalls can be eliminated by removing

on-chip cache access latency from critical path

SAFARI

Caches are Getting Bigger and Slower...

2560 “n 17
2
$ 16 -
- S~
_ 2048 ¢ : @’/@
P 4 15 |
X 1536 - L7 2 e
o0 | fu. @
& 1024 - , O ’
~N Pid a 13 - (4]
—l ‘ [— ,/
512 - ’, P’ ?:>)~ 12 4 @
0 l l l l % 11 l l j j
A \ N -l A N N A N\
GRS IR IR RS
e\ e\ e\ e\ e\ e e Q Q Q
X .o S & o X . S O
RS RO Y NSRRI C PP Sy S
SF & .\\o$ \\sz \&Q F & .\\o$ & @
0)0 $\ (JO K\:b c,)O $\ (,O ; o)
\6Q’ Q&O \6®° Q’&O
® < ® <

SAFARI

Our Goal

Improve processor performance
by removing on-chip cache access latency
from the critical path of off-chip loads

SAFARI

11

Predicts which load requests
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

SAFARI 8

Key Contribution
\\/

A1 V4 :
7 Hermes employs the first

perceptron-based off-chip load predictor

@,

That predicts which loads are likely to go off-chip

@ By learning from
multiple program context information

SAFARI 13

Hermes Overview

Core

Latency tolerance limit of ROB

.

Processor is stalled

»

L1

L2

LLC

Main Memory

[Main Memory

Off-Chip

SAFARI

el il Eally eyl

14

Hermes Overview
c Predict off-chip load predictor

Perceptron-based

Issue a
Hermes

request L1 | L2 LLC Main Memory

~

e Wait L1| L2 LLC
ai _ : Saved stall cycles
Main Memory, « g

Off-Chip |
Main Memory

SAFARI 15

Designing the Off-Chip Load Predictor

POPET provides

both higher accuracy and higher performance
than predictors inspired from these previous works

Learning from program behavior

Correlate different program features with off-chip loads

@ Low storage overhead @ Low design complexity

POPET: Perceptron-Based Off-Chip Predictor

* Multi-feature hashed perceptron model'*
- Each feature has its own weight table 5
* Stores correlation between feature value and off-chip prediction

Feature, Table,
Table,

(e.g., PC+ offset)

Weight
Table,

Weight
Tabley,

SAFAR’ [1] D. Tarjan and K. Skadron, "Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005 17

Predicting using POPET

* Usessimple table lookups, addition, and comparison

i}
il
e
45 Weight
= Table,
E (e.g., PC+ offset)
tRl Ox7ffe0+12
QD
= Weight
= Table,
=
8) :
N .
E .
S]
)
§ Weight
3 Tabley
L]
e

SAFARI 18

Training POPET

* Usessimple increment or decrement of feature weights

L L Shouldn’t be activated

Cumulative weight < 7,

SAFARI 19

Evaluation

Simulation Methodology

* ChampSim trace driven simulator

* 110 single-core memory-intensive traces
- SPECCPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

* 220 eight-core memory-intensive trace mixes

Off-Chip Predictors

LLC Prefetchers

* Pythia * History-based: HMP

* Bingo * Tracking-based: Address Tag-

* MLOP Tracking based Predictor (TTP)
* SPP + Perceptron filter

e SMS * Ideal Off-chip Predictor

SAFARI 21

Latency Configuration

* Cache round-trip latency

PO_PET * L1-D: 5 cycles
e L2:15cycles
@ e LLC:55 cycles
Issue
Hermes
t :
e * Hermes request issue latency
(incurred after address translation)
Depends on
© wait * Interconnect between POPET and MC
MC |<

| »*: |

0 cycles \ 24 cycles

SAFARI 22

Single-Core Performance Improvement

1.35

[

W

|
|
o
D
R

|

[
N
U
|
P —
/

=
N
|
|
|

Geomean speedup
over the No-prefetching system

Harmace alana nraviidac naarlhy

Hermes provides nearly 90% performance benefit of

Ideal Hermes that has an ideal off-chip load predictor

vV I i vlll, —’ - Wwe s -l\-vlvlv\— wf VW Sl] e WA

Increase in Main Memory Requests

For every 1% performance benefit,

Increase in main memory requests

Pythia 2%

Hermes on top of Pythia 1%

Hermes alone 0.5%

Hermes is more bandwidth-efficient

than even an efficient prefetcher like Pythia

SAFARI 24

Performance with Varying Memory Bandwidth

1-3 7 Pythia+Hermes

1.25 - —\/ -O
1.2 - /O/

1.15 -
/
L o O 2

1.05 -

Geomean speedup
over the No-prefetching system

0.95

O
Co)

Hermes+Pythia outperforms Pythia

across all bandwidth configurations

Performance with Varying Baseline Prefetcher

O Prefetcher-only B Prefetcher + Hermes

=
s

Ing system
[
N
Un
I

-
N

Hermes consistently improves performance
on top of a wide range of baseline prefetchers

overthe N
[
@)
Un
|

R

Pythia Bingo SPP MLOP SMS

SAFARI

26

Overhead of Hermes

o 4 KB storage overhead
O 1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core 2! configuration

SA FA Rl [2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3 27

More in the Paper

Performance sensitivity to:

- Cache hierarchy access latency
Hermes request issue latency
Activation threshold
ROB size (in extended version on arXiv)
LLC size (in extended version on arXiv)

Accuracy, coverage, and performance analysis against HMP and TTP

Understanding usefulness of each program feature

Effect on stall cycle reduction

analysis on an system
SAFARI 28

SAFARI

More in the Paper

BOAY

—
<o REPro N

/2 O\
7S AN

Hermes: Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera! Konstantinos Kanellopoulos®

Shankar Balachandran? David Novo?®

Ataberk Olgun' Mohammad Sadrosadati® Onur Mutlu!

'ETH Ziirich ?Intel Processor Architecture Research Lab 3LIRMM, Univ. Montpellier, CNRS

Long-latency load requests continue to limit the performance
of modern high-performance processors. To increase the latency
tolerance of a processor, architects have primarily relied on two
key techniques: sophisticated data prefetchers and large on-chip
caches. In this work, we show that: (1) even a sophisticated state-
of-the-art prefetcher can only predict half of the off-chip load
requests on average across a wide range of workloads, and (2)
due to the increasing size and complexity of on-chip caches, a
large fraction of the latency of an off-chip load request is spent
accessing the on-chip cache hierarchy to solely determine that it
needs to go off-chip.

The goal of this work is to accelerate off-chip load requests
by removing the on-chip cache access latency from their critical
path. To this end, we propose a new technique called Hermes,
whose key idea is to: (1) accurately predict which load requests

off-chip main memory (i.e., an off-chip load) often stalls the pro-
cessor core by blocking the instruction retirement from the re-
order buffer (ROB), thus limiting the core’s performance [88, 91,
92]. To increase the latency tolerance of a core, computer archi-
tects primarily rely on two key techniques. First, they employ
increasingly sophisticated hardware prefetchers that can learn
complex memory address patterns and fetch data required by
future load requests before the core demands them [28, 32,
33, 35, 75]. Second, they significantly scale up the size of the
on-chip cache hierarchy with each new generation of proces-
sors [10, 11, 16].

Key problem. Despite recent advances in processor core
design, we observe two key trends in new processor designs
that leave a significant opportunity for performance improve-
ment on the table. First, even a sophisticated state-of-the-art

https://arxiv.org/pdf/2209.00188.pdf

29

https://arxiv.org/pdf/2209.00188.pdf

To Summarize...

Summary

Hermes advocates for off-chip load prediction,
a different form of speculation than
employed by prefetchers

Off-chip load prediction can be applied by itself
or combined with load address prediction
to provide performance improvement

SAFARI 31

Summary

Hermes employs the first

perceptron-based off-chip load predictor

X d

High accuracy | High coverage Low storage
overhead
(77%) (74%)
)) (4KB/core)
(A AN

High performance improvement

over best prior baseline
(5.4%)

High performance
per bandwidth

Hermes is Open Sourced

All workload traces

13 prefetchers @ 9 off-chip predictors

e Stride [Fu+, MICRO'92]

o Streamer [Chen and Baer, IEEE TC'95] Predictor type Description

e SMS [Somogyi+, ISCA'06] Base Always NO

« AMPM [IShii*‘: |CSI09] Basic Simple confidence counter-based threshold

* Sandbox [PUQSIey+’ HPCA'1 4] Random Random Hit-miss predictor with a given positive probability
* BOP [MiChaUd’ HPCA" 6] HMP-Local Hit-miss predictor [Yoaz+, ISCA'99] with local prediction

« SPP [Kim+, MICRO'16]

. . HMP-GShare Hit-miss predictor with GShare prediction
Bingo [Bakshalipour+, HPCA'19]

« SPP+PPF [Bhatia+, ISCA'19] HMP-GSkew Hit-miss predictor with GSkew prediction

e DSPatch [Bera +, MICRO'1 9] HMP-Ensemble Hit-miss predictor with all three types combined
o MLOP [Shakerinava+, DPC-3'19] TP Tag-tracking based predictor

¢ |PCP [Pakalapati+, ISCA'20] Perc Perceptron-based OCP used in this paper

Pythia [Bera+, MICRO'21]

SAFARI https://github.com/CMU-SAFARI/Hermes 33

https://github.com/CMU-SAFARI/Hermes

Easy To Define Your Own Off-Chip Predictor

» Just extend the OffchipPredBase class

class OffchipPredBase

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

SAFARI

{

public:

};

uint32_t cpu;

string type;

uinté4_t seed;

uint8_t dram_bw; // current DRAM bandwidth bucket

OffchipPredBase(uint32_t _cpu, string _type, uinté4_t _seed) : cpu(_cpu), type(_type), seed(_seed)
{
srand(seed);
dram_bw = 0;
}
~0ffchipPredBase() {}
void update_dram_bw(uint8_t _dram_bw) { dram_bw = _dram_bw; }

virtual void print_config();

virtual void dump_stats();

virtual void reset_stats();

virtual void train(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY xlg_entry);
virtual bool predict(ooo_model_instr *arch_instr, uint32_t data_index, LSQ_ENTRY xlqg_entry);

#endif /x OFFCHIP_PRED_BASE_H */

34

Easy To Define Your Own Off-Chip Predictor

» Define yourown train() and predict () functions

19 void OffchipPredBase::train(ooo_model_instr s*arch_instr, uint32_t data_index, LSQ_ENTRY xlg_entry)
20 A

21 // nothing to train

22

23

24 bool OffchipPredBase::predict(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY x1lq_entry)
25 4

26 // predict randomly

27 // return (rand() % 2) ? true : false;
28 return false;

29 }

* Get statistics like accuracy (stat name precision) and
coverage (stat name recall) out of the box

Core_0O_offchip_pred_true_pos 2358716
Core_0O_offchip_pred_false_pos 276883
Core_0O_offchip_pred_false_neg 132145

Core_0O_offchip_pred_precision 89.49
Core_0O_offchip_pred_recall 94.69

SAFARI 35

Off-Chip Prediction Can Further Enable...

Prioritizing loads that are likely go off-chip
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and
fairness in multi-core system design...

SAFARI

36

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

https://github.com/CMU-SAFARI/Hermes

SAFARI ETH:iirich L@LIRMM

SAFARI Research Group
afari.ethz.

https://github.com/CMU-SAFARI/Hermes

Discussion

* FAQs

What are the selected set of program features?

Can you provide some intuition on why these
features work?

What happens in case of a misprediction?

What's the performance headroom for off-chip
prediction?
Do vou see a variance of different features in final

prediction accuracy?

* Simulation Methodology

System parameters

Evaluated workloads

SAFARI

* More Results

Percentage of off-chip requests

Reduction in stall cycles by reducing the

critical path
Fraction of off-chip load requests

Accuracy and coverage of POPET
Effect of different features

Are all features required?

1C performance

1C performance line graph

1C performance against prior predictors

Effect on stall cycles
8C performance

Sensitivity:
* Hermes request issue latency
* (Cache hierarchy access latency
* Activation threshold
* ROBsize
* LLCsize
Power overhead
Accuracy without prefetcher

Main memory request overhead with
different prefetchers

38

BACKUP

Initial Set of Program Features

Features without control-flow Features with control-flow

information information

8. Load PC
1. Load virtual address 9. PC & load virtual address
2. Virtual page number 10. PC @ virtual page number
3. Cacheline offset in page 11. PC & cacheline offset
4. First access 12. PC + first access
5. Cacheline offset + first access 13. PC @ byte offset
6. Byte offset in cacheline 14. PC @ word offset
7. Word offset in cacheline 15. Last-4 load PCs

16. Last-4 PCs

SAFARI

Selected Set of Program Features

A binary hint that

Five features represents whether or not a
cacheblock has been

« PC @ cacheline offset recently touched

« PC @ byte offset

———~

ge
@)
A
mp)
-
%
ﬁ
Qo
@)
@)
(D
W
»
\

-~
~———_’

°
@
jab)
@)
=
(@)
—y
=)
(@)
@)
B
(@)
ﬂ
"~
=)
-\
wn
puirlyy |
jab)
O I
(@)
e !
2¥
/

N-————’

Last-4 load PCs

SAFARI 41

When A Feature Works/Does Not Work?

Trace: 462.libguantum-1343B PC: 0x401442

Without prefetcher With a simple stride prefetcher

* PC + first access e Cacheline offset + first access
e Cacheline offset + first access

A\
SAFARI ﬂ 42

What Happens in case of a Misprediction?

* Two cases of mispredictions:

* Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

No need for misprediction detection and recovery

* Predicted off-chip but actually is on-chip

- Memory controller forwards the data to LLC if and only if
a load to the same address have already missed LLC and
arrived at the memory controller

No need for misprediction detection and recovery

SAFARI D -

Performance Headroom of Off-Chip Prediction

1.35

= mldeal Hermes

g 13 - 1.29
5 a L2s - (@) O Pythia (baseline) 8.3%1
-aulg _E m Pythia + Ideal Hermes 1.20
a8 1.2 A
£ 1.16
C =
v a 1.15 A
1
3 © 1.1 A I

5 1.05 -

>

o

1 T T T T T T
SPECo6 SPEC17 PARSEC Ligra CvP GEOMEAN

. 1.35 (b)

g 5 1.29 1.29 O Prefetcher-only m Prefetcher + Ideal Hermes

> 0
_§- 201.25 . 8'3/01 9-4%I 1.23 1.24
O o 1.20
88 12 - lel 8.2%1 1o.9%I
c D 114
S 5115 A - 113
g 2115 13.3%
82 11
il - 1.06

5 1.05

>

o

1 T T T T
Pythia Bingo SPP MLOP SMS

SAFARI 44

System Parameters

Table 4: Simulated system parameters

1 and 8 cores, 6-wide fetch/execute/commit, 512-entry ROB,
Core 128/72-entry LQ/SQ, Perceptron branch predictor [61] with
17-cycle misprediction penalty

L1/1L2 Private, 48KB/1.25MB, 64B line, 12/20-way, 16/48 MSHRSs,
Caches LRU, 5/15-cycle round-trip latency [25]

3MB/core, 64B line, 12 way, 64 MSHRs/slice, SHiP [122],

LLC 55-cycle round-trip latency [24, 25], Pythia prefetcher [32]

1C: 1 channel, 1 rank per channel; 8C: 4 channels, 2 ranks
Main per channel; 8 banks per rank, DDR4-3200 MTPS, 64b data-
Memory bus per channel, 2KB row buffer per bank, tRCD=12.5ns,
tRP=12.5ns, tCAS=12.5ns

Hermes Hermes-O/P: 6/18-cycle Hermes request issue latency

()

SAFARI

Evaluated Workloads

Table 5: Workloads used for evaluation

Suite = #Workloads #Traces Example Workloads

SPECO6 14 22 gce, mcf, cactusADM, lbm, ...
SPEC17 11 23 gce, mcf, pop2, fotonik3d, ...
PARSEC 4 12 canneal, facesim, raytrace, ...
Ligra 11 20 BFS, PageRank, Radii, ...

CVP 33 33 integer, floating-point, server, ...

()

SAFARI

Not All Off-Chip Loads are Prefetched

Observation

(IDIdW) suonanuasul o1y Jad sassiw)77

5 m = m LN o
(=
W BIYIAd
\ S
<
3uiydiagaid-oN
B e BT
o
=
. (@)
Bled EHEE
< D I -

a y
= &
| O ;250N

oo
> I e TU
=~ EIYIAd &)
= %
| £ [MR :ooed-on &
| =
| 5o L
0o O
c Ll
- o
E I :-i2jidoN @
| =
: ol [ETVIENN
o
O
L
(e
I, = !>1252-oN
X X X X X
s R 8 % 5

walsAs 3uiyniajaid-oN ay3 ul
speo| diys-}40 Jo uoilde.

d
()
-
@)
)
L
Y
()]
| -
Q.
)
(@)
C
.-_m
(Up)
Q
|
O
Up)
K%
O
O
(D)
C
e
(U
@)
(=)
S
o
LN
>
| -
O
Q
=z

Not All Off-Chip Loads are Prefetched

Observation

(IDIdW) suonanuasul o1y Jad sassiw)77

LN
N

o LN (@)

N — —

5

)

MPKI

mm Blocking ——Non-blocking

|i|imi

BIYIAd

3uiydiagaid-oN

AVG

BIY1Ad

fit

3uiynyajaud-oN

CVP

BIyIAd

3uiydiajaid-oN

Ligra

BIY1Ad

3uiynyajaud-oN

PARSEC

BIY1Ad

3uiynyajaid-oN

SPEC17

BIY1Ad

3uiynyajaud-oN

SPECo6

100%

75%
50%
25%

walsAs 3uiyniajaid-oN ay3 ul
speo| diyd-4J0 Jo uoildel

0%

a8
O
Y
(7))
RV
@)
LS
ra)
Up)
0
O
o
o
-
=
gG=
o
()]
wn
U
-
e
(T
o
o
S
@)
N

Observation: With Large Cache Comes Longer Latency

* On-chip cache access latency significantly contributes to
the latency of an off-chip load

180

b
o c 160

()
Q.
J:L‘)g 140
U— o
S Y 120
c c
m.c_)O
S B &= 100
g 2§
-Ss)‘é’u*: 80
o .S
L oo
O 60
> S
:8 0
g2 ¢
* 20

o)

SAFARI

. On-chip cache hierarchy access latency

SPECo6 SPEC17 PARSEC Ligra

CVP

AVG

49

Observation: With Large Cache Comes Longer Latency

* On-chip cache access latency significantly contributes to
the latency of an off-chip load

180

. On-chip cache hierarchy access latency
160 A

pe
S
o
—
c

i)
c
D]
&
)

140 -

40% of stall cycles caused by an off-chip load can be eliminated
by removing on-chip cache access latency from its critical path

¥ 6o -
L\S
ks 40 A
O
20 -
O_

SPECo6 SPEC17 PARSEC Ligra CVvP AVG

SAFARI

What Fraction of Load Requests Goes Off-Chip?

N
X
|

Fraction of loads
that goes off-chip

'S
P

o
X

SAFARI

SPECo6

m Off-chip rate

SPEC17

OLLC MPKI

O

PARSEC

O

Ligra

CVP

AVG

—
(@)

N e (o)} oo
LLC misses
per kilo instructions

o

51

Off-Chip Prediction Quality: Defining Metrics

Accuracy Coverage |
® p N O
Predicted off-chip Actual off-chip

Predicted and actual off-chip

SAFARI 52

Off-Chip Prediction Quality: Analysis

Accuracy |

OHMP @TTP mPOPET

100%

S 8o% -
2 40% -
) 222;(: 77 | B | 8 | 77 7
SPECo06 SPECa1y PARSEC Ligra CVP
Coverage | 5 3
100% ~ 7 DHMP{ BTTP ;OPET ~ gg%hy
g 4% | 7 /I 7 /I 1 B
SPECo06 SPEC17 PARSEC Ligra CVP AVG

SAFARI 53

Off-Chip Prediction Quality: Analysis

POPET provides off-chip predictions with
high-accuracy and high-coverage

Effect of Different Features

809
% mmAccuracy “O-Coverage
60% -

40% A

20% -

Accuracy and coverage %

0%

Pc@® last-4load pc@byte PC+first Cacheline 142 142+3 1+2+3+4 All (POPET)
cacheline PCs(2) offset(s) access(4) offset+first
offset (1) access (5)

Combination of features provides both higher
accuracy and higher coverage than any individual feature

SAFARI

Are All Features Required? (1)

——PC@®cacheline offset ——Last-4load PCs —PC® byte offset PC +firstaccess —e—Cacheline offset + first access
100% 1 =
(a) ‘ i b § i ’ ife :
80% - ”\ f ‘ ‘ o |
» J 7 ‘ ’ b \ ‘ \
A t > r (|
o \ AN ‘ AR : U AR /Dl " al
%‘ 60% - ‘I\ ”) ‘.\‘ N T) ’/V :
& ‘ v AR TAVE s \ |
5 oA AT ‘ i
g o , |
20% - ' /
PC + first access prowdes q PC@byte offset pyov??es
highest accuracy highest accurac
R - NN § S N
YN OMe R REROTYNRBGILRRER

Workload number

No single feature individually provides

highest prediction accuracy across all workloads

SAFARI 56

Are All Features Required? (2)

——PC@®cacheline offset —=—Last-4load PCs —=—PC®byte offset PC+firstaccess —e—Cacheline offset + first access
100%
(b)
80% -
S 60% - ' 1
bD f |
©
% 40% - I | | ‘ n |
o \ || e o/ i | \
o N W A AR
¢ { | ‘ ‘
o (\A L) \l‘\yf
0% e Yl Ve i A "U“ " ﬁf .
TYFORPY2RARISNIRISLITAARA

Workload nhumber

No single feature individually provides
highest prediction coverage also across all workloads

SAFARI

Single-Core Performance

1.35

i
w
1

Geomean speedup
over the No-prefetching system

Hermes-P = Hermes-O OPythia(baseline) m®Pythia+Hermes-P mPythia + Hermes-O

|1.20

¥ Q N %
%§HII 35
BN BN

PARSEC Ligra

Hermes in combination with Pythia

1.25

GEOMEAN

outperforms Pythia alone in every workload category

SAFARI

1.26

Single-Core Performance Line Graph

2.50
2.25

2.00 -
605.mcf _s-782B
1.75 - Ligra_Triangle-25B

623.xalancbmk_s-10B server_612 \
/streamcluster—6B compute_int 264\

< Lngra PageRank-79B
Ligra_Components-22B

Speedup over the No-prefetching system
&n
o)

—Hermes-O —Pythia (baseline) ==Pythia + Hermes-O compute_int_539 ——

602.gcc_s-2226B ——,

- »*.‘__.-_______’_é______”__

rrr17rrrr1r1rr1rrr1r1r1r1rr1r1r1r1r1r1r1rrrrrrrrrrrrrirrTrrTrTTrTTTT TTI T T TT T TTTTTT

T
— N~ MO NN N OO = N
O|—|—|—NNNm$\m

Workload number

SAFARI

Single-Core Performance Against Prior Predictors

O Pythia (baseline) &@Pythia+ Hermes-HMP & Pythia+ Hermes-TTP mPythia + Hermes-POPET m Pythia + Ideal Hermes
1.35

o = L = N =
- N (V] w
1.257
1.286

i
1

_ ___‘|‘1.zo3

Geomean speedup
w1

over the No-prefetching system

—

N
N

il

PARSEC

—

GEOMEAN

POPET provides higher performance benefit
than prior predictors

Hermes with POPET achieves nearly 90% performance
improvement of the Ideal Hermes

SAFARI 60

Effect on Stall Cycles

60%

[l SPECo6 @ SPEC17 B PARSEC O Ligra E CVP

50%

40%

ip loads

= 30%

20%

due to off-ch

10%

% reduction of stall cycles

0%

-10%

Hermes reduces off-chip load induced stall cycles

on average by 16.2% (up-to 51.8%)
SAFARI 61

Eight-Core Performance

O Pythia (baseline) mPythia+ Hermes-HMP Pythia+Hermes-TTP mPythia+ Hermes-POPET
1.25

N
1.174

-
-
i

Geomean speedup

over the No-prefetching system

=
(@)
vi

T T F;.;im. T
SPEC06 SPEC17 PARSEC

-

Hermes in combination with Pythia

outperforms Pythia alone by 5.1% on average

SAFARI

Effect of Hermes Request Issue Latency

Hermes in combination with Pythia outperforms Pythia

alone even with a 24-cycle Hermes request issue latency

SAFARI

Effect of Cache Hierarchy Access Latency

Hermes can provide even higher performance benefit in
future processors with bigger and slower on-chip caches

SAFARI

Effect of Activation Threshold

100% Speedup A c 1.26
[peeaup ccuracy overage
N N

80% - PN W+ o

60% - - 1.252
40% - - 1.248
20% - l 1.244
0% - . . - 1.24

-38 -34 -30

-
N
U1
o)}

Accuracy/Coverage %
Geomean speedup

over the No-prefetching system

Activation threshold

With increase in activation threshold

1. Accuracy increases
2. Coverage decreases

SAFARI

Power Overhead

SaWwIaH + elyifkd
(suijaseq) eiyihd
S9WLIoH

3uiyniayeud-oN

AVG

SawIaH + elyifd
(3uljaseq) eiyihd
SOWIaH

Suiyoiayaid-oN

CvpP

SawlIaH + elyifd

= Others

(suljaseq) BiAd

SawlIaH

m Bus

3uiyniayeud-oN

Ligra

oLl3

SowlIaH + elyifd

(dutjaseq) e1yifd

ml2

SOWIaH

3uiydiayaud-oN

mL1-D

PARSEC

SoWwlIaH + elyifkd

mL1-l

(su1jaseq) eiyihd
SOWIBH

3uiyniayeud-oN

SPEC17

SawlIaH + elyifd
(au1jaseq) e1yihd
SaWwJaH

3uiyniayeud-oN

SPECo6

T
<+ o
-

wa3sAs 3uiyniaaad-oN ay3i 03 pazijewsou
Jamod d1wreuAp swniuny

SAFARI

Effect of ROB Size

1.35

Hermes ©Pythia mPythia+tHermes

j 6'7%[' 5.3%/\

—_
w

-
N
w1

-
N
|

i
-
(93]

Geomean speedup
over the No-prefetching system

—
-
1

77
77
20

-—

256 512 768 1024
ROB Size

SAFARI

Effect of LLC Size

-
N
1

1.3
£
O
1
5\’1.25
S o
T .
U -~
o 2
¥ 1.15
& 2
o g
g o 1.1
P
Y o
< 1.05
| -
~
o 1

SAFARI

%

Y

Hermes 0OPythia mHermes+Pythia

2.5% "

7

1'3%/\

7

6

12

LLC size per core (in MB)

24

Accuracy and Coverage with Different Prefetchers

100%

mmAccuracy O-Coverage

90% -
80% -
70% -
60% -

50% -

POPET's accuracy and coverage increases significantly
in absence of a data prefetcher

SAFARI

Increase in Main Memory Requests

50%

O Prefetcher 5.8%
40% —5'9%¢ m Prefetcher+Hermes t

8.6%1 15.6%
0% A
30% 7.6%1
20% A
10% -
0% T T T T
Pythia Bingo SPP MLOP SMS

SAFARI

