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The (Memory) Latency Problem
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Conventional Latency Tolerance Techniques

n Out-of-order execution [initially by Tomasulo, 1967]
q Tolerates cache misses that cannot be prefetched
q Requires extensive hardware resources for tolerating long latencies

n Multithreading [initially in CDC 6600, 1964]
q Works well if there are multiple threads
q Improving single thread performance using multithreading hardware is an 

ongoing research effort

n Caching [initially by Wilkes, 1965]
q Widely used, simple, effective, but inefficient, passive
q Not all applications/phases exhibit temporal or spatial locality

n Prefetching [initially in IBM 360/91, 1967]
q Works well for regular memory access patterns
q Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

Pythia
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The Key Problem

Long-latency off-chip load requests

Often stall processor by 
blocking instruction retirement from 

Reorder Buffer (ROB)

Limit performance
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Traditional Solutions

Employ sophisticated prefetchers

Increase size of on-chip caches
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Key Observation 1

50%
successfully prefetched

# off-chip loads without any prefetcher

50%
still go off-chip even with 

a state-of-the-art prefetcher

70% of the off-chip loads 
block the ROB

Many loads still go off-chip
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40% of the stalls can be eliminated by removing 
on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory
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Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007
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Improve processor performance 
by removing on-chip cache access latency

from the critical path of off-chip loads

Our Goal



Predicts which load requests 
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy
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Key Contribution

Hermes employs the first 
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from 
multiple program context information
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Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB
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Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a  
Hermes 
request

Wait

Train

Perceptron-based 
off-chip load predictor
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Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata
§ Metadata size increases with cache hierarchy size

May need to track all cache operations
§ Gets complex depending on the cache hierarchy 

configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides 
both higher accuracy and higher performance
than predictors inspired from these previous works
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POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model[1]
- Each feature has its own weight table
• Stores correlation between feature value and off-chip prediction

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue 
Hermes 
request

Wait

Train
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Predicting using POPET

• Uses simple table lookups, addition, and comparison

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Predict that 
the load would 

go off-chip

Core
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L2
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Off-Chip
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Training POPET

• Uses simple increment or decrement of feature weights

Feature1 #
Weight 
Table1

hash

index

Feature2 #
Weight 
Table2

hash

index

FeatureN #
Weight 
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum 
weights

Predict to 
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue 
Hermes 
request

Wait

Train

Predict that 
the load would 

go off-chip

Shouldn’t be activated

Cumulative weight < 𝜏act

-1

-1

-1



Evaluation
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Simulation Methodology
• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-
Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]
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Latency Configuration

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Issue 
Hermes 
request

Wait

• Cache round-trip latency
• L1-D: 5 cycles
• L2: 15 cycles
• LLC: 55 cycles

• Hermes request issue latency 
(incurred after address translation)

Depends on
• Interconnect between POPET and MC

0 cycles 24 cycles

6 cycles
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Single-Core Performance Improvement
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Hermes alone provides nearly 
50% performance benefits of Pythia
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Hermes on top of Pythia 
outperforms Pythia alone in every workload category 
Hermes provides nearly 90% performance benefit of 

Ideal Hermes that has an ideal off-chip load predictor
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Increase in Main Memory Requests
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For every 1% performance benefit, 
increase in main memory requests

Pythia

Hermes on top of Pythia

Hermes alone

2%

1%

0.5%

Hermes is more bandwidth-efficient
than even an efficient prefetcher like Pythia
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Performance with Varying Memory Bandwidth
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~AMD EPYC Rome 7702P (Zen 2, 64C/8ch, 2019)

~Intel Xeon 6258R 
(Cascade Lake, 28C/6ch, 2020)

Pythia
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Pythia+Hermes

In bandwidth-constrained configurations,
Hermes alone outperforms Pythia
Hermes+Pythia outperforms Pythia 

across all bandwidth configurations

Baseline
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Prefetcher-only Prefetcher + Hermes

Performance with Varying Baseline Prefetcher

5.4% 6.2%

5.1% 7.6%

7.7%Hermes consistently improves performance 
on top of a wide range of baseline prefetchers
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Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3
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More in the Paper 
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version on arXiv)
- LLC size (in extended version on arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis on an eight-core system
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To Summarize…
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Summary

Hermes advocates for off-chip load prediction, 
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself 
or combined with load address prediction

to provide performance improvement
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Summary

Hermes employs the first
perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage 
overhead
(4KB/core)

High performance improvement
over best prior baseline

(5.4%)

High performance 
per bandwidth
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Hermes is Open Sourced

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes
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Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class
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Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and 
coverage (stat name recall) out of the box



36

Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip 
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and 
fairness in multi-core system design...
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Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these 

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip 

prediction?

- Do you see a variance of different features in final 
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the 

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with 

different prefetchers



BACKUP
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Initial Set of Program Features
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Selected Set of Program Features

Five features
A binary hint that 
represents whether or not a 
cacheblock has been 
recently touched
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When A Feature Works/Does Not Work?

Trace: 462.libquantum-1343B PC: 0x401442

Cacheline #42 Cacheline #43 ……

Without prefetcher

• PC + first access
• Cacheline offset + first access 

With a simple stride prefetcher

• Cacheline offset + first access 
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What Happens in case of a Misprediction?

• Two cases of mispredictions:

• Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

• Predicted off-chip but actually is on-chip
- Memory controller forwards the data to LLC if and only if

a load to the same address have already missed LLC and 
arrived at the memory controller

No need for misprediction detection and recovery

No need for misprediction detection and recovery
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Performance Headroom of Off-Chip Prediction
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System Parameters
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Evaluated Workloads
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Observation: Not All Off-Chip Loads are Prefetched

0

5

10

15

20

25

0%

25%

50%

75%

100%

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

SPEC06 SPEC17 PARSEC Ligra CVP AVG

LL
C 

m
iss

es
 p

er
 ki

lo
 in

st
ru

ct
io

ns
 (M

PK
I)

Fr
ac

tio
n 

of
 o

ff-
ch

ip
 lo

ad
s 

in
 th

e N
o-

pr
ef

et
ch

in
g 

sy
st

em

Blocking Non-blocking MPKI

50%

Nearly 50% of the loads are still not prefetched
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Observation: Not All Off-Chip Loads are Prefetched
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Observation: With Large Cache Comes Longer Latency 

• On-chip cache access latency significantly contributes to 
the latency of an off-chip load 

147.1
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On-chip cache hierarchy access latency
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On-chip cache hierarchy access latency

40% of stall cycles caused by an off-chip load can be eliminated 
by removing on-chip cache access latency from its critical path 
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What Fraction of Load Requests Goes Off-Chip?
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Off-Chip Prediction Quality: Defining Metrics

Predicted off-chip Actual off-chip

Predicted and actual off-chip

Accuracy Coverage
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Off-Chip Prediction Quality: Analysis

Accuracy

Coverage
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Off-Chip Prediction Quality: Analysis

Accuracy

Coverage
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POPET provides off-chip predictions with 
high-accuracy and high-coverage
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Effect of Different Features

Combination of features provides both higher 
accuracy and higher coverage than any individual feature
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Are All Features Required? (1)

No single feature individually provides 
highest prediction accuracy across all workloads
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Are All Features Required? (2)

No single feature individually provides 
highest prediction coverage also across all workloads
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Single-Core Performance

Hermes in combination with Pythia 
outperforms Pythia alone in every workload category
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Single-Core Performance Line Graph
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Single-Core Performance Against Prior Predictors

POPET provides higher performance benefit
than prior predictors

Hermes with POPET achieves nearly 90% performance 
improvement of the Ideal Hermes



61

Effect on Stall Cycles

Hermes reduces off-chip load induced stall cycles 
on average by 16.2% (up-to 51.8%)
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Eight-Core Performance

Hermes in combination with Pythia 
outperforms Pythia alone by 5.1% on average
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Effect of Hermes Request Issue Latency

3.6%
5.7%

Hermes in combination with Pythia outperforms Pythia
alone even with a 24-cycle Hermes request issue latency
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Effect of Cache Hierarchy Access Latency

3.6%

6.2%

Hermes can provide even higher performance benefit in 
future processors with bigger and slower on-chip caches
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Effect of Activation Threshold

With increase in activation threshold
1. Accuracy increases

2. Coverage decreases
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Power Overhead
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Effect of ROB Size

6.7%
5.3%
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Effect of LLC Size

1.3%2.5%
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Accuracy and Coverage with Different Prefetchers

POPET’s accuracy and coverage increases significantly
in absence of a data prefetcher
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Increase in Main Memory Requests


