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The (Memory) Latency Problem




Conventional Latency Tolerance Techniques

Out-of-order execution [initially by Tomasulo, 1967]
o Tolerates cache misses that cannot be prefetched
o Requires extensive hardware resources for tolerating long latencies

Multithreading [initially in CDC 6600, 1964]
o Works well if there are multiple threads

o Improving single thread performance using multithreading hardware is an
ongoing research effort

Caching [initially by Wilkes, 1965]
o Widely used, simple, effective, but inefficient, passive
o Not all applications/phases exhibit temporal or spatial locality

Prefetching [initially in IBM 360/91, 1967] < Pythia
o Works well for regular memory access patterns

o Prefetching irregular access patterns is difficult, inaccurate, and hardware-
intensive
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Conventional Latency Tolerance Techniques
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The Key Problem

Long-latency off-chip load requests

) 4

Often stall processor by
blocking instruction retirement from
Reorder Buffer (ROB)

¥

Limit performance
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Traditional Solutions

.

Employ sophisticated prefetchers

Increase size of on-chip caches
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Key Observation 1

Many loads still go off-chip

50%
50% still go off-chip even with

successfully prefetched a state-of-the-art prefetcher

70% of the off-chip loads
block the ROB

# off-chip loads without any prefetcher
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Key Observation 2 <\
4

On-chip cache access latency
significantly contributes to off-chip load latency

L1 | L2 LLC Main Memory

¥

Saved cycles

40% of the stalls can be eliminated by removing

on-chip cache access latency from critical path

SAFARI



Caches are Getting Bigger and Slower...
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Our Goal

Improve processor performance
by removing on-chip cache access latency
from the critical path of off-chip loads

SAFARI
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Predicts which load requests
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy
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Key Contribution
\\/

A1 V4 :
7 Hermes employs the first

perceptron-based off-chip load predictor

@,

That predicts which loads are likely to go off-chip

@ By learning from
multiple program context information
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Hermes Overview

Core

Latency tolerance limit of ROB

.

Processor is stalled

»

L1

L2

LLC

Main Memory

[ Main Memory

Off-Chip
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Hermes Overview
c Predict off-chip load predictor

Perceptron-based

Issue a
Hermes

request L1 | L2 LLC Main Memory

~

e Wait L1| L2 LLC
ai _ : Saved stall cycles
Main Memory, « g

Off-Chip |
Main Memory
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Designing the Off-Chip Load Predictor

POPET provides

both higher accuracy and higher performance
than predictors inspired from these previous works

Learning from program behavior

Correlate different program features with off-chip loads

@ Low storage overhead @ Low design complexity




POPET: Perceptron-Based Off-Chip Predictor

* Multi-feature hashed perceptron model'*
- Each feature has its own weight table 5
* Stores correlation between feature value and off-chip prediction

Feature, Table,
Table,

(e.g., PC+ offset)

Weight
Table,

Weight
Tabley,

SAFAR’ [1] D. Tarjan and K. Skadron, "Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005 17



Predicting using POPET

* Usessimple table lookups, addition, and comparison

i}
il
e
45 Weight
= Table,
E (e.g., PC+ offset)
tRl Ox7ffe0+12
QD
= Weight
= Table,
=
8 ) :
N .
E .
S ]
)
§ Weight
3 Tabley
L]
e
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Training POPET

* Usessimple increment or decrement of feature weights

L L Shouldn’t be activated

Cumulative weight < 7,
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Evaluation



Simulation Methodology

* ChampSim trace driven simulator

* 110 single-core memory-intensive traces
- SPECCPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

* 220 eight-core memory-intensive trace mixes

Off-Chip Predictors

LLC Prefetchers

* Pythia * History-based: HMP

* Bingo * Tracking-based: Address Tag-

* MLOP Tracking based Predictor (TTP)
* SPP + Perceptron filter

e SMS * Ideal Off-chip Predictor
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Latency Configuration

* Cache round-trip latency

PO_PET * L1-D: 5 cycles
e L2:15cycles
@ e LLC:55 cycles
Issue
Hermes
t :
e * Hermes request issue latency
(incurred after address translation)
Depends on
© wait * Interconnect between POPET and MC
MC |<

| »*: |

0 cycles \ 24 cycles
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Single-Core Performance Improvement

1.35
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Geomean speedup
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Hermes provides nearly 90% performance benefit of

Ideal Hermes that has an ideal off-chip load predictor
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Increase in Main Memory Requests

For every 1% performance benefit,

Increase in main memory requests

Pythia 2%

Hermes on top of Pythia 1%

Hermes alone 0.5%

Hermes is more bandwidth-efficient

than even an efficient prefetcher like Pythia
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Performance with Varying Memory Bandwidth

1-3 7 Pythia+Hermes

1.25 - —\/ -O
1.2 - /O/

1.15 -
/
L o O 2

1.05 -

Geomean speedup
over the No-prefetching system

0.95

O
Co)

Hermes+Pythia outperforms Pythia

across all bandwidth configurations



Performance with Varying Baseline Prefetcher

O Prefetcher-only B Prefetcher + Hermes

=
s

Ing system
[
N
Un
I

-
N

Hermes consistently improves performance
on top of a wide range of baseline prefetchers

overthe N
[
@)
Un
|

R

Pythia Bingo SPP MLOP SMS

SAFARI

26



Overhead of Hermes

o 4 KB storage overhead
O 1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core 2! configuration

SA FA Rl [2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3 27



More in the Paper

Performance sensitivity to:

- Cache hierarchy access latency
Hermes request issue latency
Activation threshold
ROB size (in extended version on arXiv)
LLC size (in extended version on arXiv)

Accuracy, coverage, and performance analysis against HMP and TTP

Understanding usefulness of each program feature

Effect on stall cycle reduction

analysis on an system
SAFARI 28
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via Perceptron-Based Off-Chip Load Prediction
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Long-latency load requests continue to limit the performance
of modern high-performance processors. To increase the latency
tolerance of a processor, architects have primarily relied on two
key techniques: sophisticated data prefetchers and large on-chip
caches. In this work, we show that: (1) even a sophisticated state-
of-the-art prefetcher can only predict half of the off-chip load
requests on average across a wide range of workloads, and (2)
due to the increasing size and complexity of on-chip caches, a
large fraction of the latency of an off-chip load request is spent
accessing the on-chip cache hierarchy to solely determine that it
needs to go off-chip.

The goal of this work is to accelerate off-chip load requests
by removing the on-chip cache access latency from their critical
path. To this end, we propose a new technique called Hermes,
whose key idea is to: (1) accurately predict which load requests

off-chip main memory (i.e., an off-chip load) often stalls the pro-
cessor core by blocking the instruction retirement from the re-
order buffer (ROB), thus limiting the core’s performance [88, 91,
92]. To increase the latency tolerance of a core, computer archi-
tects primarily rely on two key techniques. First, they employ
increasingly sophisticated hardware prefetchers that can learn
complex memory address patterns and fetch data required by
future load requests before the core demands them [28, 32,
33, 35, 75]. Second, they significantly scale up the size of the
on-chip cache hierarchy with each new generation of proces-
sors [10, 11, 16].

Key problem. Despite recent advances in processor core
design, we observe two key trends in new processor designs
that leave a significant opportunity for performance improve-
ment on the table. First, even a sophisticated state-of-the-art

https://arxiv.org/pdf/2209.00188.pdf
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To Summarize...



Summary

Hermes advocates for off-chip load prediction,
a different form of speculation than
employed by prefetchers

Off-chip load prediction can be applied by itself
or combined with load address prediction
to provide performance improvement

SAFARI 31



Summary

Hermes employs the first

perceptron-based off-chip load predictor

X d

High accuracy | High coverage Low storage
overhead
(77%) (74%)
) ) (4KB/core)
(A AN

High performance improvement

over best prior baseline
(5.4%)

High performance
per bandwidth




Hermes is Open Sourced

All workload traces

13 prefetchers @ 9 off-chip predictors

e Stride [Fu+, MICRO'92]

o Streamer [Chen and Baer, IEEE TC'95] Predictor type  Description

e SMS [Somogyi+, ISCA'06] Base Always NO

« AMPM [IShii*‘: |CSI09] Basic Simple confidence counter-based threshold

* Sandbox [PUQSIey+’ HPCA'1 4] Random Random Hit-miss predictor with a given positive probability
* BOP [MiChaUd’ HPCA" 6] HMP-Local Hit-miss predictor [Yoaz+, ISCA'99] with local prediction

« SPP [Kim+, MICRO'16]

. . HMP-GShare Hit-miss predictor with GShare prediction
Bingo [Bakshalipour+, HPCA'19]

« SPP+PPF [Bhatia+, ISCA'19] HMP-GSkew Hit-miss predictor with GSkew prediction

e DSPatch [Bera +, MICRO'1 9] HMP-Ensemble  Hit-miss predictor with all three types combined
o MLOP [Shakerinava+, DPC-3'19] TP Tag-tracking based predictor

¢ |PCP [Pakalapati+, ISCA'20] Perc Perceptron-based OCP used in this paper

Pythia [Bera+, MICRO'21]

SAFARI https://github.com/CMU-SAFARI/Hermes 33
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Easy To Define Your Own Off-Chip Predictor

» Just extend the OffchipPredBase class

class OffchipPredBase

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

SAFARI

{

public:

};

uint32_t cpu;

string type;

uinté4_t seed;

uint8_t dram_bw; // current DRAM bandwidth bucket

OffchipPredBase(uint32_t _cpu, string _type, uinté4_t _seed) : cpu(_cpu), type(_type), seed(_seed)
{
srand(seed);
dram_bw = 0;
}
~0ffchipPredBase() {}
void update_dram_bw(uint8_t _dram_bw) { dram_bw = _dram_bw; }

virtual void print_config();

virtual void dump_stats();

virtual void reset_stats();

virtual void train(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY xlg_entry);
virtual bool predict(ooo_model_instr *arch_instr, uint32_t data_index, LSQ_ENTRY xlqg_entry);

#endif /x OFFCHIP_PRED_BASE_H */

34



Easy To Define Your Own Off-Chip Predictor

» Define yourown train( ) and predict () functions

19 void OffchipPredBase::train(ooo_model_instr s*arch_instr, uint32_t data_index, LSQ_ENTRY xlg_entry)
20 A

21 // nothing to train

22

23

24 bool OffchipPredBase::predict(ooo_model_instr xarch_instr, uint32_t data_index, LSQ_ENTRY x1lq_entry)
25 4

26 // predict randomly

27 // return (rand() % 2) ? true : false;
28 return false;

29 }

* Get statistics like accuracy (stat name precision) and
coverage (stat name recall) out of the box

Core_0O_offchip_pred_true_pos 2358716
Core_0O_offchip_pred_false_pos 276883
Core_0O_offchip_pred_false_neg 132145

Core_0O_offchip_pred_precision 89.49
Core_0O_offchip_pred_recall 94.69

SAFARI 35




Off-Chip Prediction Can Further Enable...

Prioritizing loads that are likely go off-chip
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and
fairness in multi-core system design...

SAFARI
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Discussion

* FAQs

What are the selected set of program features?

Can you provide some intuition on why these
features work?

What happens in case of a misprediction?

What's the performance headroom for off-chip
prediction?
Do vou see a variance of different features in final

prediction accuracy?

* Simulation Methodology

System parameters

Evaluated workloads

SAFARI

* More Results

Percentage of off-chip requests

Reduction in stall cycles by reducing the

critical path
Fraction of off-chip load requests

Accuracy and coverage of POPET
Effect of different features

Are all features required?

1C performance

1C performance line graph

1C performance against prior predictors

Effect on stall cycles
8C performance

Sensitivity:
* Hermes request issue latency
* (Cache hierarchy access latency
* Activation threshold
* ROBsize
* LLCsize
Power overhead
Accuracy without prefetcher

Main memory request overhead with
different prefetchers

38
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Initial Set of Program Features

Features without control-flow Features with control-flow

information information

8. Load PC
1. Load virtual address 9. PC & load virtual address
2. Virtual page number 10. PC @ virtual page number
3. Cacheline offset in page 11. PC & cacheline offset
4. First access 12. PC + first access
5. Cacheline offset + first access 13. PC @ byte offset
6. Byte offset in cacheline 14. PC @ word offset
7. Word offset in cacheline 15. Last-4 load PCs

16. Last-4 PCs

SAFARI



Selected Set of Program Features

A binary hint that

Five features represents whether or not a
cacheblock has been

« PC @ cacheline offset recently touched

« PC @ byte offset
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When A Feature Works/Does Not Work?

Trace: 462.libguantum-1343B PC: 0x401442

Without prefetcher With a simple stride prefetcher

* PC + first access e Cacheline offset + first access
e Cacheline offset + first access

A\
SAFARI ﬂ 42



What Happens in case of a Misprediction?

* Two cases of mispredictions:

* Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

No need for misprediction detection and recovery

* Predicted off-chip but actually is on-chip

- Memory controller forwards the data to LLC if and only if
a load to the same address have already missed LLC and
arrived at the memory controller

No need for misprediction detection and recovery

SAFARI D -



Performance Headroom of Off-Chip Prediction

1.35
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System Parameters

Table 4: Simulated system parameters

1 and 8 cores, 6-wide fetch/execute/commit, 512-entry ROB,
Core 128/72-entry LQ/SQ, Perceptron branch predictor [61] with
17-cycle misprediction penalty

L1/1L2 Private, 48KB/1.25MB, 64B line, 12/20-way, 16/48 MSHRSs,
Caches LRU, 5/15-cycle round-trip latency [25]

3MB/core, 64B line, 12 way, 64 MSHRs/slice, SHiP [122],

LLC 55-cycle round-trip latency [24, 25], Pythia prefetcher [32]

1C: 1 channel, 1 rank per channel; 8C: 4 channels, 2 ranks
Main per channel; 8 banks per rank, DDR4-3200 MTPS, 64b data-
Memory  bus per channel, 2KB row buffer per bank, tRCD=12.5ns,
tRP=12.5ns, tCAS=12.5ns

Hermes Hermes-O/P: 6/18-cycle Hermes request issue latency

()
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Evaluated Workloads

Table 5: Workloads used for evaluation

Suite = #Workloads #Traces Example Workloads

SPECO6 14 22 gce, mcf, cactusADM, lbm, ...
SPEC17 11 23 gce, mcf, pop2, fotonik3d, ...
PARSEC 4 12 canneal, facesim, raytrace, ...
Ligra 11 20 BFS, PageRank, Radii, ...

CVP 33 33 integer, floating-point, server, ...

()
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Not All Off-Chip Loads are Prefetched

Observation
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Not All Off-Chip Loads are Prefetched

Observation
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Observation: With Large Cache Comes Longer Latency

* On-chip cache access latency significantly contributes to
the latency of an off-chip load
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. On-chip cache hierarchy access latency
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Observation: With Large Cache Comes Longer Latency

* On-chip cache access latency significantly contributes to
the latency of an off-chip load

180

. On-chip cache hierarchy access latency
160 A
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40% of stall cycles caused by an off-chip load can be eliminated
by removing on-chip cache access latency from its critical path
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What Fraction of Load Requests Goes Off-Chip?

N
X
|

Fraction of loads
that goes off-chip

'S
P

o
X
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Off-Chip Prediction Quality: Defining Metrics

Accuracy Coverage |
® p N O
Predicted off-chip Actual off-chip

Predicted and actual off-chip

SAFARI 52



Off-Chip Prediction Quality: Analysis

Accuracy |

OHMP  @TTP  mPOPET

100%

S 8o% -
2 40% -
) 222;(: 77 | B | 8 | 77 7
SPECo06 SPECa1y PARSEC Ligra CVP
Coverage | 5 3
100% ~ 7 DHMP{ BTTP ;OPET ~ gg%hy
g 4% | 7 /I 7 /I 1 B
SPECo06 SPEC17 PARSEC Ligra CVP AVG
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Off-Chip Prediction Quality: Analysis

POPET provides off-chip predictions with
high-accuracy and high-coverage



Effect of Different Features

809
% mmAccuracy “O-Coverage
60% -

40% A

20% -

Accuracy and coverage %

0%

Pc@® last-4load pc@byte PC+first Cacheline 142 142+3 1+2+3+4 All (POPET)
cacheline PCs(2)  offset(s) access(4) offset+first
offset (1) access (5)

Combination of features provides both higher
accuracy and higher coverage than any individual feature
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Are All Features Required? (1)

——PC@®cacheline offset ——Last-4load PCs —PC® byte offset PC +firstaccess —e—Cacheline offset + first access
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Workload number

No single feature individually provides

highest prediction accuracy across all workloads
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Are All Features Required? (2)

——PC@®cacheline offset —=—Last-4load PCs —=—PC®byte offset PC+firstaccess —e—Cacheline offset + first access
100%
(b)
80% -
S 60% - ' 1
bD f |
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Workload nhumber

No single feature individually provides
highest prediction coverage also across all workloads
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Single-Core Performance

1.35
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w
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Geomean speedup
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Hermes in combination with Pythia

1.25

GEOMEAN

outperforms Pythia alone in every workload category
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Single-Core Performance Line Graph
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Single-Core Performance Against Prior Predictors

O Pythia (baseline) &@Pythia+ Hermes-HMP & Pythia+ Hermes-TTP mPythia + Hermes-POPET m Pythia + Ideal Hermes
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POPET provides higher performance benefit
than prior predictors

Hermes with POPET achieves nearly 90% performance
improvement of the Ideal Hermes

SAFARI 60




Effect on Stall Cycles
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Hermes reduces off-chip load induced stall cycles

on average by 16.2% (up-to 51.8%)
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Eight-Core Performance

O Pythia (baseline)  mPythia+ Hermes-HMP Pythia+Hermes-TTP  mPythia+ Hermes-POPET
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Hermes in combination with Pythia

outperforms Pythia alone by 5.1% on average
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Effect of Hermes Request Issue Latency

Hermes in combination with Pythia outperforms Pythia

alone even with a 24-cycle Hermes request issue latency
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Effect of Cache Hierarchy Access Latency

Hermes can provide even higher performance benefit in
future processors with bigger and slower on-chip caches
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Effect of Activation Threshold
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Activation threshold

With increase in activation threshold

1. Accuracy increases
2. Coverage decreases
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Power Overhead
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Effect of ROB Size

1.35

Hermes ©Pythia mPythia+tHermes

j 6'7%[' 5.3%/\

—_
w

-
N
w1

-
N
|

i
-
(93]

Geomean speedup
over the No-prefetching system

—
-
1

77
77
20

-—

256 512 768 1024
ROB Size

SAFARI




Effect of LLC Size
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Accuracy and Coverage with Different Prefetchers
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POPET's accuracy and coverage increases significantly
in absence of a data prefetcher
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Increase in Main Memory Requests
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