
Computer Architecture
Lecture 18b:

Hermes: Accelerating Long-Latency Memory Requests
via Perceptron-Based Off-Chip Load Prediction

Rahul Bera
ETH Zürich
Fall 2022

25 November 2022

The (Memory) Latency Problem

3

Conventional Latency Tolerance Techniques

n Out-of-order execution [initially by Tomasulo, 1967]
q Tolerates cache misses that cannot be prefetched
q Requires extensive hardware resources for tolerating long latencies

n Multithreading [initially in CDC 6600, 1964]
q Works well if there are multiple threads
q Improving single thread performance using multithreading hardware is an

ongoing research effort

n Caching [initially by Wilkes, 1965]
q Widely used, simple, effective, but inefficient, passive
q Not all applications/phases exhibit temporal or spatial locality

n Prefetching [initially in IBM 360/91, 1967]
q Works well for regular memory access patterns
q Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

Pythia

4

Conventional Latency Tolerance Techniques

n Out-of-order execution [initially by Tomasulo, 1967]
q Tolerates cache misses that cannot be prefetched
q Requires extensive hardware resources for tolerating long latencies

n Multithreading [initially in CDC 6600, 1964]
q Works well if there are multiple threads
q Improving single thread performance using multithreading hardware is an

ongoing research effort

n Caching [initially by Wilkes, 1965]
q Widely used, simple, effective, but inefficient, passive
q Not all applications/phases exhibit temporal or spatial locality

n Prefetching [initially in IBM 360/91, 1967]
q Works well for regular memory access patterns
q Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://github.com/CMU-SAFARI/Hermes

6

The Key Problem

Long-latency off-chip load requests

Often stall processor by
blocking instruction retirement from

Reorder Buffer (ROB)

Limit performance

7

Traditional Solutions

Employ sophisticated prefetchers

Increase size of on-chip caches

8

Key Observation 1

50%
successfully prefetched

off-chip loads without any prefetcher

50%
still go off-chip even with

a state-of-the-art prefetcher

70% of the off-chip loads
block the ROB

Many loads still go off-chip

9

40% of the stalls can be eliminated by removing
on-chip cache access latency from critical path

Key Observation 2

On-chip cache access latency
significantly contributes to off-chip load latency

L1 L2 LLC Main Memory

Saved cycles

50% still go off-chip

L1 L2 LLC Main Memory

10

Caches are Getting Bigger and Slower…

Hardavellas+, “Database Servers on Chip Multiprocessors: Limitations and Opportunities”, CIDR, 2007

O
n-

ch
ip

 C
ac

he
 S

ize
 (K

B)

0

512

1024

1536

2048

2560

Sk
yla

ke
 (2

015)

Su
nny C

ove
 (2

019)

W
illo

w Cove
 (2

020)

Golden Cove
 P-co

re (2
021)

Rap
tor L

ake
 P-co

re (2
022)

L2
 S

ize
 (K

B)

11

12

13

14

15

16

17

Sk
yla

ke
 (2

015)

Su
nny C

ove
 (2

019)

W
illo

w Cove
 (2

020)

Golden Cove
 P-co

re (2
021)

Rap
tor L

ake
 P-co

re (2
022)

L2
 L

at
en

cy
 (p

ro
ce

ss
or

 c
yc

le
s)

11

Improve processor performance
by removing on-chip cache access latency

from the critical path of off-chip loads

Our Goal

Predicts which load requests
are likely to go off-chip

Starts fetching data directly from main memory
while concurrently accessing the cache hierarchy

13

Key Contribution

Hermes employs the first
perceptron-based off-chip load predictor

That predicts which loads are likely to go off-chip

By learning from
multiple program context information

14

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

Baseline Processor is stalled

Latency tolerance limit of ROB

15

Hermes Overview

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

L1 L2 LLC Main Memory

POPET

L1 L2 LLC

Main Memory

Baseline

Hermes

Saved stall cycles

Processor is stalled

Latency tolerance limit of ROB

Predict

Issue a
Hermes
request

Wait

Train

Perceptron-based
off-chip load predictor

16

Designing the Off-Chip Load Predictor

Tracking cache contents

Learning from program behavior

Large metadata
§ Metadata size increases with cache hierarchy size

May need to track all cache operations
§ Gets complex depending on the cache hierarchy

configuration (e.g., inclusivity, bypassing,…)

Correlate different program features with off-chip loads

MissMap [Loh+, MICRO’11] for the DRAM cache,
D2D [Sembrant+, ISCA’14], D2M [Sembrant+, HPCA’17], LP [Jalili+, HPCA’22] for the cache hierarchy

History-based prediction
HMP [Yoaz+, ISCA’99] for the L1-D cache

Using branch-predictor-like hybrid predictor:
Global, Gshare, and GSkew

Low storage overhead Low design complexity

POPET provides
both higher accuracy and higher performance
than predictors inspired from these previous works

17

POPET: Perceptron-Based Off-Chip Predictor

• Multi-feature hashed perceptron model[1]
- Each feature has its own weight table
• Stores correlation between feature value and off-chip prediction

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

[1] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in Perceptron Branch Prediction,” TACO, 2005

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

18

Predicting using POPET

• Uses simple table lookups, addition, and comparison

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Predict that
the load would

go off-chip

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

Ex
tr

ac
t f

ea
tu

re
s f

ro
m

 th
e l

oa
d r

eq
ue

st

19

Training POPET

• Uses simple increment or decrement of feature weights

Feature1 #
Weight
Table1

hash

index

Feature2 #
Weight
Table2

hash

index

FeatureN #
Weight
TableN

hash

index

!

weight1

weight2

weightn

ActivationSum
weights

Predict to
go off-chip

.....

...

(e.g., PC + offset)

Stage 1 Stage 2 Stage 3

≥ τact≥ τact

0x7ffe0+12

42 -4

12

3 3 >= -2

-5

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET
Predict

Issue
Hermes
request

Wait

Train

Predict that
the load would

go off-chip

Shouldn’t be activated

Cumulative weight < 𝜏act

-1

-1

-1

Evaluation

21

Simulation Methodology
• ChampSim trace driven simulator

• 110 single-core memory-intensive traces
- SPEC CPU 2006 and 2017
- PARSEC 2.1
- Ligra
- Real-world applications

• 220 eight-core memory-intensive trace mixes

Off-Chip PredictorsLLC Prefetchers

• History-based: HMP [Yoaz+, ISCA’99]

• Tracking-based: Address Tag-
Tracking based Predictor (TTP)

• Ideal Off-chip Predictor

• Pythia [Bera+, MICRO’21]

• Bingo [Bakshalipour+, HPCA’19]

• MLOP [Shakerinava+, 3rd Prefetching Championship’19]

• SPP + Perceptron filter [Bhatia+, ISCA’20]

• SMS [Somogyi+, ISCA’06]

22

Latency Configuration

Core

L1-D

L2

LLC

MC

Off-Chip
Main Memory

POPET

Issue
Hermes
request

Wait

• Cache round-trip latency
• L1-D: 5 cycles
• L2: 15 cycles
• LLC: 55 cycles

• Hermes request issue latency
(incurred after address translation)

Depends on
• Interconnect between POPET and MC

0 cycles 24 cycles

6 cycles

23

Single-Core Performance Improvement

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

11.5%

20.3%
5.4%

Hermes alone provides nearly
50% performance benefits of Pythia

with only 1/5th storage overhead

Hermes on top of Pythia
outperforms Pythia alone in every workload category
Hermes provides nearly 90% performance benefit of

Ideal Hermes that has an ideal off-chip load predictor

24

Increase in Main Memory Requests

0%

10%

20%

30%

40%

50%

60%

70%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

%
 in

cr
ea

se
 in

 m
ai

n
m

em
or

y
re

qu
es

ts
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes

5.5%

38.5%
5.9%

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

SPEC06 SPEC17 PARSEC Ligra CVP GEOMEAN

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Hermes Pythia Pythia + Hermes Pythia + Ideal Hermes

11.5%
20.3% 5.4%

For every 1% performance benefit,
increase in main memory requests

Pythia

Hermes on top of Pythia

Hermes alone

2%

1%

0.5%

Hermes is more bandwidth-efficient
than even an efficient prefetcher like Pythia

25

Performance with Varying Memory Bandwidth

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

200 400 800 1600 3200 6400 12800

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Main Memory Bandwidth (in MT/s)

~AMD Threadripper 3990x (Zen 2, 64C/4ch, 2020)

~AMD EPYC Rome 7702P (Zen 2, 64C/8ch, 2019)

~Intel Xeon 6258R
(Cascade Lake, 28C/6ch, 2020)

Pythia

Hermes

Pythia+Hermes

In bandwidth-constrained configurations,
Hermes alone outperforms Pythia
Hermes+Pythia outperforms Pythia

across all bandwidth configurations

Baseline

26

1

1.05

1.1

1.15

1.2

1.25

1.3

Pythia Bingo SPP MLOP SMS

G
eo

m
ea

n
sp

ee
du

p
ov

er
 th

e
N

o-
pr

ef
et

ch
in

g
sy

st
em

Prefetcher-only Prefetcher + Hermes

Performance with Varying Baseline Prefetcher

5.4% 6.2%

5.1% 7.6%

7.7%Hermes consistently improves performance
on top of a wide range of baseline prefetchers

27

Overhead of Hermes

4 KB storage overhead

1.5% power overhead*

*On top of an Intel Alder Lake-like performance-core [2] configuration

[2] https://www.anandtech.com/show/16881/a-deep-dive-into-intels-alder-lake-microarchitectures/3

28

More in the Paper
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version on arXiv)
- LLC size (in extended version on arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis on an eight-core system

29

More in the Paper
• Performance sensitivity to:

- Cache hierarchy access latency
- Hermes request issue latency
- Activation threshold
- ROB size (in extended version at arXiv)
- LLC size (in extended version at arXiv)

• Accuracy, coverage, and performance analysis against HMP and TTP

• Understanding usefulness of each program feature

• Effect on stall cycle reduction

• Performance analysis in eight-core systemhttps://arxiv.org/pdf/2209.00188.pdf

https://arxiv.org/pdf/2209.00188.pdf

To Summarize…

31

Summary

Hermes advocates for off-chip load prediction,
a different form of speculation than

load address prediction employed by prefetchers

Off-chip load prediction can be applied by itself
or combined with load address prediction

to provide performance improvement

32

Summary

Hermes employs the first
perceptron-based off-chip load predictor

High coverage
(74%)

High accuracy
(77%)

Low storage
overhead
(4KB/core)

High performance improvement
over best prior baseline

(5.4%)

High performance
per bandwidth

33

Hermes is Open Sourced

https://github.com/CMU-SAFARI/Hermes

All workload traces

13 prefetchers 9 off-chip predictors

https://github.com/CMU-SAFARI/Hermes

34

Easy To Define Your Own Off-Chip Predictor

• Just extend the OffchipPredBase class

35

Easy To Define Your Own Off-Chip Predictor

• Define your own train() and predict() functions

• Get statistics like accuracy (stat name precision) and
coverage (stat name recall) out of the box

36

Off-Chip Prediction Can Further Enable…

Prioritizing loads that are likely go off-chip
in cache queues and on-chip network routing

Better instruction scheduling
of data-dependent instructions

Other ideas to improve performance and
fairness in multi-core system design...

Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran,
David Novo, Ataberk Olgun, Mohammad Sadrosadati, Onur Mutlu

Accelerating Long-Latency Load Requests
via Perceptron-Based Off-Chip Load Prediction

https://github.com/CMU-SAFARI/Hermes

https://github.com/CMU-SAFARI/Hermes

38

Discussion
• FAQs

- What are the selected set of program features?
- Can you provide some intuition on why these

features work?
- What happens in case of a misprediction?
- What’s the performance headroom for off-chip

prediction?

- Do you see a variance of different features in final
prediction accuracy?

• Simulation Methodology
- System parameters
- Evaluated workloads

• More Results
- Percentage of off-chip requests
- Reduction in stall cycles by reducing the

critical path
- Fraction of off-chip load requests
- Accuracy and coverage of POPET
- Effect of different features
- Are all features required?
- 1C performance
- 1C performance line graph
- 1C performance against prior predictors
- Effect on stall cycles
- 8C performance
- Sensitivity:

• Hermes request issue latency
• Cache hierarchy access latency
• Activation threshold
• ROB size
• LLC size

- Power overhead
- Accuracy without prefetcher
- Main memory request overhead with

different prefetchers

BACKUP

40

Initial Set of Program Features

41

Selected Set of Program Features

Five features
A binary hint that
represents whether or not a
cacheblock has been
recently touched

42

When A Feature Works/Does Not Work?

Trace: 462.libquantum-1343B PC: 0x401442

Cacheline #42 Cacheline #43 ……

Without prefetcher

• PC + first access
• Cacheline offset + first access

With a simple stride prefetcher

• Cacheline offset + first access

43

What Happens in case of a Misprediction?

• Two cases of mispredictions:

• Predicted on-chip but actually goes off-chip
- Loss of performance improvement opportunity

• Predicted off-chip but actually is on-chip
- Memory controller forwards the data to LLC if and only if

a load to the same address have already missed LLC and
arrived at the memory controller

No need for misprediction detection and recovery

No need for misprediction detection and recovery

44

Performance Headroom of Off-Chip Prediction

45

System Parameters

46

Evaluated Workloads

47

Observation: Not All Off-Chip Loads are Prefetched

0

5

10

15

20

25

0%

25%

50%

75%

100%

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

SPEC06 SPEC17 PARSEC Ligra CVP AVG

LL
C

m
iss

es
 p

er
 ki

lo
 in

st
ru

ct
io

ns
 (M

PK
I)

Fr
ac

tio
n

of
 o

ff-
ch

ip
 lo

ad
s

in
 th

e N
o-

pr
ef

et
ch

in
g

sy
st

em

Blocking Non-blocking MPKI

50%

Nearly 50% of the loads are still not prefetched

48

Observation: Not All Off-Chip Loads are Prefetched

0

5

10

15

20

25

0%

25%

50%

75%

100%

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

N
o-

pr
ef

et
ch

in
g

Py
th

ia

SPEC06 SPEC17 PARSEC Ligra CVP AVG

LL
C

m
iss

es
 p

er
 ki

lo
 in

st
ru

ct
io

ns
 (M

PK
I)

Fr
ac

tio
n

of
 o

ff-
ch

ip
 lo

ad
s

in
 th

e N
o-

pr
ef

et
ch

in
g

sy
st

em

Blocking Non-blocking MPKI

70% of these off-chip loads blocks ROB

49

Observation: With Large Cache Comes Longer Latency

• On-chip cache access latency significantly contributes to
the latency of an off-chip load

147.1

0

20

40

60

80

100

120

140

160

180

SPEC06 SPEC17 PARSEC Ligra CVP AVG

st

al
l c

yc
le

s d
ue

 to
 an

 o
ff-

ch
ip

 lo
ad

bl
oc

ki
ng

 in
st

ru
ct

io
n

re
tir

em
en

t
fro

m
 R

OB

58

On-chip cache hierarchy access latency

50

Observation: With Large Cache Comes Longer Latency

• On-chip cache access latency significantly contributes to
the latency of an off-chip load

147.1

0

20

40

60

80

100

120

140

160

180

SPEC06 SPEC17 PARSEC Ligra CVP AVG

st

al
l c

yc
le

s d
ue

 to
 an

 o
ff-

ch
ip

 lo
ad

bl
oc

ki
ng

 in
st

ru
ct

io
n

re
tir

em
en

t
fro

m
 R

OB

58

On-chip cache hierarchy access latency

40% of stall cycles caused by an off-chip load can be eliminated
by removing on-chip cache access latency from its critical path

51

What Fraction of Load Requests Goes Off-Chip?

52

Off-Chip Prediction Quality: Defining Metrics

Predicted off-chip Actual off-chip

Predicted and actual off-chip

Accuracy Coverage

53

Off-Chip Prediction Quality: Analysis

Accuracy

Coverage

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

A
cc

ur
ac

y
%

HMP TTP POPET

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

Co
ve

ra
ge

 %

HMP TTP POPET

47%

22%

16%

95%

77%

74%

54

Off-Chip Prediction Quality: Analysis

Accuracy

Coverage

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

A
cc

ur
ac

y
%

HMP TTP POPET

0%
20%
40%
60%
80%

100%

SPEC06 SPEC17 PARSEC Ligra CVP AVG

Co
ve

ra
ge

 %

HMP TTP POPET

47%

22%

16%

95%

77%

74%

POPET provides off-chip predictions with
high-accuracy and high-coverage

55

Effect of Different Features

Combination of features provides both higher
accuracy and higher coverage than any individual feature

56

Are All Features Required? (1)

No single feature individually provides
highest prediction accuracy across all workloads

57

Are All Features Required? (2)

No single feature individually provides
highest prediction coverage also across all workloads

58

Single-Core Performance

Hermes in combination with Pythia
outperforms Pythia alone in every workload category

59

Single-Core Performance Line Graph

60

Single-Core Performance Against Prior Predictors

POPET provides higher performance benefit
than prior predictors

Hermes with POPET achieves nearly 90% performance
improvement of the Ideal Hermes

61

Effect on Stall Cycles

Hermes reduces off-chip load induced stall cycles
on average by 16.2% (up-to 51.8%)

62

Eight-Core Performance

Hermes in combination with Pythia
outperforms Pythia alone by 5.1% on average

63

Effect of Hermes Request Issue Latency

3.6%
5.7%

Hermes in combination with Pythia outperforms Pythia
alone even with a 24-cycle Hermes request issue latency

64

Effect of Cache Hierarchy Access Latency

3.6%

6.2%

Hermes can provide even higher performance benefit in
future processors with bigger and slower on-chip caches

65

Effect of Activation Threshold

With increase in activation threshold
1. Accuracy increases

2. Coverage decreases

66

Power Overhead

67

Effect of ROB Size

6.7%
5.3%

68

Effect of LLC Size

1.3%2.5%

69

Accuracy and Coverage with Different Prefetchers

POPET’s accuracy and coverage increases significantly
in absence of a data prefetcher

70

Increase in Main Memory Requests

