
Jawad Haj-Yahya
Jeremie S. Kim      A. Giray Yağlıkçı Ivan Puddu      Lois Orosa 
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Executive Summary
Problem: Current management mechanisms throttle instruction execution and adjust 

voltage/frequency to accommodate power-hungry instructions (PHIs).

These mechanisms may compromise a system’s confidentiality guarantees

Goal:

1. Understand the throttling side-effects of current management mechanisms

2. Build high-capacity covert channels between otherwise isolated execution contexts

3. Practically and effectively mitigate each covert channel

Characterization: Variable execution times and frequency changes due to running PHIs

We observe five different levels of throttling in real Intel systems

IChannels: New covert channels that exploit side-effects of current management mechanisms 

• On the same hardware thread

• Across co-located Simultaneous Multi-Threading (SMT) threads

• Across different physical cores

Evaluation: On three generations of Intel processors, IChannels provides a channel capacity
• 2× that of PHIs’ variable latency-based covert channels 

• 24× that of power management-based covert channels 
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Overview of Client Processor Architectures

• In many recent processors (e.g., Intel Coffee Lake, Cannon Lake), CPU cores: 

- Share the same voltage regulator (VR) and clock domain

• A central power management unit (PMU) controls:

- The VR using an off-chip serial voltage identification (SVID) interface

- The clock phase-locked loop (PLL) using an on-chip interface

• Each CPU core has a power-gate (PG) for the entire core 

- Each SIMD unit (e.g., AVX-256, AVX-512) has a separate PG

Clock Control
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Load Voltage and Voltage Guardband

• The relationship between load voltage (Vccload), supply voltage (Vcc) and current (Icc) 

under a given system impedance (RLL) is : Vccload = Vcc – Icc × RLL

• The PMU adds voltage guardband to Vcc to a level that keeps Vccload within limits 

• For loads with current lower than Iccvirus, the voltage drop (Icc × RLL) is smaller than 

when running a power-virus

- Results in a higher load voltage Vccload than necessary 

- Leading to a power loss that increases quadratically with the voltage level

= Vcc – Icc × RLL Higher voltage 
than necessary

RLL
Vccload Icc

Vcc

VR CPU Cores 

Vccmin

Vccmax

Below the maximum operational voltage (Vccmax) under the lightest load (leakage, Icclkg)

Above the minimum functional voltage (Vccmin) under the most intensive load (power-virus, Iccvirus)

×
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• NetSpectre [Schwarz+, ESORICS 2019] exploits the variable execution times of PHIs to 
create a covert channel. NetSpectre has three limitations:

- Established only between two execution contexts on the same hardware thread

- Uses only a single-level throttling side-effect (thread is throttled/unthrottled)

- Does not identify the true source of throttling 

• Hypothesizes that the throttling is due power-gating of the PHI execution units

• TurboCC [Kalmbach+, arXiv 2020] exploits the core frequency throttling when executing 
PHIs to create cross-core covert channel. TurboCC has two limitations:

- Focuses only on the slow (milliseconds) side-effect of frequency throttling that 

happens when executing PHIs at only Turbo frequencies

- Does not uncover the real reason behind the vulnerability

• Hypothesizes that the frequency throttling is due to thermal management

Motivation: Limitations of Prior Work 
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• NetSpectre [Schwarz+, ESORICS 2019] exploits the variable execution times of PHIs to 
create a covert channel. NetSpectre has three limitations:

- Established only between two execution contexts on the same hardware thread

- Uses only a single-level throttling side-effect (thread is throttled/unthrottled)

- Does not identify the true source of throttling 

• Hypothesizes that the throttling is due power-gating of the PHI execution units

• TurboCC [Kalmbach+, arXiv 2020] exploits the core frequency throttling when executing 
PHIs to create cross-core covert channel. TurboCC has two limitations:

- Focuses only on the slow (milliseconds) side-effect of frequency throttling that 

happens when executing PHIs at Turbo frequencies

- Does not uncover the real reason behind the vulnerability

• Hypothesizes that the frequency throttling is due to thermal management

Motivation: Limitations of Prior Work 

Recent works propose limited covert channels 
and use inaccurate observations
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Our goal in this work is to:

1. Experimentally understand the throttling side-effects of current 
management mechanisms in modern processors to gain several deep 
insights into how these mechanisms can be abused by attackers

2. Build high-capacity covert channels, IChannels, between otherwise 
isolated execution contexts located 

• On the same hardware thread

• Across co-located Simultaneous Multi-Threading (SMT) threads

• Across different physical cores

3. Practically and effectively mitigate covert channels caused by current 
management mechanisms

Goal
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Experimental Methodology

• We experimentally study three modern Intel processors 

- Haswell, Coffee Lake, and Cannon Lake

• We measure voltage and current using a Data Acquisition card (NI-DAQ) 

Configuration /
Log data
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Voltage Emergency Avoidance Mechanism

• We study the impact of Power-Hungry Instructions (PHIs) on the CPU core 
supply voltage (Vcc)

• We track the Vcc change during an experiment on a two-core Coffee Lake 
system executing code that includes PHI (AVX2) phases

• Vcc increases once a CPU core begins executing AVX2 instructions

- The more cores executing AVX2 instructions, the higher the Vcc
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Voltage Emergency Avoidance Mechanism

• We study the impact of Power-Hungry Instructions (PHIs) on the CPU core 
supply voltage (Vcc)

• We track the Vcc change during an experiment on a two-core Coffee Lake 
system executing code that includes PHI (AVX2) phases

• Vcc increases once a CPU core begins executing AVX2 instructions

- The more cores executing AVX2 instructions, the higher the Vcc

Voltage emergency avoidance mechanism 
prevents the core voltage from dropping below the 

minimum operational voltage limit when executing PHIs
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Iccmax and Vccmax Limit Protection Mechanisms

• Systems: 
- A single-core Coffee Lake desktop CPU operating at Turbo frequencies (4.9 GHz and 4.8 GHz) 

- A two-core Cannon Lake mobile CPU operating at Turbo frequencies (3.1 GHz and 2.2 GHz)

• Workloads (Non-AVX and AVX2) while measuring current and voltage

Vccmax (1.15V)

Iccmax (29A)

Iccmax (100A)

Vccmax (1.27V)

The bars with 

green borders 

are projected

For both desktop frequencies, current (Icc) is below the system limit (Iccmax) 

Vcc will exceed the voltage limit (Vccmax) when executing AVX2 code at a frequency of 4.9 GHz

For both mobile frequencies, the voltage (Vcc) is below the system limit (Vccmax) 

Icc will exceed the current limit (Iccmax) when executing AVX2 code at a frequency of 3.1 GHz
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Iccmax and Vccmax Limit Protection Mechanisms

• Systems: 
- A single-core Coffee Lake desktop CPU operating at Turbo frequencies (4.9GHz and 4.8GHz) 

- A two-core Cannon Lake mobile CPU operating at Turbo frequencies (3.1GHz and 2.2GHz)

• Workloads (Non-AVX and AVX2) while measuring current and voltage

Vccmax (1.15V)

Iccmax (29A)

Iccmax (100A)

Vccmax (1.27V)

The bars with 

green borders 

are projected

For both desktop frequencies, Icc is below the system limit (Iccmax) 

Vcc will exceed the voltage limit (Vccmax) when executing AVX2 code at a frequency of 4.9 GHz

For both mobile frequencies, the voltage (Vcc) is below the system limit (Vccmax) 

Icc will exceed the current limit (Iccmax) when executing AVX2 code at a frequency of 3.1 GHz

It is due to maximum instantaneous current limit (Iccmax) and 
maximum voltage limit (Vccmax) protection mechanisms

Contrary to the state-of-the-art work’s hypothesis:

The core frequency reduction that directly follows the execution 
of PHIs at the Turbo frequency is not due to thermal management
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AVX Throttling is Not Due to Power Gating

• We study the time it takes to open the AVX power-gate of Coffee Lake

- By comparing it to Haswell system, which doesn’t have an AVX power-gate

• When running AVX2 instructions in a loop 
- Consisting of 300 AVX (VMULPD) instructions that use registers 

Loop Iteration Loop Iteration

1     2     3 1     2      3

Haswell Coffee
Lake

>8ns

Open Power-
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>10us

8-15 ns

The first iteration of the loop running on Coffee Lake is > 8ns longer than the other two iterations

For the Haswell processor all iterations have nearly the same latency

AVX power-gating feature has approximately 8–15 ns of wake-up latency

About 1% of the total throttling time when executing PHIs (>10us)
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AVX Throttling is Not Due to Power Gating

• We study the time it takes to open the AVX power-gate of Coffee Lake

- By comparing it to Haswell system, which doesn’t have an AVX power-gate

• When running AVX2 instructions in a loop 
- Consisting of 300 AVX (VMULPD) instructions that use registers 

Loop Iteration Loop Iteration
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>10us

8-15 ns

The first iteration of the loop running on Coffee Lake is > 8ns longer than the other two iterations

For the Haswell processor all iterations have nearly the same latency

AVX power-gating feature has approximately 8–15 ns of wake-up latency

About 1% of the total throttling time when executing PHIs (>10us)

Contrary to the state-of-the-art work’s hypothesis:

Power-gating AVX execution units accounts for only ~0.1% of 
the total throttling time observed when executing PHIs

The majority of the throttling time is due to voltage transitions
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Multi-level Throttling

• We execute one of 7 instruction types in a loop followed by a 512b_Heavy loop

- Inst0: 64b, 128b_Light, 128b_Heavy, 256b_Light, 256b_Heavy, 512b_Light, and 512b_Heavy

- Heavy instructions: require the floating-point unit or any multiplication

• The throttling period of the 512b_Heavy loop increases when

- The computational intensity of the instructions executed in the preceding loop decreases

• The lower the instructions’ computational intensity in the preceding loop, the 
lower the applied voltage guardband to this instruction 

- Hence, the 512b_Heavy loop requires more time to increase the voltage to the required level

• We observe at least five throttling levels (L1–L5) corresponding to the 
computational intensity of instruction types

Throttling period of a 512b_Heavy loop
Inst0 loop
...
T0:
512b-Heavy loop
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Multi-level Throttling

• We execute one of 7 instruction types in a loop followed by a 512b_Heavy loop

- Inst0: 64b, 128b_Light, 128b_Heavy, 256b_Light, 256b_Heavy, 512b_Light, and 512b_Heavy

- Heavy instructions: require the floating-point unit or any multiplication

• The throttling period of the 512b_Heavy loop increases when

- The computational intensity of the instructions executed in the preceding loop decreases

• The lower the instructions’ computational intensity in the preceding loop the 
lower the applied to voltage guardband to this instruction 

- Hence, the 512b_Heavy loop requires more time to increase the voltage to the required level

• We observe at least five throttling levels (L1–L5) corresponding to the 
computational intensity of instruction types

Throttling period of a 512b_Heavy loop
Inst0 loop
...
T0:
512b-Heavy loop

Current management mechanisms result in 
a multi-level throttling period

depending on the computational intensity of the PHIs
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Throttling Affects SMT Threads

• We study the source of throttling and its microarchitectural impact 

• We track the number of micro-operations (uops) that the core pipeline delivers 
from the front-end to the back-end during throttled and non-throttled AVX2 loops

• The front-end does not deliver any uop in approximately three-quarters (~75%) of 
the core cycles even though the back-end is not stalled

• The core uses a throttling mechanism that limits the number of uops delivered 
from the front-end to the back-end during a certain time window

• We found that this throttling mechanism affects both threads in Simultaneous 
Multi-Threading (SMT)

Cannon Lake

Front-end

2 3 4 5 6 7 8

        

        

...

...

...

Clock 

Unthrottled

1

Throttled

IDQ
Back-end 
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Throttling Affects SMT Threads

Cannon Lake

Front-end

2 3 4 5 6 7 8

        

        

...

...

...

Clock 

Unthrottled

1

Throttled

IDQ
Back-end 

• We study the source of throttling and its microarchitectural impact 

• We track the number of micro-operations (uops) that the core pipeline delivers 
from the front-end to the back-end during throttled and non-throttled AVX2 loop

• The front-end does not deliver any uop in approximately three-quarters (~75%) 
of the core cycles even though the back-end is not stalled

• The core uses a throttling mechanism that limits the number of uops delivered 
from the front-end to the back-end during a certain time window

• We found that this throttling mechanism affects both threads in Simultaneous 
Multi-Threading (SMT)

It is rather because the core blocks the
front-end to back-end uop delivery during 75% of the time

This throttling mechanism affects both threads in an SMT Core

Contrary to the state-of-the-art work’s hypothesis:

The 4× core IPC reduction that directly follows the execution 
of PHIs is not due to reduced core clock frequency of 4×
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IChannels Covert Channels 

• Threat model consists of two malicious user-level attacker applications, 
sender and receiver, which cannot communicate through overt channels

• We build three high-throughput covert channels between sender and receiver 
that exploit throttling side-effects of current management mechanisms
- On the same hardware thread

- Across SMT threads, and 

- Across cores

• Each covert channel sends 2 bits from Sender to Receiver in every transaction
- Each covert channel should wait for reset-time (~650us) before starting a new transaction

- We demonstrate the covert channels on real Intel Coffee Lake and Cannon Lake system 

Sender Receiver
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• IccThreadCovert covert channel exploits the side effect of Multi-Throttling-Thread

• Multi-Throttling-Thread: Executing an instruction with high computational intensity 
results in a throttling period proportional to the difference in voltage requirements of 

- The currently and previously executing instructions

Executes scalar
instruction with IPC=2

Inst0 loop starts 
executing wit  I C=1

Covert Channel 1: IccThreadCovert (1/2)

Inst0 loop
...
T0:
512b-Heavy loop
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512b_Heavy_loop_TP

Inst0 loop is throttled (IPC=1/4) 
while ramping the voltage (Vcc)

Once t e target Vcc is reac ed, 
t e t rottling is stopped (I C=1)

W en 512b_Heavy loop is executed, it is first t rottled (I C 
= 1/4) w ile ramping t e Vcc to accommodate 512b_Heavy

T0 throttling period (TP) 
dependent on the 

computational intensity 
of Inst0 loop

The remaining voltage required to execute a 512b_Heavy instruction depends 
on the previous Vcc level that was reached when Inst0 loop was executed
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Covert Channel 1: IccThreadCovert (2/2)

• IccThreadCovert exploits the Multi-Throttling-Thread side-effect to build a covert 
channel between Sender and Receiver:

• The Sender executes a PHI loop with a computational intensity level (L1–L4) depending 
on the values of two secret bits it wants to send

• The Receiver can infer the two bits sent by the Sender based on the measured TP of 
the 512b_Heavy loop 

- The higher the power required by the PHI loop executed by the Sender, the shorter the TP experienced 
by the Receiver will be

Sender Receiver



26

0

5

10

15

20

25

30

35

0

1

2

1 3 5 7 9 111315171921

V
o

lt
ag

e 
(m

V
)

T0
 o

r 
T1

IP
C

Time (us)

IPC Vcc

¼ 

64b loop starts

T1 TP

Inst0 loop starts

64b loop is executed here

Inst0 loop is executed here

T0 (Core0):
Inst0 loop
...

T1 (Core0):
...
64b loop
...

0

5

10

15

20

25

64
b

1
2

8
b

 L
ig

h
t

1
2

8
b

 H
ea

vy

2
5

6
b

 L
ig

h
t

2
5

6
b

 H
ea

vy

5
1

2
b

 L
ig

h
t

5
1

2
b

 H
ea

vy

T
P

 (
u

s)
Code 0 HPIs

L1L2

L4
L5

L3

Inst0
T1

 T
P 

(u
s)

64b_loop_TP

• IccSMTcovert covert channel exploits the side effect of Multi-Throttling-SMT

• Multi-Throttling-SMT: when a thread is throttled due to executing PHIs, the co-
located SMT thread is also throttled

- We discover that co-located hardware threads are throttled together because the throttling 
mechanism in the core pipeline blocks the front-end to back-end interface during three-
quarters of the TP for the entire core

Covert Channel 2: IccSMTcovert (1/2)

Once the target Vcc is reached, 
the throttling is stopped (IPC = 1)

  reads Execute scalar
instructions wit  I C=2

 0 starts executing Inst0 loop wit  I C=1
 1 starts executing 64b loop wit  I C=1

T1 throttling period (TP) depends on the computational intensity of Inst0 (executed by T0), 
which determines Vcc level to which the processor needs to increase the supply voltage

 0 and  1 loops are t rottled (I C=1/4) 
w ile ramping t e voltage (Vcc)
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Covert Channel 2: IccSMTcovert (2/2)

• IccSMTcovert exploits the Multi-Throttling-SMT side-effect to build a covert 
channel between Sender and Receiver:

• The Sender executes a PHI loop with a computational intensity level (L1–L4) 
depending on the values of two secret bits it wants to send

• The Receiver can infer the two bits sent by the Sender based on the measured TP of 
the 64b loop 
- The higher the power required by the PHI loop executed by the Sender, the higher the TP experienced 

by the Receiver will be

Sender Receiver
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T0 (Core0):
Inst0 loop
...

T1 (Core1):
...
128b-Heavy loop
...

• IccCoresCovert covert channel exploits the side effect of Multi-Throttling-Cores

• Multi-Throttling-Cores: when two cores execute PHIs at similar times, the throttling 
periods (TP) are exacerbated proportionally to the computational intensity of each PHI
executed in each core

- This increase in the TP is because the power management unit (PMU) waits until the voltage 
transition for core A to complete before starting the voltage transition for core B

Covert Channel 3: IccCoresCovert (1/2)

 0/ 1 in core0/1 starts executing 
Inst0/128b-Heavy loop wit  I C=1

Once t e  0 target Vcc is reac ed, 
 0 t rottling is stopped (I C = 1)

T1 continues to be throttled since the PMU will not handle 
T1 voltage transition until T0 voltage target is reached

T1 TP depends on the computational intensity of Inst0, which determines Vcc level to which 
the PMU needs to increase the supply voltage before handling T1 voltage transition

 0 and  1 loops are 
t rottled (I C=1/4)
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Covert Channel 3: IccCoresCovert (2/2)

• IccCoresCovert exploits the Multi-Throttling-Cores side-effect to build a covert 
channel between Sender and Receiver:

• The Sender executes a PHI loop with a computational intensity level (L1–L4) 
depending on the values of two secret bits it wants to send

• The Receiver can infer the two bits sent by the Sender based on the measured TP of 
the 128b_Heavy loop 
- The higher the power required by the PHI loop executed by the Sender, the higher the TP experienced 

by the Receiver will be

Sender Receiver
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Methodology

• Framework: We evaluate IChannels on Coffee Lake and Cannon Lake

- We test IccThreadCovert and IccCoresCovert on both processors, but we test 
IccSMTcovert only on Cannon Lake as Coffee Lake does not support SMT

• Workloads: Proof-of-concept codes of each of the three
IChannels covert channels

• Comparison Points: We compare IChannels to four recent works
- That exploit different power management mechanisms of modern processors 

to build covert channels
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Results – IccThreadCovert

• We compare IccThreadCovert against NetSpectre
- The state-of-the-art work that exploits the variable latency of PHIs to create a covert 

channel between two execution contexts running on the same hardware thread

• The NetSpectre covert channel can send one bit per transaction, 
- IccThreadCovert covert channel can send two bits per transaction
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Results – IccSMTcovert & IccCoresCovert

• We compare IccSMTcovert and IccCoresCovert against DFScovert, TurboCC
and PowerT

- The state-of-the-art works that exploit different power management mechanisms
of modern processors to build covert channels across cores and SMT threads

• IccSMTcovert/IccCoresCovert throughput is 145×, 47×, and 24×

- The throughput of DFScovert, TurboCC, and PowerT, respectively 

• The three works exploit slow mechanisms (e.g., frequency/thermal changes) 

- Compared to the current management side-effects that our IChannels exploits
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Other Results in the Paper

• We propose practical hardware or software techniques 
for the mitigation of IChannels covert channels:
- Fast Per-core Voltage Regulators

- Improved Core Throttling

- New Secure Mode of Operation
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Conclusion
Problem: Current management mechanisms throttle instruction execution and adjust 

voltage/frequency to accommodate power-hungry instructions (PHIs).

These mechanisms may compromise a system’s confidentiality guarantees

Goal:

1. Understand the throttling side-effects of current management mechanisms

2. Build high-capacity covert channels between otherwise isolated execution contexts

3. Practically and effectively mitigate each covert channel

Characterization: Variable execution times and frequency changes due to running PHIs

We observe five different levels of throttling in real Intel systems

IChannels: New covert channels that exploit side-effects of current management mechanisms 

• On the same hardware thread

• Across co-located Simultaneous Multi-Threading (SMT) threads

• Across different physical cores

Evaluation: On three generations of Intel processors, IChannels provides a channel capacity 

• 2× that of PHIs’ variable latency-based covert channels 

• 24× that of power management-based covert channels 
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