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We now need more than ever to make genome analysis more intelligent. We need to read, analyze, and
interpret our genomes not only quickly, but also accurately and efficiently enough to scale the analysis to
population level. There currently exist major computational bottlenecks and inefficiencies throughout
the entire genome analysis pipeline, because state-of-the-art genome sequencing technologies are still
not able to read a genome in its entirety. We describe the ongoing journey in significantly improving
the performance, accuracy, and efficiency of genome analysis using intelligent algorithms and hardware
architectures. We explain state-of-the-art algorithmic methods and hardware-based acceleration
approaches for each step of the genome analysis pipeline and provide experimental evaluations.
Algorithmic approaches exploit the structure of the genome as well as the structure of the underlying
hardware. Hardware-based acceleration approaches exploit specialized microarchitectures or various
execution paradigms (e.g., processing inside or near memory) along with algorithmic changes, leading
to new hardware/software co-designed systems. We conclude with a foreshadowing of future challenges,
benefits, and research directions triggered by the development of both very low cost yet highly error
prone new sequencing technologies and specialized hardware chips for genomics. We hope that these
efforts and the challenges we discuss provide a foundation for future work in making genome analysis
more intelligent.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Sequencing genomic molecules stimulates research and devel-
opment in biomedicine and other life sciences through its rapidly
growing presence in clinical medicine [1–5], outbreak tracing [6–
10], and understanding of pathogens and urban microbial commu-
nities [11–15]. These developments are driven in part by the suc-
cessful sequencing of the human genome [16] and in part by the
introduction of high-throughput sequencing technologies that
have dramatically reduced the cost of DNA sequencing [17]. The
bioinformatics community has developed a multitude of software
tools to leverage increasingly large and complex sequencing data-
sets [18–20]. These tools have reshaped the landscape of modern
biology and become an essential component of life sciences [21].
The increasing dependence of biomedical scientists on these pow-
erful tools creates a critical need for faster and more efficient com-
putational tools. Our understanding of genomic molecules today is
affected by the ability of modern computing technology to quickly
and accurately determine an individual’s entire genome. In order
to computationally analyze an organism’s genome, the DNA mole-
cule must first be converted to digital data in the form of a string
over an alphabet of four letters or base-pairs (bp), commonly
denoted by A, C, G, and T. The four letters in the DNA alphabet cor-
respond to four chemical bases, adenine, cytosine, guanine, and
thymine, respectively, which make up a DNA molecule. After more
than 7 decades of continuous attempts (since 1945 [22]), there is
still no sequencing technology that can read a DNA molecule in
its entirety. As a workaround, sequencing machines generate ran-
domly sampled subsequences of the original genome sequence,
called reads [23]. The resulting reads lack information about their
order and corresponding locations in the complete genome. Soft-
ware tools, collectively known as genome analysis tools, are used
to reassemble read fragments back into an entire genome sequence
and infer genomic variations that make an individual genetically
different from another.

There are five key initial steps in a standard genome sequencing
and analysis workflow [18], as we show in Fig. 1. The first step is
obtaining the genomic data either through sequencing a DNA
molecule, downloading real data from publicly available databases,
or computer simulation. Sequencing requires the collection and
preparation of the sample in the laboratory or on-site. The second
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step, known as basecalling, is to process the raw sequencing data as
each sequencing technology generates different representations of
the sequencing data. The basecalling step must convert the raw
sequencing data into standard format of sequences of A, C, G, and
T in the DNA alphabet. The third step, known as quality control,
examines the quality of each sequenced base and decides which
bases of a read to trim, as sequencing machines introduce different
types and rates of sequencing errors leading to inaccurate end
results. The fourth step is a process known as read mapping, which
matches each read sequence to one or more possible locations
within the reference genome (i.e., a representative genome
sequence for a particular species), based on the similarity between
the read and the reference sequence segment at that location.
Unfortunately, the bases in a read may not be identical to the bases
in the reference genome at the location that the read actually
comes from. These differences may be due to (1) sequencing errors
(with a rate in the range of 0.1–20 % of the read length, depending
on the sequencing technology), and (2) genetic differences that are
specific to the individual organism’s DNA and may not exist in the
reference genome. A read mapping step must tolerate such differ-
ences during similarity check, which makes read mapping even
more challenging. The fifth step, known as variant calling, aims to
identify the possible genetic differences between the reference
genome and the sequenced genome. Genetic differences include
small variations [24] that are less than 50 bp, such as single nucleo-
tide polymorphisms (SNPs) and small insertions and deletion (in-
dels). Genetic differences can also be larger than 50 bp
variations, known as structural variations [25], which are caused
by chromosome-scale changes in a genome. For example, insertion
of an about 600,000-base long region has been observed in some
chromosomes [26].

We define intelligent genome analysis as the ability to read,
analyze, and interpret genomes not only quickly, but also accu-
rately and efficiently enough to scale the analysis to population
level. Some existing works on accelerating one or more steps in
genome analysis sacrifice the optimality of the analysis results in
order to reduce execution time (as described in [18,27]). Genome
analysis is currently a first-tier diagnostic test for critically ill
patients with rare genetic disorders, which necessitates the need
for making the analysis much faster while maintaining the same
or providing better analysis accuracy for successful clinical practice



Fig. 1. Overview of a typical genome analysis pipeline. 1) Genomic sequencing data is first obtained through sequencing a new sample, downloading from publicly-available
databases, or computer simulation. Sequencing starts with (A) extracting the DNA, (B) fragmenting it, (C) preparing its library, and (D) using sequencing machines for
providing raw sequencing data. 2) Raw sequencing data needs to be converted into read sequences of A, C, G, T in the DNA alphabet using basecalling techniques. Basecalling
techniques are sequencing technology dependent. 3) To ensure high quality sequencing reads, a quality control step is performed to filter out low quality subsequences of a
read or an entire read sequence. 4) Read mapping step is performed to locate each read sequence in a reference genome. Read mapping is four steps: (A) indexing the
reference genome, (B) extracting seeds from each read and locating common seeds with the index, (C) pre-alignment filtering dissimilar sequence pairs, and (D) performing
sequence alignment for every sequence pair that passes the filtering. 5) Detecting and inferring genomic variations usually consists of three steps: (A) processing the read
mapping data for increasing its quality, (B) classifying variations between mapped reads and a reference genome, and (C) identifying genomic variations.
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[1,2,28,29]. For example, it is observed that at least 10 % of read
sequences simulated from the human reference genome remain
unmapped across 14 state-of-the-art aligners [30] due to potential
mapping artifacts [31], which demonstrates that accuracy is still an
issue even in read mapping that is extensively studied. On the
other hand, the vast majority of genome analysis tools are
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implemented as software running on general-purpose computers,
while sequencing is performed using extremely specialized, high-
throughput machines [18]. This introduces two main problems.
1) Modern sequencing machines generate read fragments at an
exponentially higher rate than prior sequencing technologies, with
their growth far outpacing the growth in computational power in
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recent years [32]. 2) Genome analysis generates a large amount of
data movement between the sequencing machine and the com-
puter performing the analysis and between different components
(e.g., compute units and main memory) of computers. The data
movement across power-hungry buses is extremely costly in terms
of both execution time and energy [33–41]. Increasing the number
of CPUs used for genome analysis may decrease the overall analysis
time, but significantly increases energy consumption and hard-
ware costs, and potentially worsens the data movement bottleneck
(more cores competing for memory access) [42,43]. Cloud comput-
ing platforms still suffer from similar issues along with additional
concerns due to genomic data protection guidelines in many coun-
tries [44–49].

These costs and challenges are a significant barrier to enabling
intelligent genome analysis that can keep up with sequencing
technologies. As a result, there is a dire need for new computa-
tional techniques that can quickly process and analyze a tremen-
dous number of extracted reads in order to drive cutting-edge
advances in applications of genome analysis [27,35,36,50,51].
There exists a large body of work trying to tackle this problem
by using intelligent algorithms, intelligent hardware accelerators,
and intelligent hardware/software co-design [33–35,52–54]. Com-
puter algorithms and hardware architectures are called intelligent if
they are able to efficiently satisfy-three principles, data-centric,
data-driven, and architecture/algorithm/data-aware [55]. First,
we would like to process genomic data efficiently by minimizing
data movement and maximizing the efficiency with which data
is handled, i.e., stored, accessed, and processed. Second, we would
like to take advantage of the vast amounts of genomic data and
metadata to continuously improve decision making (self-optimiz
ing decisions) for many different use cases in science, medicine,
and technology. Third, we would like to orchestrate the multiple
components across the entire analysis system and adapt algo-
rithms by understanding the structure of the underlying hardware,
understanding analysis algorithms, and understanding various
properties (i.e., the structure of the genome, type of sequencing
data, quality of sequencing data) of each piece of data.

Our goal in this work is to survey a prominent set of these three
types of intelligent acceleration efforts for guiding the design of
new highly-efficient tools for intelligent genome analysis. To this
end, we (1) discuss various state-of-the-art mechanisms and tech-
niques that improve the execution time of one or more steps of the
genome analysis pipeline using different modern high-
performance computing architectures, and (2) highlight the chal-
lenges, that system designers and programmers must address to
enable the widespread adoption of hardware-accelerated intelli-
gent genome analysis. We comprehensively survey the efforts for
accelerating read mapping step using algorithms, hardware/soft-
ware codesign, and hardware accelerators in [27,56]. We also pro-
vide a systematic survey of algorithmic foundations and
methodologies across 107 read mapping methods along with rigor-
ous experimental evaluations in [18]. Different from these efforts,
in this work we provide a systematic survey of all the five compu-
tational steps (obtaining the genomic data, basecalling, quality
control, read mapping, and variant calling) of genome analysis with
emphasis on the challenges introduced by the three prominent
sequencing technologies from Illumina, Oxford Nanopore Tech-
nologies (ONT), and Pacific Biosciences (PacBio).
2. Obtaining genomic sequencing data

Genomic sequencing data (reads) can be obtained by 1)
sequencing a DNA sample, 2) downloading real sequencing data
from publicly available databases, or 3) simulating sequencing
data, as we show in Fig. 1.1.
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2.1. Generating sequencing data

One of the earliest successful protein sequencing attempts was
made in the 1950 s by Frederick Sanger who devoted his scientific
life to the determination of the chemical structure of biological
molecules, especially that of insulin [22,23,57,58]. The first DNA
sequencing was successful only after two decades, in 1977, as
introduced in two different sequencing methods by Sanger and
Coulson [57], and by Maxam and Gilbert [59]. Though there was
constant progress in sequencing attempts for different small gen-
omes, we could obtain the first draft of the human genome
sequence only in June 2000 as a result of a large international con-
sortium, costing more than USD 3 billion (USD 1 for each DNA
base) and more than 10 years of research [16,60]. This sequencing
era was referred to as first generation sequencing. Since then, DNA
sequencing has evolved at a fast pace with increasing sequencing
throughput and decreasing cost, which lead to frequent updates
and major improvements to the human genome sequence [61–
63] and very recently have resulted in a near-complete human
genome sequence [64]. These advances reshaped the landscape
of modern biology and sequencing became an essential component
of biomedical research.

Generating sequencing data includes three key steps: sample
collection, preparation (known as library preparation [65]), and
sequencing (Fig. 1.1). Sample collection and library preparation
significantly depend on the protocol, preparation kit, minimum
amount of DNA in the sample, and the sequencing machine, which
require meeting rigorous requirements by the manufacturer of
sequencing machines for the successful sequencing. The sample
collection and library preparation steps are performed using non-
computational methods in the ‘‘wet” laboratory or on-site, espe-
cially when the used sequencing machine is portable, prior to per-
forming the actual sequencing. Each sequencing machine has
different properties such as sequencing throughput, read length,
sequencing error rate, type of raw sequencing data, sequencing
machine size, and cost. Sequencing throughput is defined as the
number of bases generated by the sequencing machine per second.
Reads can have different lengths and they can be categorized into
three types: 1) short reads (up to a few hundred bp), 2) ultra-long
reads (ranging from hundreds to millions of bp), and 3) accurate
long reads (up to a few thousands of bp). Though most of the exist-
ing sequencing machines are fundamentally different, they also
share common properties, such as requiring library preparation,
generating only fragments (i.e., reads) of the DNA sequence, intro-
ducing errors in the output sequencing data, and requiring con-
verting the raw sequencing data into sequences of nucleotides
(i.e., A, C, G, and T in the DNA alphabet). Most existing sequencing
technologies start with DNA fragmentation as part of the library
preparation protocol. DNA fragmentation refers to intentionally
breaking DNA strands into fragments using, for example, reso-
nance vibration [65,66]. DNA fragmentation helps to exploit a large
number of DNA fragments for higher sequencing yield, as sequenc-
ing quality usually degrades towards the end of long DNA frag-
ments [67] due to for example the limited lifetime of polymerase
enzymes used for sequencing [68].

2.2. Downloading real sequencing data

Research groups, laboratories, and authors of research papers
normally release their sequencing data on publicly available repos-
itories to meet requirements of both reproducibility in biomedical
and life science research and journals for data sharing [69]. There
are currently more than 29 peta (1015) bases of sequencing data
publicly available as FASTQ files on the Sequence Read Archive
(SRA) database [70], which is doubling in the number of bases
every 2 years [71]. Other databases are also available, such as the
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European Nucleotide Archive (ENA) [72]. There are also a large
number of reference genome sequences, as FASTA files, for more
than 108,257 distinct organisms publicly available in the NCBI Ref-
erence Sequence Database (RefSeq) database [73], which is dou-
bling in the number of organisms every 3 years [74].
2.3. Simulating sequencing data

Sequencing data can be generated using computer simulation
[75–78]. Many computational laboratories use simulated sequenc-
ing data, as they lack adequate resources to generate their
sequencing data using sequencing machines [19] or lack access
to gold standard experimental data when self-assessing a newly
developed tool [12,79]. Existing sequencing technologies use dif-
ferent mechanisms and chemistries that result in sequencing data
with different characteristics. Read simulators take into account
many of these characteristics by modeling them according to each
technology. These simulators differ in target sequencing technol-
ogy, input requirements, and output format. They also have several
aspects in common, such as requiring a reference genome, the min-
imum and maximum read lengths, sequencing error distribution,
and type of genetic variations (e.g., substitutions, insertions, or/
and deletions) that make read sequences different from the refer-
ence genome sequence. Most read simulators generate different
Table 1
Summary of the main differences between the three types of prominent sequencing techno
technology.

Short Reads Ultr

Leading company Illumina (https://www.illumina.com) Oxfo
(htt

Representative instrument Illumina NovaSeq 6000 ONT
Instrument picture

Instrument weight 481 kg 28 k
Instrument dimension (W � H � D in

cm)
80 � 94.5 � 165.6 59 �

Instrument cost1 3Y Y
Read length 100–300 100–
Read length in a single data file Fixed Vari
Accuracy 99.9 % 90 %
Maximum sequencing throughput per

run
6 Tb 14 T

Number of flow cells operating
simultaneously

2 48

Hands-on library preparation time 45 min � 2 h 10 m
Turnaround library preparation time4 1.5–6.5 h 24 h
Sequencing run time (including

basecalling)
44 h 72 h

1 Y can be as low as USD 300,000. The cost does not include consumables (e.g., flow c
2 Consensus accuracy.
3 Per SMRT cell. Sequel IIe can process up to 8 SMRT cells sequentially, slide 25

Release_Technical_Overview_for_Sequel_II_System_and_Sequel_IIe_System_Users-Custo
4 Includes both hands-on library preparation time and waiting time.
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standard file formats, such as FASTQ, FASTA, or BAM, which can
be used to locate potential mapping locations of each read in the
reference genome.

Examples of read simulators for these three types include ART
[80], Mason [78], and ReSeq [81] for short reads, PBSIM2 [76]
and NanoSim [77] for ultra-long reads, and PBSIM [82] for accurate
long reads (known as HiFi reads). However, the use of read simula-
tions poses several limitations, as simulated data recapitulates the
important features of real data and oversimplifies/biases the chal-
lenge for tested methods [19]. To avoid such biases, a common
practice and more-comprehensive approach is to complement
the simulated data with real experimental data. Hence, most jour-
nals require making the new sequencing data publicly accessible
and explicitly reporting the accession number (a unique identifier
given to sequencing data) of existing sequencing data used in the
study.
3. Types of genomic sequencing data

There currently exist three different sequencing technologies
that are widely-used to sequence DNA samples around the globe
and in space [83]. Current prominent sequencing technologies
and their output data can be categorized into three types: 1) short
reads, 2) ultra-long reads, and 3) accurate long reads. In Table 1, we
logies. We choose the most capable instrument as a representative of each sequencing

a-long Reads Accurate Long Reads

rd Nanopore Technologies
ps://nanoporetech.com)

Pacific Biosciences (https://
www.pacb.com)

PromethION 48 PacBio Sequel IIe

g 362 kg
19 � 43 92.7 � 167.6 � 86.4

1.6Y
2 M 10 K-30 K
able Modest Variability
-98 % 99.9 %2

b 35 Gb (160 Gb of raw sequencing
data)3

1

in-3 h 6 h
24 h
30 h

ells and reagents) needed for each sequencing run.

https://www.pacb.com/wp-content/uploads/HiFi_Sequencing_and_Software_v10.1_
mer-Training-01.pdf.

https://www.illumina.com
https://nanoporetech.com
https://www.pacb.com
https://www.pacb.com
https://www.pacb.com/wp-content/uploads/HiFi_Sequencing_and_Software_v10.1_Release_Technical_Overview_for_Sequel_II_System_and_Sequel_IIe_System_Users-Customer-Training-01.pdf
https://www.pacb.com/wp-content/uploads/HiFi_Sequencing_and_Software_v10.1_Release_Technical_Overview_for_Sequel_II_System_and_Sequel_IIe_System_Users-Customer-Training-01.pdf
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summarize the main differences between these three types of
prominent sequencing technologies. We provide more details on
the sequencing machine size, cost, throughput, maximum library
preparation time, andmaximum sequencing time for the most cap-
able instrument for each sequencing technology.

3.1. Short reads

Short read sequencing (sometimes called second generation
sequencing) technologies, such as Illumina [17,84,85] and Singular
Genomics [86], generate subsequences of length 100–300 bp. Illu-
mina is currently the dominant supplier of sequencing instru-
ments. The key advantage of Illumina short reads is the
significantly low sequencing error rate (as low as 0.1 % of the read
length) introduced by the sequencing machine [87]. Over 6 ter-
abases can be generated in a single sequencing run in about two
days using a single instrument (Illumina NovaSeq 6000). Illumina
sequencing technology, called sequencing by synthesis (SBS), is very
similar to that of the first generation sequencing (i.e., Sanger)
[88,89]. A key procedural difference in comparison to Sanger
sequencing is in the preparation of the sequencing library and
the degree of parallelism and throughput during sequencing. San-
ger sequencing libraries require multiple steps that require growth
in culture and DNA isolation before sequencing [89]. This multistep
process can be completed in approximately-one week, at which
point the processed DNAs are ready for sequencing.

Illumina sequencing requires a hands-on time of less than two
hours (or a turnaround time of up to 6.5 h) to prepare the sample
for sequencing. Library preparation in Illumina sequencing starts
with fragmenting the DNA into short fragments and adding adap-
ters (short single strands of synthetic DNA, called oligonucleotides
[90]) to both fragment ends. These adapters enable binding each
fragment to the flow cell. Fragments can then be amplified to cre-
ate clusters of up to 1,000 identical copies of each single fragment.
Sequencing is then performed base-by-base using a recent
technique called 2-channel sequencing [91]. During each sequencing
cycle (3.5–6.75 min [92]), a mixture of two nucleotides, adenine
and thymine, labeled with the same fluorescent dye (i.e., green
color) is added to each cluster in the flow cell. Images are taken of
the light emitted from each DNA cluster using a CMOS sensor. Next,
a mixture of two nucleotides, adenine and cytosine, labeled with
another fluorescent dye (i.e., red color) is added to each cluster in
the flow cell. Another image is taken of the light emitted from each
DNA cluster. During basecalling, the combinations of ‘‘light
observed” and ‘‘no light observed” in the two images are inter-
preted. E.g., if the light is only observed in the first image, it is inter-
preted as a thymine base. If the light is observed in the second
image, it is interpreted as a cytosine base. Clusterswith light in both
images are flagged as adenine bases, while clusters with no light in
both images represent guanine bases. This process is repeated on
each nucleotide for the length of the DNA fragment (read). The large
number of clusters and the straightforward basecalling process
make Illumina sequencing provide the highest throughput of accu-
rate bases compared to other sequencing techniques.

3.2. Ultra-long reads

Ultra-long read (or nanopore) sequencing, called third generation
sequencing, is more recent than Illumina sequencing. The first
nanopore sequencing machine, MinION, was introduced in 2014
and made commercially available in 2015. The main concept
behind nanopore sequencing was brainstormed much earlier in
the 1990 s [93]. The first MinION sequencing machine was promis-
ing as it was incredibly small in size (smaller than the palm of a
hand and weighing only 87 g) compared to existing sequencing
machines. However, its sequencing accuracy rate was 65 % (i.e.,
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one out of every-three bases is erroneous, which can significantly
degrade the accuracy of downstream analyses) [94].

The nanopore sequencing technology requires first preparing
the sequencing library by fragmenting the DNA sequence and add-
ing a sequencing adapter and a motor protein at each end of the
fragment. The sequencing starts with passing each DNA fragment
through a nanoscale protein pore (nanopore in short) that has an
electrical current passing through it. The sequencer measures
changes to an electrical current as nucleic acids, each with differ-
ent electrical resistance, are passed through the nanopore. Using
the computational basecalling step, the electrical signals are
decoded into a specific DNA sequence. The motor protein helps
control the translocation speed of the DNA fragment through the
nanopore. Over 14 terabases can be generated in a single sequenc-
ing run in about 3 days using a single ONT PromethION 48 instru-
ment (Table 1). Recent nanopore machines use dual electrical
current sensors (called reader heads) to increase the accuracy of
sensing and improve the detection resolution [94,95]. The accuracy
of nanopore sequencing technology has been constantly improving
from 65 % to above 90 % and can reach 98 % for some reads due to
both dual sensing and improved basecalling [96–99]. However, this
comes at the cost of computationally-expensive basecalling, as we
discuss in Section 5.
3.3. Accurate long reads

The latest sequencing technology, referred to as third or fourth
sequencing technology [100], is from Pacific Biosciences (PacBio). It
generates high-fidelity (HiFi) reads that are relatively long (10–
30 K) and highly accurate (99.9 %) [96,101,102]. The PacBio
sequencing requires fragmenting the DNA molecule and adding
double-stranded adapters (called SMRTbell) to both ends of the
fragment. The DNA fragment has a DNA subsequence binding to
its reverse complement sequence. This creates a circular DNA frag-
ment for sequencing. The PacBio sequencing leverages multiple
pass circular consensus sequencing (CCS) by sequencing the same
circular DNA fragment at least 30 times and then correcting errors
by calculating a consensus sequence [102]. Each sequencing pass
through the circular DNA fragment produces a subread, which is
used to calculate the consensus sequence by overlapping all result-
ing subreads of a single DNA fragment. The PacBio sequencing uses
a polymerase that passes through the circular DNA fragment and
incorporates fluorescently labeled nucleotides. As a base is held
by the polymerase, fluorescent light is produced and recorded by
a camera in real-time. The camera provides a movie of up to
30 h of continuous fluorescent light pulses that can be interpreted
into bases. The PacBio sequencing provides the least sequencing
throughput compared to Illumina and ONT. Over 35 gigabases
can be generated in a single sequencing run in about 30 h (Table 1).
3.4. Discussion on types of sequencing reads

Short reads have the advantages of both low sequencing error
rate and high sequencing throughput (number of basecalled bases).
Another property of short reads that can be considered as an
advantage is the equivalent length of all reads stored in the same
FASTQ file, which helps in achieving, for example, load balancing
between several CPU threads. Repetitive regions in genomes pose
challenges for constructing assembly (de novo assembly [103])
using short reads. De novo assembly is an alternative to read map-
ping, in which it constructs the sequence of a genome from over-
lapping read sequences without comparison to a reference-
genome sequence. Both ultra-long reads and accurate long reads
in general offer better opportunities for genome assembly and
detecting complex structural variant calling.
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Ultra-long reads provide two main advantages: 1) providing
more contiguous assembly than that of short reads,where each con-
tig can read up to 3 Mb (covering the typical length of bacteria gen-
omes) [104], and2) its read length is theoretically limitedonlyby the
length of the DNA fragment translocating through the pore [105] as
it does not require enzyme-based nucleotide incorporation, amplifi-
cation for cluster generation, nor detection of fluorescence signals
[94,106]. However, nanopore sequencing data suffers from high
sequencing error rate and some of its computational analysis steps
require longer executing time and higher memory footprint com-
pared to both short reads and accurate long reads. For example, per-
forming de novo assembly (using Canu [107]) using ultra-long reads
is at least fourfold slower than that when using accurate long reads,
which is mainly because of the errors in the raw sequencing data
[104]. This also leads to introducing new computational steps with
the goal of polishing errors in the assembly [97,99,108]. Such new
steps normally increase the computation overhead of analyzing
ultra-long reads as the new steps are computationally expensive
[108]. Another example of expensive steps for analyzing ultra-long
reads is basecalling, which is based on neural networks. For this,
ONT PromethION 48 includes 4 A100 GPU boards for accelerating
basecalling and coping with its sequencing throughput.

The high accuracy of accurate long reads is a key enabler of the
recent improvements in human genome assembly and unlocking
complex regions of repetitive DNA [64]. More than 50 % of the
regions previously inaccessible with Illumina short reads for the
GRCh37 human reference genome are now accessible with HiFi
reads (supplemented with ultra-along reads) for the GRCh38
human reference genome [102]. For other applications, such as
profiling microbiomes through metagenomics analysis, the use of
accurate long reads leads to detecting the same numbers of species
as with the use of short reads [109]. However, the sequencing cost
and computational expensive basecalling required to generate HiFi
reads currently challenge widespread adoption.

This suggests that there is no preferable sequencing data type
for all applications and use cases. Each sequencing technology
has its own unique advantages and disadvantages. The short reads
will continue to be widely used due to their very high accuracy and
low cost. With increases in read lengths of Illumina sequencing
technology [110], there will be a growing demand for adjusting
existing algorithms or introducing new algorithms that leverage
new properties of anticipated Illumina sequencing data. With
increases in accuracy of long and ultra-long reads, there will be a
growing demand for improving execution time of their computa-
tional steps (e.g., basecalling) and reducing overall sequencing cost
to enable widespread adoption.
Fig. 2. Performance comparison of the five m
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4. Genome analysis using different types of sequencing reads

We evaluate the performance of three typical genome analysis
pipelines (Fig. 1) for the three prominent sequencing data types,
1) short reads, 2) ultra-long reads, and 3) accurate long reads, as
we show in Fig. 2. We report the throughput of each step using a
single CPU thread, running on a 2.3 GHz Intel Xeon Gold 5118
CPU with up to 48 threads and 192 GB DDR4 RAM. Note that nano-
pore basecalling is based on the throughput of Guppy running on a
CPU [111]. We report the sequencing throughput using a single
flow cell. We calculate the throughput of each step by dividing
the number of bases (outputted by sequencing and basecalling or
taken by quality control, read mapping, and variant calling) over
the total execution time in hours. We provide the data and exact
command lines used to run each tool in the GitHub repository of
this paper.

We make five key observations based on Fig. 2. 1) Short read
sequencing provides the highest throughput per flow cell com-
pared to other long read sequencing technologies. 2) Genome anal-
ysis of both ultra-long reads and accurate long reads suffers from
long execution time of their basecalling step. This is expected
because both technologies use computationally expensive base-
calling steps, as we explain in detail in Section 5. 3) Read mapping
is the most computationally expensive step, followed by variant
calling, in the genome analysis pipeline for short reads. 4) The first
major bottleneck in the genome analysis pipelines for both accu-
rate long reads and ultra-long reads is variant calling. Read map-
ping is the second and the third bottleneck in the genome
analysis pipelines for accurate long reads and ultra-long reads,
respectively. 5) Sequencing throughput is 341x and 56.8x higher
than the throughput of read mapping and variant calling of short
reads, respectively. Sequencing throughput is 2.4x and 93.2x
(3.8x and 4.8x) higher than the throughput of read mapping and
variant calling of ultra-long reads (accurate long reads),
respectively.

We conclude that each type of sequencing data imposes differ-
ent acceleration challenges and creates its own computational bot-
tlenecks. There is also a dire need for developing new
computational techniques that can overcome the existing compu-
tational bottlenecks and building new hardware architectures that
can reduce data movements between different steps of genome
analysis and improve overall analysis time and energy efficiency.
In the next sections, we survey various state-of-the-art mecha-
nisms and techniques that improve the execution time of one or
more steps of the genome analysis pipelines for different types of
sequencing data.
ain steps of genome analysis pipeline.
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5. Basecalling

Most existing sequencing machines do not provide read
sequences in the DNA alphabets. Instead, they provide a native for-
mat that is sequencing technology dependent. Thus, existing
sequencing technologies require a basecalling step (Fig. 1.2) to con-
vert the native sequencing data format into a standard format that
can be understood by all existing genome analysis tools, regardless
of the sequencing technology used. Basecalling is the first compu-
tational step in the genome sequencing pipeline that converts raw
sequencing data (images for Illumina, movie for PacBio, or electric
current for ONT) into sequences of nucleotides (i.e., A, C, G, and T in
the DNA alphabet). We provide in this section a brief description of
basecalling for the three prominent sequencing technologies, Illu-
mina short reads, Oxford Nanopore ultra-long reads, and PacBio
HiFi accurate long reads. We summarize the main differences
between their basecalling techniques in Table 2.
5.1. Illumina

During each cycle of Illumina sequencing, two images are taken
to identify the possible chemical reactions occurring in DNA clus-
ters. The light intensities captured in one or both images directly
represent the type of the subject nucleotide, as we explain in Sec-
tion 3.1. This information is stored as binary data in the CBCL file
format. Each sequencing run provides a large number of CBCL files
that need to be converted into a single FASTQ file. The basecalling
per CBCL file can take up to 0.21 min (50 % of it is spent on reading
and writing from/to files) [112], which is significantly less than the
time for a single sequencing cycle (3.5–6.75 min [92]).
5.2. ONT

For nanopore sequencing, the conversion of the raw electrical
current signal or squiggle into a sequence of nucleotides is chal-
lenging because: (1) signals have stochastic behavior and low
signal-to-noise ratio (SNR) due to thermal noise and the lack of sta-
tistically significant current signals triggered by DNA motions, (2)
electrical signals can have long dependencies of event data on
neighboring nucleotides, and (3) the sensors (reader heads) used
cannot measure the changes in electrical current due to a single
nucleotide, but rather measuring the effect of multiple nucleotides
together. Nanopore raw data are current intensity values measured
at 4 kHz, saved in the FAST5 format (a modified HDF5 format).
Nanopore basecalling is computationally expensive and its algo-
rithm is quickly evolving. Neural networks have supplanted hidden
Markov model (HMM) based basecallers for their better accuracy,
and various neural network structures are being tested [96,115].
Table 2
Summary of the main differences between the three types of prominent sequencing techno
technology.

Short Reads

Type of raw sequencing data
(before basecalling)

Multiple images of fluorescence intensities for
each sequencing cycle

Input file format for basecalling BCL or CBCL
Expected size of basecalling input

file
One CBCL file of size 350 MB per cycle, lane, and
surface

Basecalling algorithm BCL2FASTQ

Basecalling time 48 minutes1

Number of basecalled bases 83.5 Gb1

1 BCL2FASTQ based on SRR2890933, 1.67 billion reads (full 8 lanes) at 50 bp read len
2 Using a single V100 GPU, adapted from [111].
3 Using CCS v6.0 for a 25 KBases library on 2x64 cores at 2.4 GHz, adapted from [114
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Another important advantage of nanopore basecalling is its ability
to improve read accuracy (by 10 % [116]) by correcting possible
sequencing errors.

ONT provides a production basecaller, called Guppy, and its
development version, Bonito. Guppy is optimized for performance
and accelerated using modern GPUs. Modern neural network
basecallers such as Guppy and Bonito are typically composed
of: (1) residual network with convolutional layers, and/or (2) long
short-term memory-based recurrent layers. RNN-based models
are used to model the temporal dependencies present in basecall-
ing data. Other than Guppy, which is a GPU-based basecaller,
most of the existing basecallers are only implemented for CPU
execution. Thus, basecallers lack dedicated hardware acceleration
implementations, which could greatly reduce the basecalling
time. Even Guppy takes 25 h to basecall a 3 Gb human genome
on a powerful server-grade GPU [117]. Potential alternatives to
further accelerate Guppy and other basecallers are processing-
in-memory techniques [33–36,50,52–54,118–120], which consist
of placing compute capabilities near or inside memory. PIM tech-
niques are particularly well suited for workloads with memory-
bound behavior, as for example RNNs show [39,121]. For that,
algorithm/architecture co-designed processing-in-memory (PIM)
can accelerate Guppy by 6x [117]. ONT also provides Guppy-
lite, a throughput-optimized version of Guppy that provides
higher performance at the expense of the basecalling accuracy.
Therefore, basecallers need to balance the tradeoff between speed
and accuracy depending on the requirements of a particular
application [122].

Instead of bascalling followed by analysis in basepair space, sev-
eral works propose analyzing reads directly in their raw signal
space, obviating or alleviating the need for expensive basecalling
[123,124]. One motivation for such proposals is the Read-Until fea-
ture [125] of ONT sequencing machines, which allows to physically
eject reads from each nanopore in real time if they are deemed not
interesting for the application (e.g., do not belong to target spe-
cies). Ejecting a DNA segment requires analyzing the partial squig-
gle signal much earlier than completing sequencing the complete
DNA segment, which the computationally expensive basecalling
cannot satisfy. SquiggleNet [126] is a deep-learning-based
approach that classifies DNA sequences directly from electrical sig-
nals. SquiggleNet provides 90 % accuracy with real-time process-
ing, which means that SquiggleNet wrongly identifies, on
average, 10 % of the DNA segments as irrelevant. UNCALLED
[127] is another approach that segments raw signals into possible
k-mers and uses Ferragina-Manzini (FM) index along with a prob-
abilistic model to search for k-mer matches with the target refer-
ence genome. UNCALLED achieves an accuracy of 93.7 % with an
average detection speed of less than 50 ms per DNA segment.
Sigmap [128] has comparable performance to UNCALLED, but it
logies. We choose the most capable instrument as a representative of each sequencing

Ultra-long Reads Accurate Long Reads

Electrical signal for each DNA
segment

Fluorescence traces captured continuously
into a 30-hour movie

FAST5 BAM
10x the size of the
corresponding FASTQ file

Subreads.BAM of size 0.5–1.5 TB

Guppy/Bonito (deep neural
networks)

CCS

142 minutes2 24 hours3

20 Gb2 200 Gb of HiFi yield3

gth [113].

].
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overcomes the applicability limitations of UNCALLED to large gen-
omes by optimizing the raw signal mapping pipeline. This opti-
mization leads to a 4.4x improvement in detection performance.
SquiggleFilter [126] matches reads against a target genome using
hardware-accelerated dynamic time warping algorithm
[120,129]. SquiggleFilter needs fewer signal measurements to
identify irrelevant DNA segments compared to UNCALLED, allow-
ing for earlier ejection from the pores. It is computationally
cheaper and particularly suited for sequencing in the field, where
the computational resources are limited. The computational step
of SquiggleFilter can be as fast as 0.027 ms per DNA segment,
depending on the size of the to-be-compared-with reference gen-
ome. Analysis in raw signal space can also provide information that
would otherwise be lost during basecalling, such as chemical mod-
ifications of nucleotides, or estimating the length of the poly(A) tail
of mRNA [123].
5.3. PacBio

For PacBio sequencing, 30 h of continuous fluorescent light
pulses are recorded as a movie. The movie can be directly inter-
preted into bases, resulting in multiple subreads (stored in BAM
format), where each subread corresponds to a single pass over
the circular DNA fragment. The current PacBio basecalling work-
flow is CCS [130], which includes aligning the subreads to each
other using computationally expensive sequencing alignment
tools, such as KSW2 [131] and Edlib [132], and other polishing
steps. We observe that there are currently neither hardware accel-
eration nor alternative more efficient (more customized than
KSW2 and Edlib) algorithms for improving the runtime of PacBio
basecalling.
6. Quality control

The goal of the quality control (QC) step (Fig. 1.3) is to examine
the quality of some regions in the read sequence or the entire read
sequence and trim them if they are of low quality or not needed
anymore (as in adapters for sequencing). Some of the causes for
low quality regions are library preparation (e.g., fragmenting the
DNA into very short fragments) and sequencing (e.g., low base
quality during sequencing) [96,133]. The QC step ensures high
quality of the reads and hence high quality downstream analysis.

The QC step evaluates the quality of the entire read sequence by
(1) examining the intrinsic quality of the read sequence, that is the
average quality score generated by the sequencing machine before
or after basecalling, (2) assessing the length of the read, and (3)
evaluating the number of ambiguous bases (N) in a read. The QC
step also evaluates the quality of individual bases for (1) masking
out an untrustworthy region in a read if the average quality score
of the region’s bases is low and (2) trimming beginning or/and
trailing regions of a read if it is. For example, Illumina sequences
have degraded quality towards the ends of the reads, while adapter
sequences are added to both head and tail of the DNA fragment for
sequencing. Looking at quality distribution over base positions can
help decide the trimming sites. There are also other quality control
steps that can be applied during or after read mapping, such as
those provided by Picard [134], and can be hardware accelerated
as in [135]. Some other quality control steps can be carried out
directly after sequencing and before basecalling, such as trimming
barcode sequences used for labeling different samples to be
sequenced within the same sequencing run [136,137].

There exists a number of software tools for performing QC.
FastQC [138] is the most popular tool for controlling the quality
of Illumina sequencing data. FastQC takes a FASTQ file as its input
and performs ten different quality analyses. A given FASTQ file may
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pass or fail each analysis and a FASTQ file is usually accepted when
it passes all quality analyses. There are also a large number of QC
software tools for long read (both nanopore and HiFi), such as
LongQC [139], which uses expensive read mapping, minimap2
[131], for low coverage detection. RabbitQC [140] exploits modern
multicore CPUs to parallelize the QC computations and provides an
order of magnitude faster performance for the three prominent
types of sequencing technologies. We observe that there are cur-
rently a large number of software tools for QC, but we still lack effi-
cient hardware accelerators for improving the QC step.
7. Read mapping

The goal of read mapping is to locate possible subsequences of
the reference genome sequence that are similar to the read
sequence while allowing at most E edits, where E is the edit dis-
tance threshold. Tolerating a number of differences is essential for
correctly finding possible locations of each read due to sequencing
errors and genetic variations. Mapping billions of reads to the ref-
erence genome is still computationally expensive
[27,35,36,53,141]. Therefore, most existing read mapping algo-
rithms exploit two key heuristic steps, indexing and filtering, to
reduce the search space for each read sequence in the reference
genome. Read mapping includes four computational steps
(Fig. 1.4), indexing, seeding, pre-alignment filtering, and sequence
alignment. First, a read mapper starts with building a large index
database using subsequences (called seeds) extracted from a refer-
ence genome to enable quick and efficient querying of the refer-
ence genome. Second, the mapper uses the prepared index
database to determine one or more possible regions of the refer-
ence genome that are likely to be similar to each read sequence
by matching subsequences extracted from each read with the sub-
sequences stored in the index database.

Third, the read mapper uses filtering heuristics to quickly
examine the similarity for every read sequence and one potential
matching segment in the reference genome identified during
seeding. As only a few short subsequences are matched between
each read sequence and each reference genome segment, there
can be a large number of differences between the two sequences.
Hence filtering heuristics aim to eliminate most of the dissimilar
sequence pairs by performing minimal computations. Fourth, the
mapper performs sequence alignment to check whether or not
the remaining sequence pairs that pass the filter are actually sim-
ilar. Due to potential differences, the similarity between a read
and a reference sequence segment must be identified using an
approximate string matching (ASM) algorithm. The ASM typically
uses a computationally-expensive dynamic programming (DP)
algorithm to optimally (1) examines all possible prefixes of two
sequences and tracks the prefixes that provide the highest possi-
ble alignment score (known as optimal alignment), (2) identify the
type of each difference (i.e., insertion, deletion, or substitution),
and (3) locate each difference in one of the two given sequences.
Such alignment information is typically output by read mapping
into a sequence alignment/map (SAM, and its compressed repre-
sentation, BAM) file [142]. The alignment score is a quantitative
representation of the quality of aligning each base of one
sequence to a base from the other sequence. It is calculated as
the sum of the scores of all differences and matches along the
alignment implied by a user-defined scoring function. DP-based
approaches usually have quadratic time and space complexity
(i.e., (m2) for a sequence length of m), but they avoid re-
examining the same prefixes many times by storing the examina-
tion results in a DP table. The use of DP-based approaches is
unavoidable when optimality of the alignment results is desired
[143].
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We evaluate the performance of three state-of-the-art read
mappers, BWA-MEM2, minimap2, and pbmm2, for three different
types of sequencing data, short reads, ultra-long reads, and accu-
rate long reads, respectively (Table 3). We make three key observa-
tions. 1) The indexing time, indexing peak memory, and index size
provided by the three read mappers all differs significantly though
the three mappers index the same reference genome. BWA-MEM2
provides the highest indexing time, the highest indexing peak
memory, and the highest index size. 2) The mapping throughput
is also rapidly different between the three read mappers as they
perform different algorithms. We define the mapping throughput
as the number of input bases processed in 1 second. 3) The ratio
of the number of primary alignments to the total number of
records in the output SAM file provided by BWA-MEM2, min-
imap2, and pbmm2 is 98.8%, 46.3%, and 92.1%, respectively. Given
the execution time spent on read mapping, all four steps of read
mapping have been targeted for acceleration.
7.1. Accelerating indexing and seeding

Indexing and seeding fundamentally use the same algorithm to
extract the subsequences from the reference genome or read
sequences. The only difference is that the indexing step stores
the seeds extracted from the reference genome in an indexing
database, while the seeding step uses the extracted seeds to query
the indexing database. The indexing step populates a lookup data
structure that is indexed by the contents of a seed (e.g., its hash
value), and identifies all locations where a seed exists in the refer-
ence genome (Fig. 1 .4.A and Fig. 1 .4.B). Indexing needs to be done
only once for a reference genome, thus it is not on the critical path
for most bioinformatics applications. Seeding is performed for
every read sequence and thus it contributes to the execution time
of read mapping. However, the number of extracted seeds in both
steps (indexing and seeding), the length of each seed, and the fre-
quency of each seed can significantly impact the overall memory
footprint, performance, and accuracy of read mapping
Table 3
Evaluation analysis of three state-of-the-art read mappers, BWA-MEM2, minimap2, and p
accurate long reads, respectively.

Short reads Ultra-long reads

Read mapping tool BWA-MEM2 minimap2
Version 2.2.1 2.24-r1122
Reference genome Human genome (HG38), GCA_000001405.15, FASTA size 3.
Indexing time (CPU) 2002 sec 163 sec
Indexing peak memory 72.3 GB 11.4 GB
Indexing size* 17 GB 7.3 GB
Read set (accession

number)
https://www.ebi.
ac.uk/ena/
browser/view/
ERR194147

https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/data/Ashkena
NA24149_father/UCSC_Ultralong_Oxf
Promethion/GM24149_1.fastq.gz

Number of reads 1,430,362,384 6,724,033
Number of bases 144,466,600,784 82,196,263,791
Read mapping time 868.9 hours1 48.6 h
Mapping peak memory 131.2 GB1 9.6 GB
Number of mapped

reads2
2,842,576,9471 3,854,572

Mapping throughput
(input bases/
mapping time)

92,369 bases/sec 469,801 bases/sec

Number of output
mappings (SAM)

2,875,143,231 8,322,218

File size of output
mappings (SAM)

222.6 GB 190.2 GB

1 For paired-end read mapping.
2 After excluding secondary, supplementary, and unmapped alignments using SAMtoo
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[131,144,145]. For example, querying very short seeds leads to a
large number of mapping locations that need to be checked for a
sequence alignment, which makes later steps more computation-
ally costly. In contrast, querying very long seeds may prevent iden-
tifying some mapping locations. This is because the querying
process usually requires the entire seed to exactly appear in the
indexing database, and longer seeds have a higher probability of
containing mismatches. This can lead to missing some mapping
locations and causing a low accuracy (defined in this context as
sensitivity, the ability of a read mapper to find the location of a read
sequence that already exists in the reference genome). The proper-
ties of the data affect the tradeoffs between these choices, for
example long reads tend to have a higher error rate, thus shorter
seed lengths are appropriate for good sensitivity. There are three
major directions for improving the indexing and seeding steps:
(1) better seed sampling techniques, (2) better indexing data struc-
tures, and (3) accelerating the task and minimizing its data move-
ment through specialized hardware.
7.1.1. Sampling seeds
The goal of sampling the seeds is to reduce redundant informa-

tion that can be inferred from extracted seeds. For example, choos-
ing all possible overlapping subsequences of length k, called k-
mers, as seeds causes each base to appear in k seeds, causing
unnecessarily high memory footprint and inefficient querying
due to large number of seed hits. Thus, state-of-the-art read map-
ping algorithms (e.g., minimap2 [131]) typically aim to reduce the
number of seeds that are extracted for the index structure by sam-
pling all possible k-mers into a smaller set of k-mers. A common
strategy to choose such a smaller set is to impose an ordering
(e.g. lexicographically or by hash value) on every group of w over-
lapping k-mers and choosing only the k-mer with the smallest
order as a seed, known as the minimizer k-mers [146].
Minimizer-based approach guarantees finding at least one seed
in a group of k-mers, known as windowing guarantee, ensuring
low information loss depending on the values of k and w.
bmm2, for three different types of sequencing data, short reads, ultra-long reads, and

Accurate long reads

pbmm2
1.7.0

2 GB
144 sec
14.4 GB
5.7 GB

zimTrio/HG003_
ordNanopore_

https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/data/AshkenazimTrio/HG003_
NA24149_father/PacBio_CCS_15kb_20kb_chemistry2/
reads/PBmixSequel729_1_A01_PBTH_30hours_
19kbV2PD_70pM_HumanHG003.fastq.gz
1,289,591
24,260,611,730
17.5 h
20 GB
1,286,256

385,090 bases/sec

1,396,899

54.4 GB

ls and SAM flag 2308.

https://www.ebi.ac.uk/ena/browser/view/ERR194147
https://www.ebi.ac.uk/ena/browser/view/ERR194147
https://www.ebi.ac.uk/ena/browser/view/ERR194147
https://www.ebi.ac.uk/ena/browser/view/ERR194147
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG003_NA24149_father/UCSC_Ultralong_OxfordNanopore_Promethion/GM24149_1.fastq.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG003_NA24149_father/UCSC_Ultralong_OxfordNanopore_Promethion/GM24149_1.fastq.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG003_NA24149_father/UCSC_Ultralong_OxfordNanopore_Promethion/GM24149_1.fastq.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG003_NA24149_father/UCSC_Ultralong_OxfordNanopore_Promethion/GM24149_1.fastq.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG003_NA24149_father/PacBio_CCS_15kb_20kb_chemistry2/reads/PBmixSequel729_1_A01_PBTH_30hours_19kbV2PD_70pM_HumanHG003.fastq.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG003_NA24149_father/PacBio_CCS_15kb_20kb_chemistry2/reads/PBmixSequel729_1_A01_PBTH_30hours_19kbV2PD_70pM_HumanHG003.fastq.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG003_NA24149_father/PacBio_CCS_15kb_20kb_chemistry2/reads/PBmixSequel729_1_A01_PBTH_30hours_19kbV2PD_70pM_HumanHG003.fastq.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG003_NA24149_father/PacBio_CCS_15kb_20kb_chemistry2/reads/PBmixSequel729_1_A01_PBTH_30hours_19kbV2PD_70pM_HumanHG003.fastq.gz
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/HG003_NA24149_father/PacBio_CCS_15kb_20kb_chemistry2/reads/PBmixSequel729_1_A01_PBTH_30hours_19kbV2PD_70pM_HumanHG003.fastq.gz
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Additionally, the frequency (i.e., the size of the location list) of each
minimizer seed can be restricted up to a certain threshold to
reduce the workload for querying and filtering the seed hits
[144,147,148]. Similar to minimizers, the syncmer approach
[149] is a more recent type of sampling method with a different
selection criteria than minimizers that has shown to provide more
uniform distribution of seeds to achieve better sensitivity. The
syncmer approach chooses a seed as a minimizer whose substring
located at a fixed location achieves the smallest order compared to
that of substrings of other seeds. This strategy ensures a certain
gap between any two consecutive minimizers, which enables read
mappers to report mapping locations for reads that are unmapped
using minimizers-based read mappers [150].

To increase the sensitivity of read mappers, other approaches
can be applied, such as spaced [151] and strobemer [152] seeds.
Spaced seeds [151] exclude some bases from each seed following
a predetermined pattern, where the resulting seeds are composed
of multiple shorter substrings [153]. Spaced seeds can achieve high
sensitivity when finding seed matches by allowing the excluded
bases to mismatch (substitute) with their corresponding bases. S-
conLSH [154] is a recent approach that applies the locality-
sensitive hashing idea and uses multiple patterns on the same
sequence to enable excluding different sets of characters belonging
to a sequence. A recent approach, known as strobemers [152],
improves on spaced seeds by varying the sizes of the spaces
dynamically based on selection criterias. These strategies for join-
ing/linking seeds are orthogonal to minimizers and syncmers, and
recent work shows such approaches can be combined for addi-
tional sensitivity improvements [155].

There are also other works that use the minimizer sampling
strategy without providing a windowing guarantee, such as Min-
Hash [156]. MinHash finds a single minimizer k-mer from an entire
sequence (i.e., w equals the sequence length). To find many mini-
mizer k-mers from the same sequence, the idea is to use many
hash functions and find the minimizer k-mer from each hash func-
tion. The goal is to find a minimizer k-mer at n-many regions of a
sequence using n-many different hash functions, providing a sam-
pled set of k-mers. Although the MinHash approach is effective
when comparing sequences of similar lengths, it uses many redun-
dant minimizers when comparing sequences of varying length to
ensure high accuracy, which comes with a high cost of perfor-
mance and memory overhead [157].

7.1.2. Improving data structures for seed lookups
After choosing the appropriate method for extracting seeds, the

goal is to store or query them using the index. The straightforward
data structure to find seed matches is a hash table that stores the
hash value of each seed as a key, and location lists of each seed
as values. Hash tables have been used since 1988 in read mapping
[18] and are still used even by the state-of-the-art read mappers as
they show good performance in practice [131]. Choosing a hash
function is an important design choice for hash tables. It is desired
to use hash functions with low collision rates so that different
seeds are not assigned to the same hash value. It is also desired
to increase the collision rate for highly similar seeds to improve
the overall sensitivity. A recent approach, BLEND [145], aims to
generate hash values such that highly similar seeds can have the
same hash value while dissimilar seeds are still assigned to differ-
ent hash values with low collision rates. Such an approach can find
approximate (i.e., fuzzy) matches of seeds directly using their hash
values, which can be applied to other seeding approaches that
enable finding inexact matching, such as spaced seeds and
strobemers.

There are also other data structures that can be efficiently used
with the aim of reduced memory footprint and improved querying
time. One example of such data structures is FM-index
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(implemented by Langarita et al. [158]), which provides a com-
pressed representation of the full-text index, while allowing for
querying the index without the need for decompression. This
approach has two main advantages. 1) We can query seeds of arbi-
trary lengths, which helps to reduce the number of queried seeds.
2) It typically has less (by 3.8x) memory footprint compared to that
of the indexing step of minimap2 [18]. However, there is no signif-
icant difference in read mapping runtime due to the use of either
indexing data structure [18]. One major bottleneck of FM-indexes
is that locating the exact matches by querying the FM-index is sig-
nificantly slower than that of classical indexes [158,159]. The FM-
index can be accelerated by at least 2x using SIMD-capable CPUs
[160]. BWA-MEM2 [159] proposes an uncompressed version of
the FM-index that is at least 10x larger than the compressed FM-
index to speed up the querying step by 2x. The seeding step of
BWA-MEM2 can be further accelerated by 2x by using enumerated
radix trees on recent CPUs to reduce the number of memory
accesses and improve the access patterns [161]. Hash-based mini-
mizer lookup can be replaced with learned indexes [162]. The
learned indexes use machine learning models to predict the loca-
tions of the queried minimizers. The expected benefit of such a
machine learning-based index is the reduced size of the index as
it does not store the locations of the seeds. However, it is shown
that a learned-index based read mapper has the same memory
footprint as the hash-table based read mapper [163].

7.1.3. Reducing data movement during indexing
Indexing and seeding remain memory-intensive tasks [53], and

hence do not fit modern processor centric systems well. An alter-
native approach is PIM, where processing happens either inside
the memory chip itself, or close to it [34]. This approach can
improve both energy efficiency, by moving data a shorter distance,
as well as throughput, by providing more total memory bandwidth
[34]. MEDAL [164] proposes integrating small ASIC accelerators for
seeding close to off-the-shelf DRAM chips on standard LRDIMM
memory modules. GenStore [53] proposes a seeding and filtering
accelerator inside SSDs, providing comparable advantages to PIM
approaches, but with the key difference that the index and reads
do not have to be moved outside of the storage device for seeding.
The higher internal bandwidth of SSDs provides increased through-
put, and the reduced data movement improves energy efficiency.
RADAR [165] implements the search for exact matches in an index
database by storing the database in 3D Resistive Random Access
Memory (ReRAM) based Content Addressable memory (ReCAM).
The database can be directly queried without offloading it, leading
to a small amount of data movement and highly energy efficient
operation.

7.2. Accelerating pre-alignment filtering

After finding one or more potential mapping locations of the
read in the reference genome, the read mapper checks the similar-
ity between each read and each segment extracted at these map-
ping locations in the reference genome. These segments can be
similar or dissimilar to the read, though they share common seeds.
To avoid examining dissimilar sequences using computationally-
expensive sequence alignment algorithms, read mappers typically
use filtering heuristics that are called pre-alignment filters
(Fig. 1.4.C). The key idea of pre-alignment filtering is to quickly
estimate the number of edits between two given sequences and
use this estimation to decide whether or not the
computationally-expensive DP-based alignment calculation is
needed — if not, a significant amount of time is saved by avoiding
DP-based alignment. If two genomic sequences differ by more than
the edit distance threshold, then the two sequences are identified
as dissimilar sequences and hence DP calculation is not needed.
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Edit distance is defined as the minimum number of single charac-
ter changes needed to convert a sequence into the other sequence
[166]. In practice, only genomic sequence pairs with an edit dis-
tance less than or equal to a user-defined threshold (i.e., E) provide
useful data for most genomic studies [18,51,52,141,167,168]. Pre-
alignment filters use one of four major approaches to quickly filter
out the dissimilar sequence pairs: (1) the pigeonhole principle, (2)
base counting, (3) q-gram filtering, or (4) sparse DP. Long read
mappers typically use q-gram filtering or sparse DP, as their perfor-
mance scales linearly with read length and independently of the
edit distance.

7.2.1. Pigeonhole principle
The pigeonhole principle states that if E items are put into E + 1

boxes, then one or more boxes would be empty. This principle can
be applied to detect dissimilar sequences and discard them from
the candidate sequence pairs used for ASM. If two sequences differ
by E edits, then they should share at least a single subsequence
(free of edits) among any set of E + 1 non-overlapping subse-
quences [141], where E is the edit distance threshold.
Pigeonhole-based pre-alignment filtering can accelerate read map-
pers even without specialized hardware. For example, the Adja-
cency Filter [148] accelerates sequence alignment by up to 19 �.
The accuracy and speed of pre-alignment filtering with the pigeon-
hole principle have been rapidly improved over the last seven
years. Shifted Hamming Distance (SHD) [168] uses SIMD-capable
CPUs to provide high filtering speed, but supports a sequence
length up to only 128 base pairs due to the SIMD register widths.
GateKeeper [167] utilizes the large amounts of parallelism offered
by FPGA architectures to accelerate SHD and overcome such
sequence length limitations. MAGNET [169] provides a compre-
hensive analysis of all sources of filtering inaccuracy of GateKeeper
and SHD. Shouji [141] leverages this analysis to improve the accu-
racy of pre-alignment filtering by up to two orders of magnitude
compared to both GateKeeper and SHD, using a new algorithm
and a new FPGA architecture.

SneakySnake [51] achieves up to four orders of magnitude
higher filtering accuracy compared to GateKeeper and SHD by
mapping the pre-alignment filtering problem to the single net
routing (SNR) problem in VLSI chip layout. SNR finds the shortest
routing path that interconnects two terminals on the boundaries
of a VLSI chip layout in the presence of obstacles. SneakySnake is
the only pre-alignment filter that efficiently works on CPUs, GPUs,
and FPGAs. To further reduce data movements, SneakySnake is
redesigned to exploit the near-memory computation capability
on modern FPGA boards equipped with high-bandwidth memory
(HBM) [54]. Near-memory pre-alignment filtering improves per-
formance and energy efficiency by 27.4x and 133x, respectively,
over SneakySnake running on a 16-core (64 hardware threads)
IBM POWER9 CPU [54]. GenCache [170] proposes to perform
highly-parallel pre-alignment filtering inside the CPU cache to
reduce data movement and improve energy efficiency, with about
20 % cache area overhead. GenCache shows that using different
existing pre-alignment filters together (a similar approach to
[171]), each of which operates only for a given edit distance
threshold (e.g., using SHD only when is between 1 and 5), provides
a 2.5x speedup over GenCache with a single pre-alignment filter.
Several pigeonhole principle based pre-alignment filters are evalu-
ated for wide-range FPGA platforms [172].

7.2.2. Base counting
The base counting filter compares the numbers of bases (A, C, G,

T) in the read with the corresponding base counts in the reference
segment. The sum of absolute differences of the base counts pro-
vides an upper bound on the edit distance of the read and reference
segment. If one sequence has, for example, three more Ts than
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another sequence, then their alignment has at most three edits. If
half of the sum of absolute differences between the four base
counts is greater than E, then the two sequences are dissimilar
and the reference segment is discarded. The base counting filter
is used in mrsFAST-Ultra [173] and GASSST [171]. Such a simple fil-
tering approach rejects a significant fraction of dissimilar
sequences (e.g., 49.8 %–80.4 % of sequences, as shown in GASSST
[171]) and thus avoids a large fraction of expensive verification
computations required by sequence alignment algorithms. A PIM
implementation of base counting can improve filtering time by
100x compared to its CPU implementation [174].

7.2.3. q-gram filtering approach
The q-gram filtering approach considers all of the sequence’s

possible overlapping substrings of length q (known as q-grams).
Given a sequence of length m, there are m � q + 1 overlapping q-
grams that are obtained by sliding a window of length q over the
sequence. A single difference in one of the sequences can affect
at most q overlapping q-grams. Thus, differences can affect no
more than q�E q-grams, where E is the edit distance threshold.
The minimum number of shared q-grams between two similar
sequences is therefore (m � q + 1)�(q�E). This filtering approach
requires very simple operations (e.g., sums and comparisons),
which makes it attractive for hardware acceleration, such as in
GRIM-Filter [52]. GRIM-Filter exploits the high memory bandwidth
and computation capability in the logic layer of 3D-stacked mem-
ory to accelerate q-gram filtering in the DRAM chip itself, using a
new representation of reference genome that is friendly to in-
memory processing. q-gram filtering is generally robust in han-
dling only a small number of edits, as the presence of edits in
any q-gram is significantly underestimated (e.g., counted as a sin-
gle edit) [175]. The data reuse in GRIM-Filter can be exploited for
improving both performance and energy efficiency of filtering
[176].

7.2.4. Sparse dynamic programming
Sparse DP algorithms exploit the exact matches (seeds) shared

between a read and a reference segment to reduce execution time.
These algorithms exclude the corresponding locations of these
seeds from estimating the number of edits between the two
sequences, as they were already detected as exact matches during
indexing. Sparse DP filtering techniques link the overlapping seeds
together to build longer chains and use the total length of the cal-
culated chains as a metric for filtering the sequence pairs. This
approach is also known as chaining, and is used in minimap2
[131] and rHAT [177]. GPU and FPGA accelerators [178] can
achieve 7x and 28x acceleration, respectively, compared to the
sequential implementation (executed with 14 CPU threads) of
the chaining algorithm used in minimap2. mm2-fast [163] acceler-
ates minimap20s chaining step by up to 3.1x with SIMD instruc-
tions. mm2-ax [179] accelerates mm2-fast’s chaining step by up
to 12.6x using a GPU. Modular Aligner [180] introduces an alterna-
tive to chaining based on two seed filtering techniques, achieving
better performance than minimap2 in terms of both accuracy
and runtime.

7.3. Accelerating sequence alignment

After filtering out most of the mapping locations that lead to
dissimilar sequence pairs, read mapping calculates the sequence
alignment information for every read and reference segment
extracted at each mapping location (Fig. 1.4.D). Sequence align-
ment calculation is typically accelerated using one of two
approaches: (1) accelerating optimal affine gap scoring DP-based
algorithms using hardware accelerators, and (2) developing heuris-
tics that sacrifice the optimality of the alignment score solution in
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order to reduce alignment time. Affine gap scores are typically cal-
culated using the Smith-Waterman-Gotoh algorithm [181], allow-
ing for linear integer scores for matches/substitutions, and affine
integer scores for gaps. Affine gap scores are more general than lin-
ear or unit (edit distance) costs, but are more costly to compute by
a constant factor. Despite more than three decades of attempts to
accelerate sequence alignment, the fastest known edit distance
algorithm [182] has a nearly quadratic running time, O(m2/log2m)
for a sequence of length m, which is proven to be a tight bound,
assuming the strong exponential time hypothesis holds [143]. A
common approach to reducing the algorithmic work without sacri-
ficing optimality is to define an edit distance threshold, limiting the
maximum number of allowed single-character edits in the align-
ment. In this case, only a subset of the entries of the DP table is
computed, called diagonal vectors, as first proposed in Ukkonen’s
banded algorithm [183]. The number of diagonal vectors required
for computing the DP matrix is 2E + 1, where E is the edit distance
threshold. This reduces the runtime complexity to O(m*E). This
approach is effective for short reads, where the typical sequencing
error rates are low, thus a low edit distance threshold can be cho-
sen. Unfortunately, as long reads have high sequencing error rates
(up to 20 % of the read length), the edit distance threshold for long
reads has to be high, which results in calculating more entries in
the DP matrix compared to that of short reads. The use of heuristics
(i.e., the second approach) helps to reduce the number of calcu-
lated entries in the DP matrix and hence allows both the execution
time and memory footprint to grow only linearly or less with read
length (as opposed to quadratically with classical DP). Next, we
describe the two approaches in detail.

7.3.1. Accurate alignment accelerators
From a hardware perspective, sequence alignment acceleration

has five directions: (1) using SIMD-capable CPUs, (2) using multi-
core CPUs and GPUs, (3) using FPGAs, (4) using ASICs, and (5) using
processing-in-memory architectures. Parasail [184] and KSW2
(used in minimap2 [131]) exploit both Ukkonen’s banded algo-
rithm and SIMD-capable CPUs to compute banded alignment for
a sequence pair with a configurable scoring function. SIMD instruc-
tions offer significant parallelism to the matrix computation by
executing the same vector operation on multiple operands at once.
mm2-fast [163] accelerates KSW2 by up to 2.2x by matching its
SIMD capability to recent CPU architectures. KSW2 is nearly as fast
as Parasail when KSW2 does not use heuristics (explained in Sec-
tion 7.3.2). The wavefront algorithm (WFA) [185] reformulates
the classic Smith-Waterman-Gotoh recursion such that the run-
time is reduced to O(m*s) for a sequence pair of lengthm and affine
gap cost of s without fixing the value of s ahead of time. It is SIMD-
friendly and shows significant speedups for sequence pairs that
have high similarity. The memory footprint and runtime complex-
ity of WFA can be improved to O(s2) [186]. However, this improved
runtime is not practical due to a large constant factor. The memory
footprint of the WFA algorithm can be improved to O(s) at the
expense of an increase in runtime complexity to O(m*s) [187].
LEAP [188] formulates what can be considered a more general ver-
sion of WFA, which is applicable to any convex penalty scores.

The multicore architecture of CPUs and GPUs provides the abil-
ity to compute alignments of many independent sequence pairs
concurrently. GASAL2 [189] exploits the multicore architecture of
both CPUs and GPUs for highly-parallel computation of sequence
alignment with a user-defined scoring function. Unlike other
GPU-accelerated tools, GASAL2 transfers the bases to the GPU,
without encoding them into binary format, and hides the data
transfer time by overlapping GPU and CPU execution. GASAL2 is
up to 20x faster than Parasail (when executed with 56 CPU
threads). BWA-MEM2 [159] accelerates the banded sequence
alignment of its predecessor (BWA-MEM [190]) by up to 11.6x,
4591
by leveraging multicore and SIMD parallelism. A GPU implementa-
tion [191] of the WFA algorithm improves the original CPU imple-
mentation by 1.5–7.7x using long reads.

Other designs, such as FPGASW [192], exploit the very large
number of hardware execution units in FPGAs to form a linear sys-
tolic array [193]. Each execution unit in the systolic array is
responsible for computing the value of a single entry of the DP
matrix. The systolic array computes a single vector of the matrix
at a time. The data dependency between the entries restricts the
systolic array to computing the vectors sequentially (e.g., top-to-
bottom, left-to-right, or in an anti-diagonal manner). FPGASW
has a similar execution time as its GPU implementation, but is 4x
more power efficient. SeedEx [194] designs an FPGA accelerator
similar to FPGASW, but improves hardware utilization by specula-
tively computing fewer than 2E + 1 diagonal bands, and then
applying optimality checking heuristics to guarantee correct
results. An FPGA accelerator [195] can accelerate the WFA algo-
rithm by up to 8.8x and improve its energy efficiency by 9.7x for
only short reads.

Specialized hardware accelerators (i.e., ASIC designs) provide
application-specific, power- and area-efficient solutions to acceler-
ate sequence alignment. For example, GenAx [196] is composed of
SillaX, a sequence alignment accelerator, and a second accelerator
for finding seeds. SillaX supports both a configurable scoring func-
tion and traceback operations. SillaX is more efficient for short
reads than for long reads, as it consists of an automata processor
whose performance scales quadratically with the edit distance.
GenAx is 31.7x faster than the predecessor of BWA-MEM2 (i.e.,
BWA-MEM [190]) for short reads. Recent PIM architectures such
as RAPID [197] exploit the ability to perform computation inside
or near the memory chip to enable efficient sequence alignment.
RAPID modifies the DP-based alignment algorithm to make it
friendly to in-memory parallel computation by calculating two
DP matrices (similar to Smith-Waterman-Gotoh [181]): one for
calculating substitutions and exact matches and another for calcu-
lating insertions and deletions. RAPID claims that this approach
efficiently enables higher levels of parallelism compared to tradi-
tional DP algorithms. The main two benefits of RAPID and such
PIM-based architectures are higher performance and higher energy
efficiency [33,34], as they alleviate the need to transfer data
between the main memory and the CPU cores through slow and
energy hungry buses, while providing high degree of parallelism
with the help of PIM. RAPID is on average 11.8x faster and
212.7x more power efficient than 384-GPU cluster implementation
of sequence alignment, known as CUDAlign [198]. A recent PIM
architecture of WFA algorithm implemented in real hardware pro-
vides up to 4.87x higher throughput than the 56-thread CPU
implementation using short reads [199].

7.3.2. Alignment accelerators with limited functionality
The second direction is to limit the functionality of the align-

ment algorithm or sacrifice the optimality of the alignment solution
in order to reduce execution time. The use of restrictive function-
ality and heuristics limits the possible applications of the algo-
rithms that utilize this direction. Examples of limiting
functionality include limiting the scoring function (e.g. allowing
only linear gap or unit scores), and calculating only the alignment
score without performing the backtracking step [200]. There are
several existing algorithms and corresponding hardware accelera-
tors that limit scoring function flexibility. An example of limiting
the scoring function is Myers’ bit-vector algorithm [201], where
the scoring function is limited to edit distance [166]. In this case,
all types of edits are penalized equally when calculating the total
alignment score. Restrictive scoring functions enable computation
with smaller bit-widths, such that either smaller registers can be
used, or multiple DP entries fit into a single SIMD register. This
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reduces the total execution time of the alignment algorithm by
operating on multiple DP entries in parallel in a SIMD fashion.In
the case of Myer’s bit-vector algorithm a single 64-bit register
can hold the values of 64 entries of the DP matrix. BitPAl [202]
expands on the idea by limiting the scoring function to linear
gap scores and achieves speedups through bit-parallel execution.
ASAP [203] accelerates edit distance calculation by up to 63.3x
using FPGAs compared to its CPU implementation. The use of a
fixed scoring function as in Edlib [132], which is the state-of-the-
art implementation of Myers’ bit-vector algorithm, helps to out-
perform Parasail (which uses a flexible scoring function) by 12–
1000x. One downside of a limited scoring function is that it may
lead to the selection of a suboptimal sequence alignment, relative
to an affine gap scoring function as in the Smith-Waterman-Gotoh
algorithm. There are also a large number of edit distance approxi-
mation algorithms that provide a reduction in time complexity
(e.g., m1.647 instead of m2), but they suffer from providing overesti-
mated edit distance [204–207].

There are other algorithms and hardware architectures that pro-
vide low alignment time by trading off accuracy. Darwin [36] builds
a customized hardware architecture to speed up the alignment pro-
cess, by dividing the DP matrix into overlapping submatrices and
greedily processing each submatrix using systolic arrays. Darwin
provides three orders of magnitude speedup compared to Edlib
[132]. Greedily processing each submatrix reduces the number of
calculated entries of the full DPmatrix and hence reduces themem-
ory footprint and algorithmic workload, but it leads to suboptimal
alignment calculation [171]. Darwin claims that choosing a large
submatrix size (�320 � 320) and ensuring sufficient overlap
(�128 entries) between adjacent submatrices may provide optimal
alignment calculation for some datasets. GenASM [35] is a frame-
work that uses bit-vector-based ASM and a similar strategy as Dar-
win to acceleratemultiple steps of thegenomeanalysis pipeline, and
is designed to be implemented inside 3D-stackedmemory. Through
a combination of hardware–software co-design to unlock paral-
lelism, and processing-in-memory to reduce data movement, Gen-
ASM achieves 111x/116x speedup over state-of-the-art software
read mappers while reducing power consumption by 33x/37x.

There are other proposals that limit the number of calculated
entries of the DP matrix based on one of two approaches: (1) using
sparse DP or (2) using a greedy approach to maintain a high align-
ment score. Both approaches suffer from producing possibly sub-
optimal alignments [208,209]. The first approach uses the same
sparse DP algorithm used for pre-alignment filtering but as an
alignment step, as done in the exonerate tool [208]. This includes
applying DP-based alignment algorithms only between every-
two non-overlapping chains to quickly estimate the total number
of edits. The second approach is employed in X-drop [209], which
(1) avoids calculating entries (and their neighbors) whose align-
ment scores are more than below the highest score seen so far
(where is a user-specified parameter), and (2) stops early when a
high alignment score is not possible. The X-drop algorithm is guar-
anteed to find the optimal alignment between relatively-similar
sequences for only some scoring functions [209]. A similar algo-
rithm (known as Z-drop) makes KSW2 at least 2.6x faster than
Parasail. A recent GPU implementation [210] of the X-drop algo-
rithm is 3.1–120.4xx faster than KSW2. A related approach is adap-
tive banding [211] (and its improved algorithm Block aligner [212]),
where the band of calculated diagonals is shifted up or down
depending on the highest score in the last calculated anti-diagonal.
8. Variant calling

The goal of variant calling (Fig. 1.5) is to find the differences
between an individual or a group of individuals (i.e., population)
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compared to a reference genome of a species. Calling the variants
is an essential step in genome analysis because the attributes of an
individual or a population (e.g., phenotypes or diseases) are deter-
mined from these variations. To determine these variants, there
are several steps that need to be performed as outlined by tools such
as GATK’s best practices [213] and DeepVariant’s workflow [214].
Variant calling usually iterates over the read mapping information
to identify the variants such as SNPs, short indels, and SVs. Although
there are several algorithms to find SNPs and short indels, the main
idea ofmost of these tools is to find the locations in a genomewhere
the reference genome and the sequencing reads have different
bases. To find such regions, several mapped reads should consis-
tently provide the same edit operation at the same location in a ref-
erence genome to call the variant with a high quality.

Calling the variants with high quality is essential for performing
accurate downstream analysis (e.g., validating a genetic disease)
[215]. There are several parameters that contribute to calling high
quality variants such as high sequencing depth of coverage, highly
accurate sequencing reads (i.e., Illumina and PacBio HiFi), long
reads, accurate and deterministic read mappers. The sequencing
depth of coverage refers to the average number of reads mapped
to each location in the reference genome. This helps variant callers
to better distinguish the genetic mutations from errors (both
sequencing errors and read mapping artifacts [31]). It is also
known that variant calling tools may also be nondeterministic such
that running the same tool multiple times may result in different
results [31]. Thus, it is essential for the community to provide
the best practices to achieve high accuracy due to many parame-
ters involved in high quality variant calling.

There are several efforts in the field to provide best practices
when performing genomic analysis that includes variant calling.
One of the efforts is to provide benchmarking studies to evaluate
the accuracy of the variant calling output [216]. Such comparisons
are usually done by comparing the output from a variant caller
with a ground truth dataset (e.g., GiAB [217]). Another effort is to
suggest the best pipeline of tools to achieve the best accuracy for
variant calling [215]. The computational steps for variant calling
differ from one variant caller to another as each variant caller
focuses on detecting one or a few types of structural (larger than
50 bp) and large variations [218,219]. However, we can generally
categorize the computational steps for variant calling into three
key steps: 1) processing read mapping data, 2) variant classifica-
tion, and 3) generating variant calls.

8.1. Processing read mapping data

The first step prepares read mapping output data (e.g., read
bases, base quality, edit information, strand information) for vari-
ant calling. The output of read mapping (i.e., SAM file) has some
irrelevant information that needs to be cleaned. This includes iden-
tifying and removing read duplicates (reads originated from the
same subsequence of genome sequence) that can be a result of
library preparation using PCR, as they do not lead to any useful
information for variant calling. Most variant callers, including the
best practices of DeepVariant and GATK [213,220], require convert-
ing the input SAM file into its compressed version, BAM file, and
sorting the reported alignments in the BAM file by their coordi-
nates (mapping locations) to facilitate processing overlapping
alignments only once for a fast variant calling.

Some variant callers, such as GATK [221,222], rely on base qual-
ity scores that are reported by sequencing machines. Such variant
callers require an additional step called base quality score recalibra-
tion (BQSR) for recalibrating the base quality scores to account for
various sources of potential systematic (non-random) technical
errors introduced during sequencing. In DeepVariant, processing
read mapping data, called make examples, converts read mapping
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information (read bases, base quality, edit information, strand
information) into images. In DeepVariant, BQSR is not needed, sort-
ing BAM file is required before performing make examples, and
marking read duplicates is optional.

8.2. Variant classification

The second step of typical variant calling is to detect the actual
genomic variations in the processed read mapping data and clas-
sify the variations into SNPs, short indels, and SVs. This step is
called HaplotypeCaller in GATK and it calls the variants using three
stages. First, it finds the alternate alleles from the BAM/SAM file.
Second, it creates a local graph assembly that shows all alternate
and reference alleles including both homozygous and heterozy-
gous alternate loci. Third, it uses PairHMM with the graph to clas-
sify the probability of each allele at each locus to call variants.
Probabilities determine whether a certain alternate loci is homozy-
gous or heterozygous.

DeepVariant considers the task of identifying genetic variants as
an image classification problem. DeepVariant directly applies a
deep neural network based approach, convolutional neural net-
work (CNN), to classify images that are extracted in make exam-
ples step to perform the detection and classification. Each image
is represented as a multi-channel tensor, where each channel rep-
resents one information extracted from read mapping data.
Though DeepVariant is not designed for calling structural varia-
tions [223], recent efforts show that deep neural network based
approaches can detect structural variations [224,225].

8.3. Generating variant calls

The last step filters out the low quality variations and interprets
the classification output as variant calls stored in VCF format.

We evaluate the performance of DeepVariant, a state-of-the-art
variant caller for the three types of sequencing data (Table 4).
DeepVariant uses three phases, make examples, call variants,
post-process variants, that follow the three steps we describe
above [226]. Based on Table 4, we make three key observations.
1) The first step of DeepVariant consumes about 50 % of the execu-
tion time of the second step, variant classification. 2) Using nearly
10x more bases of short read mapping data compared to that of
accurate long reads leads to nearly the same number of variant
calls (PASS) and half of the number of called variants (RefCALL).
3) Variant calling using ultra-long reads is computationally very
expensive, which can be mainly because of the errors in the raw
sequencing data, as we discuss in Section 3.4.

Given the high computational cost of variant calling, there are
efforts focusing on identifying the computational bottlenecks in
the best practices for variant calling and accelerating these bottle-
necks to achieve high performance in variant calling [227,228]. It is
observed that the first step of variant calling, processing read
Table 4
Evaluation analysis of variant calling, using DeepVariant tool, using read mapping results o
long reads.

Short rea

Variant calling tool DeepVari
Version 1.3.0
Total number of bases in input SAM file 250,103,4
Phase 1 (make examples) CPU Time (sec) 250,359
Phase 2 (call variants) CPU Time (sec) 473,962
Phase 3 (post-process variants) CPU Time (sec) 2,193
Total Run Time (sec) 746,514
Number of Called Variants (PASS) 4,644,980
Number of Called Variants (RefCall) 1,313,292
Variant Calling Throughput (Number of called variants / sec) 7.9 varian
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mapping data, includes unnecessary several passes over the read
mapping output data to perform different processing algoritms,
which incurs significant IO overhead, excess memory accesses,
and performance overhead [229]. elPrep [229] takes advantage of
this observation and provides a multithreading processing using
only a single pass over the read mapping output data to perform
key processing steps such as sorting, duplicate marking, BQSR,
and variant calling. It is claimed that elPrep provides 8-16x
speedup compared to GATK (version 4) [230]. A similar approach
is followed in [231] where it overlaps the execution of the first step
with the second step of DeepVariant and enables parallel/dis-
tributed processing to accelerate DeepVariant by 30x using 8 GPUs.
The first step of variant calling, processing read mapping data, can
be separately accelerated by 2x using modern FPGAs as in [135].
Compared to the number of proposed software and hardware
accelerators for read mapping, there are still only a limited number
of hardware accelerators for variant calling. We believe that there
is still a huge need for accelerating the state-of-the-art variant call-
ing tools, such as DeepVariant.
9. Discussion and future opportunities

Despite more than three decades of attempts, bridging the per-
formance gap between sequencing machines and computational
analysis is still challenging. We summarize six main challenges
below.

First, we need to accelerate the entire genome analysis process
rather than its individual steps. Accelerating only a single step of
genome analysis limits the overall achieved speedup according to
Amdahl’s Law. However, some of the computational steps included
in genome analysis pipeline are also included in other genomics
pipelines. For example, improving read mapping performance posi-
tively impacts almost all genomic analyses that use sequencing data
[13,27,35,36,53]. The contribution of read mapping to the entire
analysis pipeline varies depending on the application. For example,
readmapping takes up to 1) 45 % of the execution timewhendiscov-
ering sequence variants in cancer genomics studies [232], and 2)
60 % of the execution time when profiling the taxonomy of a
multi-species (i.e., metagenomic) sample [13]. Illumina and NVIDIA
started following a more holistic approach, and they claim to accel-
erate genomeanalysis bymore than48x,mainly byusing specializa-
tion and hardware/software co-design. Illumina has built an FPGA-
based platform, called DRAGEN [233], that accelerates all steps of
genome analysis, including read mapping and variant calling. DRA-
GEN reduces the overall analysis time from 32 CPU hours to only
37 min [234]. NVIDIA has built Parabricks, a software suite acceler-
ated using the company’s latest GPUs. Parabricks [235] can analyze
whole human genomes at 30x coverage in about 45 min.

Second, we need to reduce the high amount of data movement
that takes place during genome analysis. Moving data (1) between
compute units and main memory, (2) between multiple hardware
f three different types of sequencing data, short reads, ultra-long reads, and accurate

ds Ultra-long reads Accurate long reads

ant PEPPER + DeepVariant DeepVariant
0.8 1.3.0

34,512 56,958,985,752 23,944,354,059
1,136,356 230,066
3,480,419 549,272
2,765 6,201
4,619,540 785,539
6,054,168 4,589,024
6,722,265 2,603,968

ts/sec 2.77 variants/sec 9.2 variants/sec
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accelerators, and (3) between the sequencingmachine and the com-
puter performing the analysis incurshigh costs in termsof execution
timeandenergy. These costs are a significant barrier to enabling effi-
cient analysis that can keep up with sequencing technologies, and
some recent works try to tackle this problem [33,34,52]. DRAGEN
reduces data movement between the sequencing machine and the
computer performing analysis by adding specialized hardware sup-
port inside the sequencingmachine for data compression. However,
this still requiresmovement of compressed data. GenStore [53]mit-
igates datamovement from the storage devices to the rest of the sys-
tem (processors andmainmemory) by processingmore than 80 % of
the input read set inside the storage device.

Third, we need to build more specialized hardware accelerators
that are mainly developed for genomics. Computer programs are
currently widely used for analyzing genomic data, which limits
their scaling capability and efficiency to handle population-level
analyses. We are witnessing a paradigm shift to near-data comput-
ing with more specialized hardware accelerators for other key
applications such as self-driving cars [236], and artificial intelli-
gence with the largest chip ever [237]. This already fuelled huge
interest in genomics especially from large companies, such as NVI-
DIA, which introduces GPU H100 boards that are equipped with
HBM3 and hardware support for building and calculating DP
matrix for sequence alignment. UPMEM also shows significant
benefits for using their PIM-capable memory devices for genome
analysis [238]. We envision that performing genome analysis
inside the sequencing machine itself using emerging technologies
(e.g., PIM-enabled systems) can significantly improve efficiency
by eliminating sequencer-to-computer movement, and embedding
a single specialized chip for genome analysis within a portable
sequencing device can potentially be a key enabler for new appli-
cations of genome sequencing (e.g., rapid surveillance of diseases
such as Ebola [7] and COVID-19 [6,239], near-patient testing,
bringing precision medicine to remote locations). Unfortunately,
efforts in this direction remain very limited.

Fourth, an emerging problem with using a single reference gen-
ome for an entire species is the reference genome bias. The use of a
single reference genome can bias the mapping process and down-
stream analysis towards the DNA composition and variations pre-
sent in the reference organism due to population-specific genetic
variations, individual’s genetic variations, and sequencing errors
[240,241]. An emerging technique to overcome reference bias is
the use of graph-based representations of a species’ genome,
known as genome graphs [242]. A genome graph represents the
reference genome and known genetic variations in the population
as a graph-based data structure. Genome graphs are growing in
popularity for genome analysis, which requires modifying existing
tools or introducing new tools and hardware accelerators for sup-
porting genome graphs instead of linear representations of refer-
ence genomes. Hardware acceleration is demonstrated to greatly
benefit sequence mapping to genome graphs. SeGraM is the first
hardware acceleration framework for sequence-to-graph mapping
and alignment, where it provides an order of magnitude faster and
more energy efficient performance compared to software
sequence-to-graph mapping tools [243]. A new direction to allevi-
ate the computation overhead of using different reference genomes
is to update the existing results of one step of the genome analysis
pipeline for the new reference genome without re-running the
step’s algorithm again. The efforts in this direction are still limited
to only read mapping [62,63,244].

Fifth, we need to develop flexible hardware architectures that do
not conservatively limit the range of supported parameter values at
design time. Commonly-used read mappers (e.g., minimap2) have
different input parameters, each of which has a wide range of input
values. For example, the edit distance threshold is typically user
defined and can be very high (15–20 % of the read length) for recent
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long reads. A configurable scoring function is another example, as it
determines the number of bits needed to store each entry of the DP
matrix (e.g., DRAGEN imposes a restriction on the maximum fre-
quency of seed occurrence). Due to rapid changes in sequencing
technologies (e.g., high sequencing error rate and longer read
lengths) [97,99], these design restrictions can quicklymake special-
ized hardware obsolete. Thus, read mappers need to adapt their
algorithmsand their hardware architectures to bemodular and scal-
able so that they can be implemented for any sequence length and
edit distance threshold based on the sequencing technology.

Sixth, we need to adapt existing genomic data formats for hard-
ware accelerators or develop more efficient file formats. Most
sequencing data is stored in the FASTQ/FASTA format, where each
base takes a single byte (8 bits) of memory. This encoding is inef-
ficient, as only 2 bits (3 bits when the ambiguous base, N, is
included) are needed to encode each DNA base. The sequencing
machine converts sequenced bases into FASTQ/FASTA format, and
hardware accelerators convert the file contents into unique (for
each accelerator) compact binary representations for efficient pro-
cessing. This process that requires multiple format conversions
wastes time. For example, only 43 % of the sequence alignment
time in BWA-MEM2 [159] is spent on calculating the DP matrix,
while 33 % of the sequence alignment time is spent on pre-
processing the input sequences for loading into SIMD registers,
as provided in [159]. To address this inefficiency, we need to
widely adopt efficient hardware-friendly formats, such as UCSC’s
2bit format (https://genome.ucsc.edu/goldenPath/help/twoBit), to
maximize the benefits of hardware accelerators and reduce
resource utilization. We are not aware of any recent read mapper
that uses such formats. Basecalling can also benefits from data for-
mats that support parallel file accesses, such as the recent file for-
mats called SLOW5 and BLOW5 [245]. Other computational steps
can benefit from efficient file formats, such as k-mer analyses with
the new format called KFF [246].

Looking into the late future, even if accurately sequencing the
entire genome as a single string might be possible, we believe that
most of the tools and hardware accelerators involved in the intelli-
gentgenomeanalysispipelinewill continue to remaina crucial com-
ponent in analyzing and comparing the sequencing data. For
example, we still need to quickly and efficiently compare complete
genomes together for inferring variations and identifying metage-
nomic taxonomy profiles. The acceleration efforts we highlight in
thiswork represent state-of-the-art efforts to reduce current bottle-
necks in the genome analysis pipeline. We hope that these efforts
and the challenges we discuss provide a foundation for future work
in making genome analysis faster, more accurate, privacy-
preserving, more energy-efficient, and cost-effective; simply more
intelligent.
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