
Rethinking Software Runtimes for Disaggregated Memory

Irina Calciu
VMware Research

USA

M. Talha Imran
Penn State University

USA

Ivan Puddu
ETH Zürich

Switzerland

Sanidhya Kashyap
EPFL

Switzerland

Hasan Al Maruf
University of Michigan

USA

Onur Mutlu
ETH Zürich

Switzerland

Aasheesh Kolli
Penn State University/Google

USA

ABSTRACT

Disaggregated memory can address resource provisioning inef-

ficiencies in current datacenters. Multiple software runtimes for

disaggregated memory have been proposed in an attempt to make

disaggregated memory practical. These systems rely on the virtual

memory subsystem to transparently offer disaggregated memory

to applications using a local memory abstraction. Unfortunately,

using virtual memory for disaggregation has multiple limitations,

including high overhead that comes from the use of page faults

to identify what data to fetch and cache locally, and high dirty

data amplification that comes from the use of page-granularity for

tracking changes to the cached data (4KB or higher).

In this paper, we propose a fundamentally new approach to

designing software runtimes for disaggregated memory that ad-

dresses these limitations. Our main observation is that we can use

cache coherence instead of virtual memory for tracking applications’

memory accesses transparently, at cache-line granularity. This simple

idea (1) eliminates page faults from the application critical path

when accessing remote data, and (2) decouples the application mem-

ory access tracking from the virtual memory page size, enabling

cache-line granularity dirty data tracking and eviction. Using this

observation, we implemented a new software runtime for disag-

gregated memory that improves average memory access time by

1.7-5X and reduces dirty data amplification by 2-10X, compared to

state-of-the-art systems.

CCS CONCEPTS

· Software and its engineering→ Distributed memory.

KEYWORDS

disaggregated memory, remote memory, cache coherence.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.

ASPLOS ’21, April 19ś23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446713

ACM Reference Format:

Irina Calciu, M. Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al

Maruf, Onur Mutlu, and Aasheesh Kolli. 2021. Rethinking Software Run-

times for Disaggregated Memory. In Proceedings of the 26th ACM Interna-

tional Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’21), April 19ś23, 2021, Virtual, USA. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3445814.3446713

1 INTRODUCTION

To meet modern applications’ stringent low latency and high

throughput demands, datacenter administrators over-provision

monolithic servers to account for peak demand. As a consequence,

datacenter memory utilization is low, stagnating around 65% [78].

In addition, applications’ ever increasing demands for memory of-

ten translate into the need to frequently upgrade the computing

infrastructure altogether, as the monolithic server model is based on

a tight coupling between computing resources and memory. This

tight coupling is also problematic in the face of hardware failures,

since the entire server will stop working when one component fails.

All these inefficiencies add up and increase datacenter costs [18].

Disaggregated memory addresses these problems by improv-

ing memory utilization and decreasing the total memory over-

provisioning necessary to avoid out-of-memory errors or swap-

ping [11]. In addition, disaggregated memory enables independent

scaling of memory and compute, and it disentangles hardware

failures and replacements from the monolithic server. Fine-grain

microsecond-latency networking technologies, such as Remote

Direct Memory Access (RDMA) and Gen-Z [33], make hardware

disaggregated memory feasible in the near future [37, 79, 82].

Unfortunately, enabling applications to efficiently adopt disag-

gregated memory is not straightforward. Software runtimes [10,

15, 36, 57, 72] have been proposed to enable applications to trans-

parently, without code changes, use remote memory ś the memory

of another host in the rack or memory that has been physically

disaggregated from the compute. These systems use various kernel

subsystems [10, 36, 72] or redesign the kernel altogether [71]. Fun-

damentally, they all rely on the core virtual memory mechanism

for three essential functions: (1) fetching and caching remote data

by first detecting remote accesses using page faults, then caching

the remote pages in a local DRAM cache; (2) tracking dirty data

among the cached pages by write-protecting the pages and causing

a write page fault on the first write to each page; and (3) evicting

79

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446713
https://doi.org/10.1145/3445814.3446713

ASPLOS ’21, April 19ś23, 2021, Virtual, USA I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. Maruf, O. Mutlu, A. Kolli

cached pages from the local DRAM cache, which requires marking

the pages as not present and flushing the translation look-aside

buffers (TLBs).

Virtual memory provides application transparency, but results

in high overhead and causes a significant drop in application per-

formance, even when the amount of remote data accessed is small

(§2). Page faults incur high latencies, exceeding network latencies,

which makes the software stack a bottleneck for accessing remote

memory. Moreover, virtual memory requires moving and tracking

data at page-granularity, with a page size of 4KB or higher. In con-

trast, throughout their lifetimes, applications write a small part of

each page, typically only 1-8 cache-lines out of 64, causing large

dirty data amplification and poor network utilization, by re-writing

the same data that is already in remote memory. We analyzed mul-

tiple production-quality applications and measured a dirty data

amplification between 2X and 31X for 4KB pages (§2).

Some systems [29, 30, 61] avoid page faults and work at a finer-

granularity than pages (objects), but require specialized application

changes and thus sacrifice transparency. In practice, rewriting ex-

isting applications for remote memory is error-prone and requires

expensive engineering resources and expertise. Thus, our focus is

on application-transparent mechanisms that do not require any

source code changes or recompilation.

Overall, there is a mismatch between applications’ requirements

for remote memoryÐlow latency, fine granularity, application-

transparencyÐand the virtual memory mechanism, which has not

been designed to provide low-latency or fine-granularity. Our key

insight is that cache coherence can provide better hardware

primitives to support disaggregated memory, by transpar-

ently tracking applications’ memory accesses at cache-line

granularity, without page faults.1 We describe a reference ar-

chitecture that provides the necessary primitives to software using

future cache-coherent field programmable gate arrays (§2.3). We ex-

pect such hardware support to become available in the near future,

with the adoption of CXL-based platforms [74].

In this paper, we propose a principled approach to building soft-

ware runtimes for remote memory based on the new hardware

primitives (§3). We designed and implemented Kona, a software

runtime that rethinks the design of each of the three remote mem-

ory functions performed by virtual memory in current systems

(fetching remote memory, tracking dirty data and evicting cached

pages) to rely on new hardware primitives enabled by the cache

coherence protocol (§4). Kona moves high-overhead virtual mem-

ory operations off the critical path of execution, and tracks dirty

cache-lines, decoupling tracking and movement from the virtual

memory page size, for a 6.6X speedup.

The challenge is to accurately evaluate Kona’s benefits and over-

heads using current architectures, despite the lack of hardware

support. To solve this challenge, we developed several tools (§5)

that allow us to simulate or emulate the necessary hardware primi-

tives. We used them to measure Kona’s benefits for the three types

of remote memory operations: (1) Kona improves fetching remote

memory by eliminating page faults, resulting in a reduced average

memory access time by 1.7X and 5X compared to LegoOS [71] and

1 We extend a workshop paper [25] by implementing a runtime system and multiple
tools for simulation and emulation.

Infiniswap [71], respectively. (2) Kona improves performance of

dirty data tracking by 35% compared to page granularity write-

protection, while reducing write amplification by 2-10X, by using

cache-line granularity. (3) Kona improves eviction efficiency by

writing only modified cache-lines back to the disaggregated mem-

ory, which improves network goodput by 4-5X.

In summary, we make the following contributions:

• We analyze the shortcomings of current runtimes for remote

memory and show that they result in large overhead and

dirty data amplification (§2).

• We propose a new approach for disaggregated memory soft-

ware, using hardware primitives for remote memory caching

and cache-line dirty data tracking based on cache coherence;

we describe a reference architecture that can implement

these primitives (§4.3).

• We design and implement Kona, a software runtime that can

use the new hardware primitives for efficient execution (§4).

• We design and implement multiple emulation and simulation

tools (§5) and we use them to measure Kona’s solutions for

the three types of remote memory operations (§6).

The code is available at github.com/project-kona/asplos21-ae [24].

2 BACKGROUND AND MOTIVATION

Object-based remote memory systems can provide fine-grain access

to remote data and expose a key-value or a data-structure-based

interface [29, 30, 61]. These systems achieve good performance,

but rely on application semantic information to allocate or access

data in remote memory and require intrusive code changes to port

legacy applications. In contrast, page-based remote memory systems

rely on OS-level mechanisms and interfaces, such as swapping

or file systems, to offer remote memory to applications (almost2)

transparently [10, 36, 45, 72]. However, the ease of programmability

comes at the cost of forcing coarse-grain (page-granularity) access

to remote memory through expensive OS code paths, leading to

performance degradation and memory overhead.

Page-based and object-based systems achieve different tradeoffs

in the remote memory space. We seek to leverage the benefits from

both (Table 1). Our goal is to support legacy applications without

changing them. Our system, Kona, is most similar to page-based

remote memory,3 but it leverages cache coherence mechanisms to

achieve cache-line granularity dirty data tracking and to avoid page

faults on the application critical path. Unlike current systems, Kona

requires hardware support.

Table 1: Taxonomy of remote memory systems.

Remote memory Granularity Programability Mechanism

Page-based [10, 36] coarse (page) (-) transparent (+) virtual memory

Object-based [29, 30, 61] fine (object) (+) app-specific (-) code changes

Kona cache-line (+) transparent (+) cache coherence

Page-based systems work by mapping remote memory in an

application’s address space and using virtual memory mechanisms

to cache remote pages into a local software-managed DRAM cache.

2Page-based systems can be completely transparent to the application, or offer addi-
tional features using small application modifications.
3Thus, in this paper we compare only to page-based remote memory systems.

80

 https://github.com/project-kona/asplos21-ae

Rethinking Software Runtimes for Disaggregated Memory ASPLOS ’21, April 19ś23, 2021, Virtual, USA

 No .

No

B
e

g
in

1.

Translation

in TLB?

2. Page

in Local

Mem.?

3.

Local Mem.

Free?

4. Page

Eviction

6. Page Table

& TLB Update

E
n

d

5. Remote

Fetch

Miss

 Hit . Yes . Yes

10. Remote

Writeback

8. Memory

Access

No

9.

Victim

Dirty?

Yes

7.

Cache

Hit?

 Yes .

 No .

Steps can be executed in the backgroundSteps can be executed in the background Page granularity (for Kona: page or cache-line)Page granularity (for Kona: page or cache-line) Step not necessary for KonaStep not necessary for Kona

Figure 1: Life of a memory access in a remote memory system

Fig. 1 shows the different steps in the life of a memory access in

a page-based remote memory system, which has to support three

main operations:

1. Fetching remote data.When an application attempts to read or

write data that is not present in the local DRAM cache, a page fault

is triggered and the page is fetched from the remote host 5○ by a

custom page fault handler. Once the page has been fetched, the page

tables and TLBs are appropriately modified 6○ and the memory

access moves forward. However, in certain scenarios, there might

not be enough free space in the local DRAM cache to insert a new

page, causing an eviction mechanism to make room for incoming

pages 4○.

2. Tracking dirty data. Locally cached pages that have been mod-

ified need to be written back to remote hosts to avoid data loss.

Keeping track of modified pages is called dirty data tracking and

is realized using write page faults: a page is initially marked as

read-only when it is first fetched into the local DRAM cache and

when the application tries to modify it, a page fault will be triggered

to disable the write-protection on the page. The page is marked

dirty when the write page fault is serviced. If an eviction candidate

page is dirty 9○ then a writeback operation is issued to the remote

host 10○.

3. Evicting local data back to remotememory. Periodically, the

local cache evicts some cached remote pages to make room for new

remote pages. Pages chosen for eviction that have not beenmodified

since they were last brought into the local DRAM cache can be

silently evicted.

2.1 Current Remote Memory Shortcomings

All three remote memory operations above suffer from high over-

head, because they rely on virtual memory mechanisms. We de-

scribe their shortcomings next.

High overhead in fetching remote data. Page-based remote

memory systems incur large overheads due to page faults and TLB

invalidations. We ran Redis [7], a data-structure server application,

with a state-of-the-art remote memory system (Infiniswap) and

we observed that moving as little as 25% of the application’s data

remotely causes the throughput to drop by more than 60%. The

explanation for this huge degradation is given by the high remote

data access latency: we measured Infiniswap’s remote access la-

tency to be over 40µs . LegoOS, a new operating system designed

for disaggregated memory, incurs a 10µs latency for a remote fetch

operation. This high latency is astonishing, considering that a 4KB

RDMA read operation is generally as fast as 3µs . The difference is

all caused by the software stack and is not specific to Infiniswap

or LegoOS. Other page-based remote memory frameworks also

experience similar degradation [10, 72] due to their reliance on

page faults to fetch remote data [11, 25, 32, 50]. Moreover, page

faults cause the processor to flush its instruction pipeline, pollute

CPU caches, and reduce the CPU prefetcher’s effectiveness, as it

cannot prefetch past a page fault. Unfortunately, there is no silver

bullet to improve the latency. It is the compounded result of a sum

of small operations, such as finding and allocating virtual memory

areas (VMAs), managing the page cache and the LRU list [57]. Our

approach is to move these operations off the critical path of the

application.

Overhead in dirty data tracking and eviction.We measured a

35% decrease in throughput for Redis due to write page faults (§6).

In addition, write-protecting pages requires modifying page tables

and invalidating the TLBs, during which time the application is

not running. The time an application is stopped increases with the

size of its memory. The overheads are even higher for large pages,

which first get broken down to 4KB pages to decrease the amplifi-

cation [77]. Evicting pages also requires changing their protection,

which incurs additional TLB invalidations on top of the ones re-

quired for dirty data tracking. We measured that eviction latencies

could be over 32 µs with Infiniswap even though an RDMA 4KB

write takes 3µs . Similarly to the remote fetch latency, we cannot

expect to improve performance significantly by optimizing a small

number of functions. The eviction and dirty tracking overhead adds

up from many small operations: checking if the page is locked,

checking for other PTEs referencing the page, unmapping the page,

clearing the dirty bit, flushing the TLB, etc.

High dirty data amplification. We define amplification as the

ratio of data marked as dirty using the tracking granularity to the

actual number of bytes written by the application. For example, if

the application writes 1KB of data within a page, with 4KB-tracking

the entire page is marked dirty, so the dirty data amplification is

4. Often, applications access only a small part of a page [9]. There-

fore, using page granularity for tracking dirty data results in high

amplification and poor network utilization, because more data is

transferred over the network than necessary. We used dynamic

binary instrumentation with the Intel Pin tool [5] to measure dirty

data amplification in real applications. We split each application’s

81

ASPLOS ’21, April 19ś23, 2021, Virtual, USA I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. Maruf, O. Mutlu, A. Kolli

execution to discrete time windows (10 seconds) and measure the

behavior online in each window. We consider the following appli-

cations: 1) Redis [7], a data structure server, running uniformly

random (Rand) and sequential (Seq) workloads; 2) GraphLab [52] -

a graph analytics framework, running Page Rank, Graph Coloring,

Connected Components and Label Propagation; 3) Metis [56], an

in-memory MapReduce framework running Linear Regression and

Histogram and 4) VoltDB [8], an in-memory column store database,

running a TPC-C workload. Memory allocated and used by these

applications varies between 133MB (Redis Seq) and 40GB (Linear

regression and Histogram). We measured dirty data amplification

for different tracking granularities: 4KB page, 2MB page, as well

as cache-line granularity (64 bytes). Redis-Rand suffers from the

highest dirty data amplification with page granularity tracking, as

high as 31X for 4KB pages and 5500X for 2MB pages, respectively

(Table 2). In contrast, Redis-Seq has one of the lowest dirty data

amplification, due to its sequential access pattern. All applications

exhibit amplification (> 2) for page granularity tracking. In contrast,

cache-line tracking results in a very small amplification (close to 1),

suggesting that cache-line granularity would result in significant

improvement.

Table 2: Dirty data amplification for different tracking gran-

ularities. The amplification is measured against the number

of dirty bytes.

Memory Dirty data amplification

Application (GB) 4KB page 2MB page 64B cache-line

Redis-Rand 4 31.36 5516.37 1.48
Redis-Seq 0.13 2.76 54.76 1.08

Linear Regression 40 2.31 244.14 1.22
Histogram 40 3.61 1050.73 1.84
Page Rank 4.2 4.38 80.71 1.47

Graph Coloring 8.2 5.57 90.37 1.57
Connected Components 5.2 5.67 82.35 1.62

Label Propagation 5.6 8.14 95.00 1.85
VoltDB 11.5 3.74 79.55 1.17

2.2 Memory Access Patterns in Redis

The average dirty data amplification shown in Table 2 indicates

that every application encounters pages that are not fully written.

Next, we break down this amplification further by looking at ac-

cess patterns of cache-lines within pages and their contiguity. We

focus on two workloads at opposite extremes, with high and low

amplification, Redis-Rand and Redis-Seq.

Spatial locality. Fig. 2 shows the cache-lines accessed within each

page, as a CDF of pages with N accessed cache-lines, for N from 1

to 64 (full 4KB page). Pages have either a small number of cache-

lines accessed (1-8 cache-lines), or all 64 cache-lines are accessed.

Both workloads experience both types of pages, but Redis-Rand is

skewed towards accessing a small number of cache-lines per page,

while Redis-Seq is skewed towards accessing all cache-lines within

each page. This result indicates that page granularity tracking and

transfer is useful for some pages, but many pages can benefit from

cache-line granularity.

Contiguous cache-lines. We define a segment as a group of con-

tiguous cache-lines within a 4KB page that were accessed (read or

written) in the same window. The length of a segment is given by

the number of cache-lines in that segment. We count the segments

0 10 20 30 40 50 60
Number of accessed cache-lines

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ge

s (
CD

F)

Reads (Rand)
Writes (Rand)

Reads (Seq)
Writes (Seq)

Figure 2: Accessed cache-lines in a page (Redis).

of length N, with N from 1 to 64 (a full page) and show the results

as a CDF in Fig. 3 for Redis-Rand and for Redis-Seq. Most segments

are of length 1 to 4 contiguous cache-lines for both workloads. For

Redis-Seq, a large fraction of the segments are page-length, while

for Redis-Rand, contiguous segments are short. Dirty cache-line

contiguity is paramount for optimizing network transfer (§6.4).

0 10 20 30 40 50 60
Number of contiguous cache-lines

0.4

0.6

0.8

1.0

Ac
ce

ss
ed

 se
gm

en
ts

 (C
DF

)

Reads (Rand)
Writes (Rand)

Reads (Seq)
Writes (Seq)

Figure 3: Contiguous cache-lines in a page (Redis).

2.3 Local Memory Coherence

Cache coherence protocols (e.g., VI, MSI, MESI, MOESI [60, 64])

ensure consistency between multiple cached copies of a memory

location.When the CPU reads or writes a cache-line, it first requests

the cache-line from a memory controller, which maintains access

permissions for all cache-lines belonging to its physical memory. A

cache also has to send back the data to the memory controller when

it evicts a modified cache-line. Thus, for a given cache-line, the

memory controller has excellent visibility to when the cache-line

is being read or written.

Cache-coherent FPGAs (ccFPGAs) are connected to the CPU(s)

using a point-to-point link that ensures memory coherence between

a CPU-attached memory and an FPGA-attached memory (Fig. 5).

The interconnect maintains coherence using a cache coherence

protocol. Multiple ccFPGAs are expected to become available com-

mercially or for research in the near future [3, 28, 41, 51], enabled by

new interconnect standards, such as CXL [74] or CCIX [2]. These

FPGAs can observe the CPU’s local memory coherence events and

use this information to enable new remote memory systems that

do not suffer from the shortcomings of the current systems (§2.1).

82

Rethinking Software Runtimes for Disaggregated Memory ASPLOS ’21, April 19ś23, 2021, Virtual, USA

3 OVERVIEW AND DESIGN PRINCIPLES

We propose a new class of software remote memory runtimes that

rely on hardware cache coherence to speed up critical operations

previously realized using virtual memory. Our main observation

is that we can use the unmodified local hardware cache coherence

protocol within a server to track applications’ reads and writes. We

designed and implemented Kona, a representative remote memory

runtime based on this idea. Kona assumes the existence of new

hardware primitives, which we describe in more detail in §4.

Below, we outline the key principles we use in our design and we

discuss several benefits that Kona provides over a virtual-memory

remote memory system.

Leverage hardware to track memory accesses. There is a se-

mantic gap between applications and a remote memory runtime,

which includes applications’ memory accesses. This is generally

resolved using expensive operations: for example, the remote mem-

ory implementation uses page faults to find out which pages the

application has written (dirty data tracking). Our main observa-

tion is that the hardware already tracks memory accesses, through

memory coherence. If the hardware exposed primitives that cached

remote data and informed the software runtime of local modifi-

cations, the remote memory runtime could stop using inefficient

virtual memory operations for these operations. Kona departs from

state-of-the-art systems by relying on cache coherence to avoid

page faults, write page faults and TLB shootdowns. Eliminating

page faults from the critical path has the additional benefit that

hardware prefetchers can prefetch more data, even from remote

memory4 and enables the CPU to avoid flushing the instruction

pipeline, which happens in current systems due to the page fault.

Decouple datamovement size from the virtualmemory page

size. As both application data and memory sizes are increasing, so

are translation overheads. Therefore, it is natural for applications to

improve performance by using large pages, but for applications that

need to move data over the network, the drawbacks of dirty data

amplification when using large pages outweigh the positives [77].

Kona tracks accessed and modified data at cache-line granularity,

irrespective of the virtual memory page size. By decoupling the size

of the tracked data from the page size, Kona enables applications

to benefit from huge pages without suffering from data movement

amplification (§6). Kona still relies on virtual memory for translation

and protection, but can choose the data movement size between

page and cache-line granularity.

Separate data and control path. Remote data access is on the

applications’ critical path, thus low-latency execution is paramount.

Nevertheless, remote memory systems incur page faults on this

critical path, significantly increasing the latency of a memory ac-

cess [11]. For an efficient transparent remote memory runtime to

be feasible, the low-latency data path operations need to be exe-

cuted by the hardware. Kona expects such a hardware primitive to

be available, replacing the need to rely on page faults for caching

remote data. In contrast, control path operations are complex and

require more flexibility, thus Kona implements them in software.

Control path operations include setting up translation information

for remote memory, enabling/disabling tracking, choosing policies

4A prefetch operation does not happen across a page fault, so current remote memory
systems cannot benefit from the existing hardware prefetchers [43].

slab 1.1

slab N.1

…

Resource Manager

slab N.1 slab N.2 slab N.n

Application

AllocLib
Caching Handler

Poller

Eviction Handler

Resource Manager

slab 1.1 slab 1.2 slab 1.n

Resource Manager

Resource Manager

KLib

Controller

Memory Node 1

Memory Node N

malloc, free,

mmap, etc.

expose/remove

memory pool

add/remove slab

Application address space

RDMA

read

RDMA

write

RDMA

completion

Emulating dirty tracking

slab 1.1

slab N.1

…
Dirty Data Tracker

Cache-line Log Receiver

Cache-line Log Receiver

Compute Node

Figure 4: The Kona remote memory. Stripes indicate emu-

lated components. Thick black rectangles represent differ-

ent nodes in a rack. An application runs on a single com-

pute node and accesses disaggregated memory on the mem-

ory nodes. Access to disaggregated memory is transparently

realized by the KLib library. A rack controller allocates dis-

aggregated memory at coarse granularity (large slabs).

to be executed by the hardware, resource management and error

handling.

4 KONA: COHERENCE-BASED REMOTE
MEMORY

In this section, we describe Kona’s design and implementation.

Kona offers remote memory to applications transparently, without

requiring source code changes to applications. We first describe

the software runtime’s high level architecture and components

(§4.1). Kona assumes new hardware primitives, so we describe them

next (§4.2) and we outline a reference hardware architecture that

enables these primitives (§4.3). Finally, we discuss the runtime in

more detail (§4.4) and provide a brief overview of Kona’s failure

mitigation options (§4.5).

4.1 Overview and Components

We show Kona’s high-level software architecture in Figure 4. An

application runs on a single compute node and can access disag-

gregated memory offered by one or more memory nodes. Disag-

gregated memory allocation is handled by a rack controller, which

allocates memory at a coarse granularity, using large slabs. It does

so off the critical path of the application. Each memory node has

to register with the controller the amount of memory offered to

applications. In our design, we assume the controller is a centralized

entity managing the allocations [10], but a distributed approach is

also feasible [36]. Similar to prior work, we assume each compute

node has some amount of DRAM, which is used as a software cache

for disaggregated memory [71].

The main part of the Kona runtime is an application library,

KLib that hides all interactions with the controller, with the mem-

ory servers and with the new hardware primitives. KLib uses a

Resource Manager to interact with the controller and pre-allocate

disaggregated memory in large batches (slabs), which it maps in the

83

ASPLOS ’21, April 19ś23, 2021, Virtual, USA I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. Maruf, O. Mutlu, A. Kolli

application’s address space. In addition, KLib uses AllocLib, an allo-

cation interposition library that handles fine-grained local memory

allocations on the compute node. AllocLib interposes on applica-

tions’ malloc and mmap calls and ensures that there is sufficient

disaggregated memory available for the allocation.

KLib consists of three components that implement the threemain

remote memory operations: fetch, track, evict (§2). The Caching

Handler fetches remote data that is not in the local DRAM cache

when the application accesses it; the Dirty Data Tracker monitors

data modified in the local DRAM cache; the Eviction Handler mon-

itors the cache utilization and evicts pages to make room for new

remote pages. These components rely on new hardware primitives.

We discuss these primitives next. An additional component, the

Poller, optimizes the RDMA communication with the controller

and with the memory nodes, by polling for RDMA completions.

4.2 New Hardware Primitives

Current remotememory systems use virtualmemory for the Caching

Handler and for the Dirty Data Tracker. In essence, they use page

faults to detect applications’ reads and writes. This approach is

often used in practice, but it incurs large overheads. For efficient

remote memory, we need two new hardware primitives that pro-

vide the same two functions: (1) cache-remote-data: identify what

data to fetch from remote memory and cache it in local memory;

(2) track-local-data: identify what data has been modified locally

and needs to be written back to remote memory, at fine granularity

(i.e., cache-line).

The Eviction Handler copies dirty cache lines or pages to the

remote host. While this operation can be realized on current hard-

ware, it could also benefit from hardware acceleration. We propose

a third, optional, hardware primitive: (3) copy-dirty-data.

With Kona, applications still use virtual memory for translation

and protection, but Kona does not use virtual memory to provide

remote memory. Next, we discuss a reference architecture for how

such hardware support can be implemented.

4.3 A Reference Architecture Using FPGAs

Supporting remotememory caching and fine granularity dirty track-

ing in hardware using information from the cache coherence pro-

tocol requires changes to the CPU cache or memory controllers.

However, such hardware changes are complex and intrusive, and

have a long production cycle (if they ever become available). In

this section, we propose an alternate mechanism [25], which we

believe could be implemented sooner, when cache-coherent FPGAs

become commercially available (§2.3).

The hardware architecture consists of an FPGA attached to the

CPU using a coherent interconnect. Both the CPU and the FPGA

have their own attached memories (CMem and FMem, respectively).

The FPGA also exports a fake large physical address space, larger

than FMem (called virtual FMem, or VFMem), which is not backed

by local DRAM. Instead, the FPGA uses remote memory to back

VFMem (Figure 5). The FPGA implements a memory agent that

maintains a directory for VFMem, similar to current directories in

the CPU. An application that accesses VFMem generates requests to

the VFMem directory maintained by the FPGA. Thus, the FPGA can

observe all the cache lines requested by the CPU from VFMem, and

CMem

FMem

Coherent

interconnect

FPGA

NIC logicNIC

Coherence

protocol Kona

Bitstream

CPU VFMem

Remote memory

Application host

Figure 5: The Kona Architecture: An FPGA connected to a

CPU through a coherent interconnect. Both the CPU and

the FPGA have DRAM attached (CMem and FMem, respec-

tively). The FPGA exposes fake physicalmemory to the CPU

(VFMem), backed by remote memory.

fetch them from the disaggregated memory (the cache-remote-data

primitive necessary for the Caching Handler). In addition, the FPGA

can observe the cache-line writebacks, and track them in a bitmap

for cache-line granularity dirty data tracking (the track-local-data

primitive necessary for the Dirty Data Tracker).

This approach has the limitation that the FPGA cannot track

CMem. To leverage this approach, we have to map all remote data

in VFMem, to enable the FPGA to track accesses. All other memory

for a process, such as thread stacks, global variables, executable

pages, etc., are allocated from CMem.

The FPGA uses FMem as a cache for VFMem. The CPU never

accesses FMem directly, but always accesses addresses in VFMem.

Using VFMem for remote data results in two overheads: (1) accesses

to the FPGA memory (FMem and VFMem) are slower than accesses

to CMem, and (2) there is an additional translation step that the

FPGA needs to perform from VFMem to FMem, even when the data

is cached. FMem and VFMem are slower than CMem because of

the limited interconnect bandwidth and because the directory logic

is implemented in the FPGA. Eventually, this logic can be hard-

ened, making its performance more competitive to a server NUMA

system, where accessing a non-local socket is 1.5X slower than

accessing the local socket [26]. Nevertheless, these overheads are

much lower than current virtual memory and network overheads

present in remote memory systems.

4.4 Remote Memory Operations in Kona

We describe how Kona works when our proposed hardware primi-

tives are available. In §5, we describe how we simulate the FPGA

hardware that is not yet available.

Allocating remote memory. The KLib Resource Manager re-

quests remote memory from the rack controller (§4.1) and maps it

in VFMem, logically pre-populating the memory. Since VFMem is a

fake physical memory exposed by the FPGA, no physical memory

is actually allocated at this time, only the page tables are set up and

the pages are marked present.

Fetching remote data. In a state-of-the-art remote memory sys-

tem, identifying data to fetch from remote memory is achieved

using page faults (§2). Kona essentially replaces page faults with

cache misses by mapping the remote data in VFMem and mark-

ing all pages as present. Thus, when an application accesses data

in VFMem, it will not incur any page faults because the pages are

already marked as present, but it will incur cache misses from all

the CPU cache hierarchies. The CPU will thus send a cache-line

request to the VFMem directory on the FPGA, which can fetch

84

Rethinking Software Runtimes for Disaggregated Memory ASPLOS ’21, April 19ś23, 2021, Virtual, USA

the cache-line from the remote host on demand. Since pages re-

main mapped at the same location and with the same permissions,

this approach also avoids TLB invalidations and shootdowns, which

are otherwise incurred during eviction in a virtual memory based

remote memory system.

Kona does not expose FMem directly to applications or to the

OS, but uses it as a cache for VFMem. When the CPU accesses data

from VFMem, the FPGA first checks if the data is cached in FMem,

and if so, responds with the data. If the data is not cached, the FPGA

fetches the data from the remote host, and decides whether to cache

the data in FMem or not (based on how likely it is the data will be

accessed again in the near future, or that nearby data ś in the same

page ś will be accessed soon). FMem always caches entire pages.

Moreover, the hardware prefetcher can request other cache lines

likely to be accessed soon, which can cause the FPGA to prefetch

the pages from remote memory. This is not possible in a virtual

memory based remote memory, because page faults are serializing

and the hardware prefetcher does not cross a page boundary [43].

Tracking dirty data. State-of-the-art remote memory uses write

page faults for identifying what data has been modified locally (§2).

Instead, with Kona, we can avoid the write page faults by tracking all

cache-line write-backs that go to VFMem. The FPGA can identify

which data has been modified without the page faults, and can do

so at cache-line granularity. When the FPGA decides to write out

dirty cache lines, it has to snoop them from CPU caches, in case the

CPU has a newer copy of the data. Snooping is necessary because

the FPGA only finds out about dirty data when the data is evicted

from CPU caches and reaches memory.

Evicting dirty data. Kona uses a software log based on a ring

buffer design similar to FaRM [29] to transfer dirty cache lines.

We copy and aggregate the dirty cache-lines into the log, and use

RDMA writes to transfer the log to the remote host. The Cache-line

Log Receiver running on a thread on the remote host distributes the

cache-lines from the received log into their locations and sends an

acknowledgment to the application host. The process is asynchro-

nous: the acknowledgment latency can be hidden by continuing to

process more dirty cache-lines during the waiting time.

Address translation. The local host’s page tables contain transla-

tions between the virtual addresses of a process to fake physical

addresses in VFMem, as pages always remain mapped as present in

VFMem. To discover the remote addresses of the missing pages, the

FPGA uses a hashmap (Remote translation). The FPGA needs to im-

plement additional metadata to keep track of which pages mapped

in VFMem are present in the FMem cache (Local translation).

1) Remote translation. Upon a memory allocation, Kona stores

metadata in a hashmap recording the remote memory addresses

corresponding to each allocated slab in local memory. Kona allo-

cates remote memory proactively in batches, so the allocation is

not on the critical path. The remote allocation uses large sizes of

one or multiple slabs. Kona uses a local memory allocator to split

a large slab for smaller allocations on the client side. Kona stores

the information in shared memory, with the FPGA being able to

access it. The FPGA never updates the map, but it consults it when

it fetches data from a remote host or when it writes dirty data back

to a remote host.

2) Local translation. We design FMem as a 4-way set associative

cache, with its block size equal to the page size. This approach is

a good tradeoff that reduces the size of the metadata required to

translate VFMem to FMem, while also ensuring that we keep the

latency of a CPU memory access to VFMem low and enable a low

eviction rate from the cache. Moreover, FMem always caches at

page granularity instead of cache-line granularity, because the CPU

hardware caches are sufficient to ensure that an application can

benefit from temporal locality. The purpose for the FMem cache is

to ensure that applications can also benefit from spatial locality.

4.5 Failures

Kona applications run on a single compute host, but access disag-

gregated memory located elsewhere in the rack. This is similar to

prior work [36, 71]. Therefore, we consider three classes of pos-

sible failures: 1) the application or the compute host crashes; 2)

the network is slow or unresponsive; 3) the disaggregated memory

containing the application data fails. We discuss each failure mode

in more detail.

1) Application or compute host failures. If the application or

the application host fails, the application needs to be restarted,

potentially on a different host. This is similar to today’s mono-

lithic server model. In this case, Kona does not add additional fault

tolerance to applications that do not already provide it.

2) Network failures. A network failure or delay [59] is problem-

atic because it can introduce timeouts in the cache coherence proto-

col, which has not been designed to handle large delays. The cache

coherence protocol can result in a timeout due to slow or failed net-

work operations, which triggers a machine check exception (MCE).

There are two ways to address this problem: i) handle the MCE,

which is possible using Intel’s machine check architecture present

on high-end servers [43]; or ii) move the page tables to FMem, which

allows the FPGA to track the page table accesses and prefetch the

remote data [25]. If the prefetch fails, the FPGA will mark the pages

as not present, triggering a page fault, which enables the software

to handle the failure, report it back to the application, wait until

the network delay or outage is resolved, and/or notify an operator.

This approach is inspired by translation-triggered prefetching [20].

3) Disaggregated memory failures. In case of memory failures,

replication can ensure that the application data is still available.

Kona can replicate the data during eviction, by sending the data to

multiple replicas at the same time and waiting for all the acknowl-

edgments. Kona reduces write amplification for each replica, so

the network bandwidth improvement increases with the number

of replicas. Adding more replicas can slow down eviction, but it

rarely impacts application performance because eviction is not on

the application critical path.

5 SIMULATING HARDWARE SUPPORT FOR
KONA

We propose new primitives that can be implemented in a cache-

coherent FPGA with attached memory. This hardware is not yet

available, but it will be in the future (e.g., CXL-connected FPGAs),

making our primitives feasible. In this section, we describe how the

Kona components emulate the hardware primitives. The Caching

Handler emulates cache-remote-data by instrumenting application

reads and writes to remote memory. The Dirty Data Tracker em-

ulates track-local-data by creating snapshots of the application’s

85

ASPLOS ’21, April 19ś23, 2021, Virtual, USA I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. Maruf, O. Mutlu, A. Kolli

pages cached in FMem. During eviction, the Dirty Data Tracker

compares the application datawith the snapshot to determinewhich

cache-lines have been modified within each page.

Our evaluation focuses on applications, their access patterns and

their locality characteristics. Our goal is to determine if our new

hardware primitives can benefit real workloads and to comparewith

existing software solutions for disaggregated memory. To this end,

we study the end-to-end benefit using an emulated implementation

that relies on instrumenting application reads and writes. If the

hardware were available, we would not need to instrument the

application. In addition, we study each of the three remote memory

operations in isolation: fetching remote data, tracking dirty data

and evicting cached data. To do so, we had to develop our own tools.

We are conservative in our assumptions, choosing the best case for

the baselines. Next, we describe the two simulators we built, which

allow us to measure each of the operations independently.

(1) Fetching remote data. We developed KCacheSim to simu-

late the fetch from remote memory operation without page faults.

KCacheSim measures the average memory access time (AMAT) for

applications runningwith Kona, Infiniswap and LegoOS. KCacheSim

uses an existing cache simulator, Cachegrind [39], to determine the

cache miss rates for each application from each level of the cache.

Based on the cache miss rates, KCacheSim computes the AMAT.

For Kona, we model the DRAM cache (FMem) as another level in

the cache hierarchy, with a 4KB block size. For the baselines, we

use main memory (CMem) instead of FMem. Using known average

access latencies to remote memory (§2.1), we estimate the average

access latency for all memory accesses in an application (local and

remote). Our model includes the cost of the software stack in the

remote memory access latency. Thus, we model a page fault as

an increase in the transfer latency from remote memory. This is a

conservative approach that favors the page fault based approach

because it does not consider the impact of additional overheads

that page faults cause: flushing the processor pipeline and hard-

ware cache invalidations caused by the kernel mode execution. To

determine the latency of a remote access for the baselines, LegoOS

and Infiniswap, we run these systems to observe their latencies,

including the overhead of the page faults. While this metric does

not directly indicate application performance, it is a useful metric

to understand how remote accesses with different latencies impact

the application.

(2) Tracking dirty data.We developed KTracker to emulate Kona

dirty data tracking at cache-line granularity by comparing snap-

shots of the application’s memory in software (Fig. 6). KTracker

uses ptrace to attach to a running process and create snapshots

of its memory. Later, it diffs the application’s memory with the

copy to find out dirty cache lines. KTracker runs the application

for a fixed amount of time, which gives us an indication of the

application performance in real time, not simulated. KTracker up-

dates its memory snapshot every second (a configurable parameter)

and includes all accessed pages. While fork and copy-on-write can

also be used to snapshot application’s memory, we did not use

this approach because we want to avoid causing additional page

faults in the application. While the application runs at full speed

during the execution, KTracker suffers from overheads in doing the

diffs, which slows down the emulation (§6.3). KTracker can also run

in write-protection mode, where it write-protects pages to track

Tracked application

/home/redis

Application address space

[heap]

/usr/lib/

pthread

KTracker

…

Vaddr start

maps pages

Old-maps-datastructVaddr end

Vaddr start Vaddr end New-maps-datastruct

KTracker

address space

Figure 6: The KTracker simulator and its data structures.

what pages have changed. This emulates a current remote memory

system based on virtual memory, allowing us to compare the cache-

line tracking in the same environment, with similar overheads, for

a real apples-to-apples comparison.

5.1 Implementation

We implemented Kona as a C library that interposes on an appli-

cation’s memory allocation and uses a cooperative user thread for

handling page faults [80]. The library has a total of 3.6k lines of code

(LoC). The Kona server and controller run as separate daemons,

and were implemented in 542 and 575 lines of C code, respectively.

Emulating hardware support for tracking dirty data.We im-

plemented KTracker in C in 2.4k LoC. Kona uses a simplified version

of KTracker to emulate cache-line dirty data tracking (200 LoC): for

each page that is fetched from remote memory, we create a copy

of the page that is used by the eviction thread to determine which

cache-lines have changed when the page is evicted (Fig. 4).

RDMA eviction. To evaluate cache-line RDMA eviction, we im-

plemented a microbenchmark that continuously writes dirty cache-

lines or pages to a remote host using RDMA. We considered a

few different optimizations for Kona cache-line RDMA eviction,

as well as for the 4KB eviction baselines, and we kept those that

were beneficial for each: (1) batching and linking multiple RDMA

read or RDMA write operations together significantly improves

the performance of the transfer; (2) unsignaled completionsÐwe

batch the completions as well as the requests, and only the last

operation in a batch gets a completion from the NIC; (3) inline data

turns out to not be beneficial for the size of transfers we considered

(cache-line or 4KB) (4) using AVX instructionsÐcopying data within

the same host takes a lot of time but needs to be done because all

RDMA reads and writes use buffers registered with the NIC; AVX

instructions significantly reduce the overhead of the local copy.

6 EVALUATION

In this section, we evaluate Kona’s end-to-end performance using

emulation of the unavailable hardware primitives through appli-

cation instrumentation. We compare Kona with a virtual memory

remote memory system using a microbenchmark (§6.1). Next, we

use our software tools and benchmarks to evaluate each of the three

types of remote memory operations: fetching remote data (§6.2),

tracking dirty data (§6.3), and evicting local data back to remote

memory (§6.4).

86

Rethinking Software Runtimes for Disaggregated Memory ASPLOS ’21, April 19ś23, 2021, Virtual, USA

Test-bed. We perform the RDMA experiments on a cluster of dual

processor Skylake servers running at 2.2GHz with Mellanox Con-

nect X5 cards connected through a 100Gbps RoCE switch. We run

the simulations on CloudLab [31].

6.1 Microbenchmark Performance

In this section, we compare Kona with a virtual memory-based

implementation (Kona-VM). First, we want to confirm that Kona-

VM is on par with state-of-the-art virtual memory based systems.

We compared Kona-VM with Infiniswap running Redis without any

emulation or simulation on CloudLab instances c6220, where we

could run Infiniswap successfully. Kona-VM is similar to or faster

than Infiniswap by up to 60%.

Infiniswap has very high remote access latency (40µs). Most of

the overhead comes from implementing Infiniswap as a block device

and from using the bio layer (§2), with the rest distributed among

small operations, such as finding and allocating VMAs, managing

the page cache and the LRU list. In contrast, Kona-VM relies on

handling page faults in user-space [80] and achieves lower latency

than Infiniswap.

Next, we use emulation to compare Kona with Kona-VM, by

instrumenting every remote memory access in the benchmark to

provide the address, size and type of the memory access. Kona-VM

is a good baseline to indicate the performance gains from our tech-

niques, because Kona and Kona-VM use the same algorithms for

data caching and eviction. Kona-VM uses virtual memory, while

Kona emulates the proposed hardware primitives through bench-

mark instrumentation.

The benchmark allocates 4GB of remote memory per thread, and

uses 1, 2, or 4 threads to read and write 1 cache-line in every page;

each thread accesses distinct pages. As we increase the number of

threads, the total amount of work increases. The benchmark reports

the total execution time. Kona is faster than Kona-VM by 6.6X at 1

thread and by 4-5X for 2 and 4 threads when the benchmark runs

with 50% local cache and eviction happens concurrently with the

application execution (Figure 7). Kona only writes the dirty cache-

lines to the remote host, while Kona-VM has to write entire pages.

Both Kona and Kona-VMuse the same algorithm andmake the same

decisions about which pages to evict. This ensures that the results

reflect the difference between page and cache-line granularities and

not a difference in eviction algorithms. Kona can copy the data to

remote memory directly from FMem; it does not need an additional

copy to CMem first. Thus, no NUMA penalties are incurred.

Next, we evaluated the benchmark with all the initial data in

remote memory, but without eviction from the DRAM cache. Here,

Kona-NoEvict is faster than Kona-VM-NoEvict by 3-5X. Kona-VM

incurs two page faults for caching a remote page. The first is to

fetch the page from remote memory, and the second, minor page

fault removes the write-protection on the page, marks the page

dirty and enables the write. Kona avoids both page faults. We also

ran a version of Kona-VM that avoids write-protection (NoWP),

so it only incurs one page fault. This version cannot track dirty

pages so it is incomplete, yet it is still slower than Kona-NoEvict

by 1.2-2.9X.

Kona Kona-VM
Kona-NoEvict

Kona-VM-NoEvict
Kona-VM-NoWP0

20

40

60

80

Ti
m

e
(s

)

1-Thread
2-Threads
4-Threads

Figure 7: Kona and Kona-VM.

6.2 Fetching Remote Data

In this section, we evaluate the remote data fetch operation. We use

KCacheSim to study the average memory access time (AMAT) for

applications accessing remote memory as a function of the available

cache size, cache associativity and cache block size. Finally, we

measure the overhead of the simulation.

KCacheSim simulates Kona’s Caching Handler component and

compares it to remote access based on virtual memory. KCacheSim

models remote access latencies based on our measurements using

real RDMA hardware and different memory hierarchies for each

system. For Kona, the memory hierarchy includes hardware caches,

FMem (NUMA memory with higher latency) and remote memory.

We also evaluate Kona-main, a version of Kona where the data is

cached in CMem, thus avoiding the NUMA overheads present in

Kona. This shows the best performance that Kona can achieve if it

could track CMem, not only FMem (likely via processor architecture

modifications).

For Infiniswap and LegoOS, the memory hierarchy includes hard-

ware caches, CMem (locally attached DRAM) and remote memory.

We measured remote access latencies in these systems running on

real hardware (not in simulation), including page fault overheads

and we use these measurements for the simulation (10 µs for Le-

goOS and 40 µs for Infiniswap). Infiniswap is consistently worse

than LegoOS by 2.3-3.7X, so we do not show it on the graphs for

better visibility. We also omit Kona-VM, which achieves similar

remote access latency with LegoOS, resulting in similar AMAT.

LegoOS is orthogonal to Kona and to the main ideas in this paper.

In fact, cache-line granularity and avoiding page faults could also be

applied to LegoOS to improve remote memory caching and eviction.

Here, we use LegoOS as a baseline because it achieves lower remote

access latency than Infiniswap.

CMem has lower latency than FMem, while Kona’s remote ac-

cesses are faster than the baselines’ remote accesses because Kona

avoids page faults. Thus, there is a tradeoff between lower local

latencies and lower remote latencies. We experimented with multi-

ple classes of applications (map-reduce, graph analytics, key-value

stores), to explore these tradeoffs. Our model does not consider

network congestion, but we use the same model for Kona as well

as for the baselines. Our simulations are with memory prefetching

turned off, so our results are conservative for Kona, which can

benefit from hardware prefetching even when the data is in remote

memory.

(1) AMAT. For large cache sizes, close to 100% of application peak

resident set sizes, all systems perform similarly because the number

87

ASPLOS ’21, April 19ś23, 2021, Virtual, USA I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. Maruf, O. Mutlu, A. Kolli

0 25 50 75 100
Cache Size (% Local memory)

0

10

20

30

AM
AT

 (n
s)

LegoOS
Kona
Kona-main

(a) Redis Rand

0 25 50 75 100
Cache Size (% Local memory)

0

5

10

15

20

25

AM
AT

 (n
s)

LegoOS
Kona
Kona-main

(b) Linear Regression

0 25 50 75 100
Cache Size (% Local memory)

0

10

20

30

AM
AT

 (n
s)

LegoOS
Kona
Kona-main

(c) Graph Coloring

0 10 20 30
Block Size (KB)

0

5

10

15

20

AM
AT

 (n
s)

Cache Size
0%
27%

54%
100%

(d) Redis Rand - Data fetch size

Figure 8: Simulating remote data fetch

of remote accesses is small. However, the AMAT increases quickly

for smaller caches, as the applications incur more (expensive) re-

mote memory accesses. As Fig. 8 shows, Kona makes disaggregated

memory possible, as the AMAT increases much more slowly com-

pared to the software systems. When only 25% of the data is cached,

which is not unrealistic for disaggregated memory, Kona achieves

1.7X and 5X lower AMAT than LegoOS and Infiniswap, respectively.

The one exception is Linear Regression (Fig. 8b), where the memory

access latency is almost constant irrespective of local cache size.

This behavior is due to the workload’s streaming access pattern,

where there is almost no data reuse and hence little use for a local

cache. Kona incurs overhead from caching remote data in FMem,

due to NUMA effects, as shown by the comparison with Kona-main.

We measured the worst overhead for Linear Regression (25%), while

Redis and Graph Coloring incur only 2-13% higher AMAT due to

NUMA effects.

(2) Associativity and cache block size.We found that the asso-

ciativity does not significantly impact overall latency. We consid-

ered cache block sizes ranging from cache-line (64B) up to 30KB

for different percentages of the local cache size (Fig. 8d). Kona can

fetch remote memory at any granularity larger than a cache-line.

However, we found that small block sizes did not fully exploit the

available spatial locality in the applications (Fig. 8d). In contrast,

large block sizes increased conflict misses and latency. For almost

all of our workloads, we found that 1KB block size achieved the

lowest AMAT. 4KB size increased the AMAT by a small margin,

thus we made the decision to use a block size of 4KB (page granular-

ity) for remote data fetch, which simplifies metadata management.

In contrast, we use cache-line granularity for dirty data tracking.

(3) Simulation overhead. We measured KCacheSim’s simulation

overhead by running Redis with the same workload both natively

and in simulation. Redis has 43X lower throughput running in

simulation.

6.3 Tracking Dirty Data

We evaluate coherence-based cache-line granularity dirty data

tracking without page faults and compare it to the virtual memory

based 4KB granularity write-protection approach. We developed

KTracker (§5) to simulate cache-line tracking. KTracker allows

us to understand (1) how much coherence-based remote mem-

ory reduces the dirty data amplification using cache-line instead

of 4KB-page tracking; and (2) coherence-based remote memory’s

speedup due to avoiding write page faults. We also evaluate (3) the

KTracker simulation overhead. KTracker simulates the Dirty Data

Tracker component and compares it to dirty data tracking using

virtual memory based write-protection with a real-time window

of 1-second. KTracker tracks dirty data only locally, without using

the network.

(1) Tracking granularity. First, we measured the dirty data am-

plification with cache-line granularity tracking. We show the 4KB-

page amplification relative to cache-line tracking in Figure 9. We

show Redis-Seq and Redis-Rand, which represent the more extreme

workloads. The Redis-Seq workload finishes faster than Redis-Rand,

so it requires fewer 1 second windows. The first 10 windows of the

experiment are the server startup and initialization, so they look

similar for both workloads. Cache-line granularity reduces the am-

plification for both Redis-Rand and Redis-Seq, by 2-10X and by 2X,

respectively. As expected, the random workload experiences higher

amplification and thus the benefit from cache-line granularity is

higher.

Other workloads experience an amplification between Redis-

Rand and Redis-Seq. The graph analytics and the map-reduce work-

loads perform random access and sequential access, respectively,

with a cyclic amplification behavior.

We measure the amplification up until the process exit, when

KTracker gets an exit notification. The last window contains the

normal process tear-down, which includes a small number of writes

with high amplification (e.g., main() return value). We do not con-

sider this last window in the results reported because it skews the

average amplification in the favor of cache-line granularity (e.g.,

we report a 2-10X amplification for Redis-Rand, without including

the 30X amplification in the last window).

(2) Tracking speedup.Weuse KTracker tomeasure the coherence-

based dirty data tracking speed-up compared to 4KB-page write-

protection and report the results in Fig. 10. The speedup ranges

from 1% (Redis-seq and Histogram) to 35% (Redis-rand).

(3) Simulation overhead. To measure the simulation overhead,

we ran the Redis server with the same workload natively and with

KTracker. In both cases, we use a memtier client [4] that runs na-

tively. The simulated Redis server experiences 60% lower through-

put, 95% of which is caused by copying and comparing the applica-

tion’s memory. 5% of the overhead is caused by using ptrace. Next,

we compared the native and the simulated executions to deter-

mine if there are any unexpected side-effects of running Redis with

88

Rethinking Software Runtimes for Disaggregated Memory ASPLOS ’21, April 19ś23, 2021, Virtual, USA

0 20 40 60 80 100 120 140
Window # (window = 1 second)

0

5

10

15

20

25

30

4K
B-

pa
ge

 v
s.

ca
ch

e-
lin

e
di

rty
 d

at
a

am
pl

ifi
ca

tio
n

Redis-Rand Redis-Seq

Figure 9: Dirty data amplification reduction.

Redis-RandRedis-Seq Hist Lin-regr Concomp Graphcol Labelprop Pagerank0

10

20

30

%
 S

pe
ed

up
 re

la
tiv

e
to

 w
rit

e
pr

ot
ec

t

Figure 10: Speedup relative to write-protection.

KTracker. Unsurprisingly, the running time of the application is

longer due to the pauses that KTracker introduces. In addition, the

number of context switches increased by 62%, while CPU utilization

for Redis decreased by 57% with KTracker. However, we did not no-

tice any other significant differences. In particular, the numbers of

page faults, L3 cache misses and TLB misses were similar between

the two executions.

6.4 Evicting Local Data Back to Remote
Memory

We evaluate cache-line granularity eviction and compare it to tradi-

tional virtual memory based eviction (4KB page granularity). Kona-

VM evicts 4KB pages and writes all dirty pages to the remote hosts

using RDMA one-sided verbs [49], after having copied them from

the application’s address space to RDMA-registered buffers. Kona

also evicts 4KB pages, but writes only the dirty cache-lines to the

remote hosts, an ability enabled by Kona’s cache-line granularity

dirty data tracking. Like Kona-VM, Kona also needs to copy the

dirty data to RDMA-registered buffers before using RDMA verbs, so

it uses the buffers to aggregate multiple dirty cache-lines, even from

different pages, into bigger chunks that can be written together to

the remote host. We call the buffer with the aggregated cache-lines

the CL log.

For this experiment, we use a microbenchmark that continuously

writes N cache-lines out of each 4KB page in a 1GB region, for

values of N between 1 and 64 (full 4KB page). The benchmark then

writes the dirty data to a remote host using RDMA.

We evaluate two scenarios: contiguous or alternate (representing

random) dirty cache-lines in a page. Copying contiguous dirty

cache-lines is more efficient due to higher cache locality enabled by

automatic next cache-line prefetching. We measure the total time

to complete the transfer, including any necessary acknowledgment

from the remote host (only for the CL log), and compute the goodput

for each situation based on the number of dirty cache-lines. We

define goodput as the amount of useful data (i.e., the dirty cache-

lines) transferred over the network during the measurement time.

Kona’s cache-line log (CL log) achieves 4-5X higher goodput than

Kona-VM’s 4KBwrites for 1-4 contiguous dirty cache-lines (Fig. 11a)

and 2-3X higher goodput for 2-4 random cache-lines (Fig. 11b).

Kona-VM has lower goodput than Kona because Kona-VM uses

4KB RDMA writes, which transfer more data than necessary over

the network (e.g., for 1 dirty cache-line, 4032 bytes are actually

clean, but 4096 bytes are transferred, not including packet headers).

If dirty cache-lines are contiguous, Kona is always better than

Kona-VM, or on par when the whole page is dirty. Kona achieves

lower goodput than Kona-VM only for more than 16 discontiguous

dirty cache-lines, which is rare in real applications. Even pages that

have many dirty cache-lines show some contiguity. As we have

shown in §2.2, pages often have 1-8 dirty cache-lines.

Unlike Kona-VM, Kona needs a thread running on the remote

host to unpack the log of dirty cache-lines and write them at their

proper destination in the remote memory. The remote thread reads

sequential cache-lines from the log received from the application

host and writes each cache-line at its proper address, then sends

an acknowledgment. The overhead of the remote thread is small,

consisting of a few memory reads and writes.

We show a breakdown of the Kona cache-line eviction perfor-

mance in Figure 11c. Most of the time is spent copying the data to

the RDMA buffer (Copy). 15-20% of the time is spent on the RDMA

operations (RDMA write), with another 15-20% checking a bitmap

to determine which cache-lines are dirty (Bitmap). Finally, there

is a small amount of time spent waiting for an acknowledgment

from the remote host, which has to unpack the aggregated dirty

cache-lines (Ack wait).

Idealized baselines. In figures 11a and 11b we also show two ide-

alized baselines that require no copy to an RDMA buffer: 4KB writes

no-copy and CL writes no-copy. The idealized baselines use RDMA

writes to copy the data to the remote host, at 4KB page granularity

and cache-line granularity, respectively. For these baselines we use

local buffers that are already registered for RDMA, so no copy is

necessary locally. Similarly, the remote addresses are registered, so

there is no remote thread unpacking cache-lines. These baselines

cannot be used directly in a remote memory system, because the

application’s address space is not registered for RDMA and a copy

to a separate buffer is required, but we include them for comparison.

4KB writes no-copy always achieves 1.5X higher goodput than

Kona-VM, which needs the additional local 4KB copy for each page.

CLwrites no-copy workwell for a small number of contiguous cache-

lines, but do not work well when dirty cache-lines are discontiguous

or when a large part of the page is dirty, because many small RDMA

operations need to be issued.

In contrast, Kona aggregates dirty cache-lines in the RDMA

buffer, whether they are contiguous or not, and can issue fewer

RDMA writes, of larger size, resulting in better network utiliza-

tion. We use linking and batching to optimize both Kona and the

baselines, but Kona is more efficient because it submits a single

request to the NIC for the whole log. We also experimented with

89

ASPLOS ’21, April 19ś23, 2021, Virtual, USA I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. Maruf, O. Mutlu, A. Kolli

1 2 4 6 8 12 16 32 64
Number of contiguous dirty cache-lines

0
1
2
3
4
5

Go
od

pu
t r

el
at

iv
e

to
 K

on
a-

VM 4KB writes no-copy [idealized]
CL writes no-copy [idealized]
Kona's CL log

(a) Goodput for contiguous dirty cache-lines

1 2 4 8 12 16 32
Number of alternate dirty cache-lines

0
1
2
3
4
5

Go
od

pu
t r

el
at

iv
e

to
 K

on
a-

VM 4KB writes no-copy [idealized]
CL writes no-copy [idealized]
Kona's CL log

(b) Goodput for alternate dirty cache-lines

1 8 64
Contiguous cache lines

0

20

40

60

80

100

%
 o

f t
im

e

Bitmap
Copy
Ack wait
RDMA write 50

100

150

200

Ti
m

e
(m

s)

Total time (right y-axis)

(c) CL log time breakdown

Figure 11: Eviction goodput using cache-line (CL) granularity

using the scatter-gather NIC functionality, but the performance

was consistently worse than Kona (not shown), due to inefficiencies

in gathering many different entries.

7 DISCUSSION

Disaggregated memory provides multiple benefits: it improves

memory utilization, decreases memory over-provisioning and al-

lows independent scaling of memory and compute hardware. For

example, applications running in a datacenter might need TB of

memory altogether, but not so much CPU. Independent scaling

through disaggregated memory allows the datacenter operator to

add more memory, without having to add more CPUs that will end

up being underutilized.

These benefits cannot be achieved by increasing the amount of

memory in a single host. Memory utilization in current datacenters

is already low [63, 66, 78]. Increasing the amount of memory on

individual hosts worsens datacenter memory utilization, bringing

up both capital and operating expenditures. In addition, memory

cannot be scaled up arbitrarily on a single host due to the limited

number of DIMM slots, and CPU grade requirements (premium

CPUs are needed for large memory machines, which significantly

increases cost).

Our approach requires adding a cache coherent FPGA to each

application host, which is an additional cost. However, we expect

this cost to be small compared to the overall cost savings brought by

enabling disaggregated memory ś by improvingmemory utilization

and enabling independent scaling of CPUs/memory.

Similar to prior work on systems for disaggregated memory

(LegoOS, Infiniswap, etc.), Kona targets applications that run on a

single node. Kona does not offer distributed shared memory. Appli-

cations running on the same host or on different hosts can share

data through files, but they require additional coordination if they

access the data concurrently.

Applications never allocate disaggregated memory directly. This

is done transparently by Kona. Kona exposes disaggregatedmemory

as if it is local memory to applications through a large fake physical

address space, and transparently allocates and populates remote

memory with the application data created locally.

8 RELATED WORK

To our knowledge, we are the first to propose coherence-based

remote memory. We discuss other remote memory systems, tech-

niques for tracking applications’ access patterns, compiler support

for sub-page memory access tracking and performing computa-

tion at memory nodes in a disaggregated memory environment.

Remote memory systems. Works on distributed shared mem-

ory [16, 19, 48, 69, 70] provide shared memory and cache coherence

across hosts. In contrast, Kona leverages local cache coherence

within a single host to expose remote memory to legacy appli-

cations transparently. The availability of low-latency networking

makes remote memory practical. Recently, we are seeing a resur-

gence of research in this field [10, 15, 36, 57, 71]. However, these

works, including disk swapping [1, 6, 44], rely on page faults and

page-based tracking, which limits their performance. Some remote

memory systems [29, 30, 61, 67] use an object-based interface that

avoids the virtual memory subsystem’s overhead, but these sys-

tems require modifications of the application code. Meanwhile,

Kona avoids virtual memory overhead by using the local cache

coherence traffic via the cache-coherent FPGA to access remote

data while also remaining transparent to the applications. Hence,

cache-coherent FPGAs provide an alternative solution to the remote

memory problem. Kona’s use of FPGAs is in line with the emerg-

ing trend of increasingly using FPGAs in the datacenter [27, 65],

albeit for different purposes, such as accelerating applications [12ś

14, 22, 35, 38, 47, 55, 62, 73, 75, 76], smart NICs [34, 58], and allowing

multi-tenancy [46, 54, 83].

Tracking application access patterns. Priorworks have explored

sub-page granularity memory access tracking by using (1) specific

APIs [29, 30, 61, 67], (2) source code annotations requiring appli-

cation modification [61], (3) run-time techniques to track reads

and writes [5, 23, 53], (4) architectural simulations [21, 68], and (5)

hardware support for sub-page protection [17, 40]. Intel introduced

Page Modification Logging (PML), which logs modified pages in

hardware and informs the hypervisor of dirty pages in batches of

512 pages [42]. PML reduces the overhead of dirty data tracking, but

continues to rely on page granularity. These approaches trade-off

generality, tracking granularity, and application performance based

on the specific use-case. In this work, we use a suite of techniques

to achieve cache-line granularity tracking of applications’ access

patterns without experiencing the slowdowns that other tools incur.

Compiler support. A software-only solution could use language

or compiler support to track applications’ accesses at finer granular-

ity than a page. Unfortunately, there is no off-the-shelf transparent

software-only solution that we can compare with Kona. If there

existed such a solution, there would be tradeoffs. The software so-

lution sacrifices generality and cannot support arbitrary code (e.g.,

the guest kernel in a VM). In contrast, our solution requires new

hardware, but it is not limited to a specific language or compiler.

Computation at memory nodes. Kona uses a remote thread at

the disaggregated memory to unpack aggregated dirty cache-lines

and distribute them to their memory addresses. Other proposals

90

Rethinking Software Runtimes for Disaggregated Memory ASPLOS ’21, April 19ś23, 2021, Virtual, USA

for disaggregated memory also make use of a remote thread for

memory management, performing even more operations than Kona.

For example, Semeru [81] uses remote threads for tracing pointers

in garbage collection.

9 CONCLUSION

We introduced coherence-based remote memory, a new class of

remote memory that uses the local host’s cache coherence mecha-

nisms to track applications’ memory accesses. We identified two

main hardware primitives needed to enable coherence-based re-

mote memory. We designed and implemented Kona, a represen-

tative software runtime that uses these primitives to reduce dirty

data amplification and to improve network utilization and applica-

tion performance. In addition, we developed new software tools to

evaluate coherence-based remote memory using emulation and sim-

ulation with microbenchmarks and real applications. Using these

tools, we show that coherence-based remote memory improves

the average memory access time by 1.7-5X and reduces dirty data

amplification by 2-10X, compared to state-of-the-art systems. We

conclude that coherence-based remote memory is a promising ap-

proach to building efficient disaggregated memory.

ACKNOWLEDGMENTS

We are grateful to our shepherd, Steve Blackburn, to the anonymous

reviewers, and to Nadav Amit, Mihai Budiu, Jon Howell, Chris

Rossbach, Lalith Suresh and Amy Tai for their thoughtful feedback.

REFERENCES
[1] Balance LRU lists based on relative thrashing. https://lwn.net/Articles/690069/.
[2] CCIX. https://www.ccixconsortium.com.
[3] Enzian, a research computer built by the Systems Group at ETH Zürich. http:

//www.enzian.systems/index.html.
[4] memtier benchmark: A high-throughput benchmarking tool for redis and mem-

cached. https://redislabs.com/blog/memtier_benchmark-a-high-throughput-
benchmarking-tool-for-redis-memcached/.

[5] Pin - a dynamic binary instrumentation tool. https://software.intel.com/en-
us/articles/pin-a-dynamic-binary-instrumentation-tool.

[6] Reconsidering swapping. https://lwn.net/Articles/690079/.
[7] Redis: open-source, in-memory data structure store. https://redis.io.
[8] VOLTDB. https://www.voltdb.com/.
[9] Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin. Fast key-value stores:

An idea whose time has come and gone. In Workshop on Hot Topics in Operating
Systems (HotOS), 2019.

[10] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,
Stanko Novakovic, Arun Ramanathan, Pratap Subrahmanyam, Lalith Suresh,
Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. Remote regions: a
simple abstraction for remote memory. In USENIX Annual Technical Conference
(ATC), 2018.

[11] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,
Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,
andMichaelWei. Remotememory in the age of fast networks. InACM Symposium
on Cloud Computing (SoCC), 2017.

[12] Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan.
Shouji: a fast and efficient pre-alignment filter for sequence alignment. Bioinfor-
matics, 35(21), 2019.

[13] Mohammed Alser, Hasan Hassan, Hongyi Xin, Oğuz Ergin, Onur Mutlu, and Can
Alkan. GateKeeper: a new hardware architecture for accelerating pre-alignment
in DNA short read mapping. Bioinformatics, 33(21), 2017.

[14] Mohammed Alser, Taha Shahroodi, Juan Gómez-Luna, Can Alkan, and Onur
Mutlu. SneakySnake: a fast and accurate universal genome pre-alignment filter
for CPUs, GPUs and FPGAs. Bioinformatics, 2020.

[15] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy Ouster-
hout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and Scott Shenker.
Can far memory improve job throughput? In European Conference on Computer
Systems (EuroSys), 2020.

[16] Cristiana Amza, Alan L. Cox, Shandya Dwarkadas, Pete Keleher, Honghui Lu, Ra-
makrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. TreadMarks: Shared

memory computing on networks of workstations. IEEE Computer, February 1996.
[17] Apple. How We Ported Linux to the M1. https://corellium.com/blog/linux-m1.
[18] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.

Computer, 40(12):33ś37, December 2007.
[19] J. K. Bennett, J. B. Carter, andW. Zwaenepoel. Munin: Distributed shared memory

based on type-specific memory coherence. In ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP), March 1990.

[20] Abhishek Bhattacharjee. Translation-triggered prefetching. In International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2017.

[21] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. The Gem5 Simulator. SIGARCH Comput. Archit. News,
39(2):1ś7, August 2011.

[22] M. Blott and K. Vissers. Dataflow architectures for 10 Gbps line-rate key-value-
stores. In IEEE Hot Chips 25 Symposium (HCS), 2013.

[23] Derek Bruening, Qin Zhao, and Saman Amarasinghe. Transparent dynamic
instrumentation. In International Conference on Virtual Execution Environments
(VEE), 2012.

[24] Irina Calciu, Talha Imran, Ivan Puddu, Sanidhya Kashyap, Hasan Al Maruf, Onur
Mutlu, and Aasheesh Kolli. Rethinking Software Runtimes for Disaggregated
Memory, February 2021. https://github.com/project- kona/asplos21-ae.

[25] Irina Calciu, Ivan Puddu, Aasheesh Kolli, Andreas Nowatzyk, Jayneel Gandhi,
Onur Mutlu, and Pratap Subrahmanyam. Project PBerry: FPGA Acceleration for
Remote Memory. In Workshop on Hot Topics in Operating Systems (HotOS), 2019.

[26] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera.
Black-box concurrent data structures for NUMA architectures. In International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2017.

[27] Adrian Caulfield, Eric Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa Woods,
Sitaram Lanka, Derek Chiou, and Doug Burger. A Cloud-Scale Acceleration
Architecture. In International Symposium on Microarchitecture (MICRO), 2016.

[28] Convey Computer. The Convey HC-2 Computer. Architectural
Overview. https://www.micron.com/~/media/documents/products/white-
paper/wp_convey_hc2_architectual_overview.pdf, 2012.

[29] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
FaRM: Fast remote memory. In Symposium on Networked Systems Design and
Implementation (NSDI), April 2014.

[30] Aleksandar Dragojević, Dushyanth Narayanan, Ed Nightingale, Matthew Ren-
zelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No compromises:
distributed transactions with consistency, availability, and performance. In ACM
Symposium on Operating Systems Principles (SOSP), October 2015.

[31] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of CloudLab. In USENIX Annual Technical Conference (ATC), 2019.

[32] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network requirements
for resource disaggregation. In Symposium on Operating Systems Design and
Implementation (OSDI), October 2016.

[33] Gen-Z draft core specificationÐdecember 2016. http://genzconsortium.org/draft-
core-specification-december-2016.

[34] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKeown. NetFPGA: An
open platform for teaching how to build Gigabit-rate network switches and
routers. IEEE Transactions on Education, 2008.

[35] Heiner Giefers, Raphael Polig, and Christoph Hagleitner. Accelerating Arithmetic
Kernels with Coherent Attached FPGA Coprocessors. In Design, Automation &
Test in Europe (DATE), 2015.

[36] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, and Kang G
Shin. Efficient Memory Disaggregation with Infiniswap. In Symposium on
Networked Systems Design and Implementation (NSDI), 2017.

[37] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. RDMA over Commodity Ethernet at Scale. In ACM
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), August 2016.

[38] Zhenhao He, David Sidler, Zsolt István, and Gustavo Alonso. A flexible k-means
operator for hybrid databases. In International Conference on Field Programmable
Logic and Applications (FPL), 2018.

[39] Intel. Cachegrind. https://valgrind.org/docs/manual/cg-manual.html.
[40] Intel. EPT-based Sub-Page Permissions. https://software.intel.com/sites/default/

files/managed/c5/15/architecture-instruction-set-extensions-programming-
reference.pdf.

[41] Intel. Intel Xeon+FPGA Platform for the Data Center. http://
reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf.

91

https://lwn.net/Articles/690069/
https://www.ccixconsortium.com
http://www.enzian.systems/index.html
http://www.enzian.systems/index.html
https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://lwn.net/Articles/690079/
https://redis.io
https://www.voltdb.com/
https://corellium.com/blog/linux-m1
https://www.micron.com/~/media/documents/products/white-paper/wp_convey_hc2_architectual_overview.pdf
https://www.micron.com/~/media/documents/products/white-paper/wp_convey_hc2_architectual_overview.pdf
http://genzconsortium.org/draft-core-specification-december-2016
http://genzconsortium.org/draft-core-specification-december-2016
https://valgrind.org/docs/manual/cg-manual.html
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
http://reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf
http://reconfigurablecomputing4themasses.net/files/2.2%20PK.pdf

ASPLOS ’21, April 19ś23, 2021, Virtual, USA I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. Maruf, O. Mutlu, A. Kolli

[42] Intel. Page Modification Logging for Virtual Machine Monitor White Pa-
per. https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/page-modification-logging-vmm-white-paper.pdf.

[43] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual. November
2020.

[44] Scott F. Kaplan, Lyle A. McGeoch, and Megan F. Cole. Adaptive caching for
demand prepaging. In International Symposium on Memory Management (ISMM),
2002.

[45] Stefanos Kaxiras, David Klaftenegger, Magnus Norgren, Alberto Ros, and Kon-
stantinos Sagonas. Turning centralized coherence and distributed critical-section
execution on their head: A new approach for scalable distributed shared memory.
In IEEE International Symposium on High Performance Distributed Computing
(HPDC), 2015.

[46] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza,
and Christopher J. Rossbach. Sharing, Protection, and Compatibility for Recon-
figurable Fabric with AmorphOS. In Symposium on Operating Systems Design
and Implementation (OSDI), Carlsbad, CA, 2018.

[47] Maysam Lavasani, Hari Angepat, and Derek Chiou. An FPGA-based in-line
accelerator for Memcached. IEEE Computer Architecture Letters, 2014.

[48] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.
ACM Transactions on Computer Systems (TOCS), November 1989.

[49] libibverbs. http://www.rdmamojo.com/2012/05/18/libibverbs.
[50] Kevin T. Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,

Parthasarathy Ranganathan, and Thomas F. Wenisch. System-level implications
of disaggregated memory. In IEEE Symposium on High Performance Computer
Architecture (HPCA), February 2012.

[51] Liu Ling, Neal Oliver, Chitlur Bhushan, Wang Qigang, Alvin Chen, Shen Wenbo,
Yu Zhihong, Arthur Sheiman, Ian McCallum, Joseph Grecco, Henry Mitchel, Liu
Dong, and Prabhat Gupta. High-performance, Energy-efficient Platforms Using
In-socket FPGA Accelerators. In International Symposium on Field Programmable
Gate Arrays (FPGA), 2009.

[52] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph Hellerstein. GraphLab: A New Framework for Parallel Machine
Learning. In Conference on Uncertainty in Artificial Intelligence (UAI), 2010.

[53] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation. In Interna-
tional Conference on Programming Language Design and Implementation (PLDI),
2005.

[54] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mu-
lugeta Eneyew, Zhengwei Qi, and Baris Kasikci. AHypervisor for Shared-Memory
FPGA Platforms. In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2020.

[55] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir Yazdan-
bakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. TABLA: A unified template-
based framework for accelerating statistical machine learning. In IEEE Symposium
on High Performance Computer Architecture (HPCA), 2016.

[56] Yandong Mao, Robert Morris, and Frans Kaashoek. Optimizing MapReduce for
multicore architectures. Technical Report MIT-CSAIL-TR-2010-020, May 2010.

[57] Hasan Al Maruf and Mosharaf Chowdhury. Effectively Prefetching Remote
Memory with Leap. In USENIX Annual Technical Conference (ATC), 2020.

[58] Mellanox. Mellanox Innova™ IPsec 4 Lx Ethernet Adapter Card User Man-
ual. http://www.mellanox.com/related-docs/prod_software/Mellanox_Innova_
IPsec_4_Lx_Ethernet_Adapter_Card_User_Manual_rev_1_3.pdf.

[59] Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu. A large scale
study of data center network reliability. In Proceedings of the Internet Measurement
Conference (IMC), 2018.

[60] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. A primer on
memory consistency and cache coherence, second edition. Synthesis Lectures on
Computer Architecture, 15(1):1ś294, 2020.

[61] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon
Kahan, and Mark Oskin. Latency-tolerant software distributed shared memory.
In USENIX Annual Technical Conference (ATC), July 2015.

[62] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. Centaur: A
framework for hybrid CPU-FPGA databases. In International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2017.

[63] Gagandeep Panwar, Da Zhang, Yihan Pang, Mai Dahshan, Nathan DeBardeleben,
Binoy Ravindran, and Xun Jian. Quantifying Memory Underutilization in HPC

Systems and Using It to Improve Performance via Architecture Support. In
International Symposium on Microarchitecture (MICRO), 2019.

[64] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for
multiprocessors with private cache memories. In International Symposium on
Computer Architecture (ISCA), 1984.

[65] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. A Reconfigurable Fabric
for Accelerating Large-Scale Datacenter Services. In International Symposium on
Computer Architecture (ISCA), 2014.

[66] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A
Kozuch. Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In ACM Symposium on Cloud Computing (SoCC), 2012.

[67] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. AIFM:
High-performance, application-integrated far memory. In Symposium on Operat-
ing Systems Design and Implementation (OSDI), November 2020.

[68] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and Accurate Microarchi-
tectural Simulation of Thousand-Core Systems. In International Symposium on
Computer Architecture (ISCA), 2013.

[69] Daniel J. Scales, Kourosh Gharachorloo, and Chandramohan A. Thekkath. Shasta:
A low overhead, software-only approach for supporting fine-grain shared mem-
ory. In International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), October 1996.

[70] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R.
Larus, and David A. Wood. Fine-grain access control for distributed shared
memory. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), October 1994.

[71] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. LegoOS: A dissemi-
nated, distributed OS for hardware resource disaggregation. In Symposium on
Operating Systems Design and Implementation (OSDI), Carlsbad, CA, 2018.

[72] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Distributed shared persistent
memory. In ACM Symposium on Cloud Computing (SoCC), 2017.

[73] Yongming Shen,Michael Ferdman, and PeterMilder. Maximizing CNN accelerator
efficiency through resource partitioning. In International Symposium on Computer
Architecture (ISCA), 2017.

[74] Navin Shenoy. A Milestone in Moving Data. https://newsroom.intel.com/
editorials/milestone-moving-data.

[75] David Sidler, Zsolt István, Muhsen Owaida, Kaan Kara, and Gustavo Alonso.
doppioDB: A hardware accelerated database. In International Conference on
Management of Data (SIGMOD), 2017.

[76] Gagandeep Singh, Dionysios Diamantopoulos, ChristophHagleitner, Juan Gómez-
Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal. NERO: A near high-
bandwidth memory stencil accelerator for weather prediction modeling. In
International Conference on Field Programmable Logic and Applications (FPL),
2020.

[77] Mario Smarduch. Enhanced Live Migration For Intensive Memory
Loads. https://events.static.linuxfound.org/sites/events/files/slides/CloudOpen-
Japan-2015.pdf.

[78] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin,
Steven Hand, Mor Harchol-Balter, and John Wilkes. Borg: The next generation.
In European Conference on Computer Systems (EuroSys), 2020.

[79] Shin-Yeh Tsai and Yiying Zhang. LITE kernel RDMA support for datacenter
applications. In ACM Symposium on Operating Systems Principles (SOSP), October
2017.

[80] Userfaultfd. https://www.kernel.org/doc/Documentation/vm/userfaultfd.txt.
[81] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen,

Michael D. Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. Semeru:
A memory-disaggregated managed runtime. In Symposium on Operating Systems
Design and Implementation (OSDI), pages 261ś280, November 2020.

[82] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. The End of a
Myth: Distributed Transactions Can Scale. International Conference on Very Large
Data Bases (VLDB), 10(6), February 2017.

[83] Yue Zha and Jing Li. Virtualizing FPGAs in the Cloud. In International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2020.

92

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/page-modification-logging-vmm-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/page-modification-logging-vmm-white-paper.pdf
http://www.rdmamojo.com/2012/05/18/libibverbs
http://www.mellanox.com/related-docs/prod_software/Mellanox_Innova_IPsec_4_Lx_Ethernet_Adapter_Card_User_Manual_rev_1_3.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_Innova_IPsec_4_Lx_Ethernet_Adapter_Card_User_Manual_rev_1_3.pdf
https://newsroom.intel.com/editorials/milestone-moving-data
https://newsroom.intel.com/editorials/milestone-moving-data
https://events.static.linuxfound.org/sites/events/files/slides/CloudOpen-Japan-2015.pdf
https://events.static.linuxfound.org/sites/events/files/slides/CloudOpen-Japan-2015.pdf
https://www.kernel.org/doc/Documentation/vm/userfaultfd.txt

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Current Remote Memory Shortcomings
	2.2 Memory Access Patterns in Redis
	2.3 Local Memory Coherence

	3 Overview and design principles
	4 Kona: Coherence-based remote memory
	4.1 Overview and Components
	4.2 New Hardware Primitives
	4.3 A Reference Architecture Using FPGAs
	4.4 Remote Memory Operations in Kona
	4.5 Failures

	5 Simulating hardware support for Kona
	5.1 Implementation

	6 Evaluation
	6.1 Microbenchmark Performance
	6.2 Fetching Remote Data
	6.3 Tracking Dirty Data
	6.4 Evicting Local Data Back to Remote Memory

	7 Discussion
	8 Related Work
	9 Conclusion
	References

