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Executive Summary
Background: Machine learning (ML)-based performance modeling has gained traction as a way to 
overcome the slow accelerator generation and implementation process on an FPGA

Problem: Three key shortcomings of prior ML-based techniques:
• Models are trained for a specific environment 
• Training requires large amounts of data 
• Models trained using a limited number of samples are prone to overfitting

Goal: Overcome limitations of traditional ML-based techniques to provide accurate and fast prediction 
of performance and resource usage of accelerator implementation on an FPGA

Our contribution: LEAPER, a transfer learning-based approach for prediction of performance and 
resource usage for accelerator implementation on an FPGA
• Transfer ML-based model from edge to cloud platforms
• Transfer ML-based model across applications
• Provide fast and accurate predictions of previously unseen accelerator optimization options

Key Results: Evaluate LEAPER across 5 state-of-the-art cloud FPGA-based platforms with 2 different 
interconnect technologies on 6 real-world applications
• Provides, on average, 85% accuracy when we use our transferred model for prediction in a cloud

environment
• Reduces design-space exploration time for accelerator implementation on an FPGA by 10×, from days

to only a few hours.
• Unlike state-of-the-art techniques, we show that classic non-neural network-based models are enough

to build an accurate predictor to evaluate accelerator implementation on an FPGA
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Wide Adoption of FPGAs
• FPGAs provide a tradeoff between programmability

and efficiency

• FPGAs being deployed from edge to cloud for many 
applications

Image sources: http://www.flometrics.com/fluid-dynamics/computational-fluid-dynamics
Naoe, Kensuke et al. "Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services" IJSSOE, 2010

Particle Physics Atmospheric Modeling Genome Sequencing
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The Key Problem
Accelerator Implementation Process

Low Productivity

Application:
C/C++/System C

Large 
Optimization 
Space

Time 
Consuming 
Process
(days or 
months)

High-level Synthesis (HLS)

Logic Synthesis

Technology Mapping

Place and Route

Bitstream

Implementation Report:
Performance/Timing, 
Resource Usage

Machine Learning

HLS Estimates
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Traditional ML-Based Approach
Low-end FPGA
• Fast bitstream generation
• Cheap
• Easily accessible

Design Space ML Model
Optimization Options

Performance/
Resource Usage

Data collection: 
Brute force

Design Space ML Model

Performance/
Resource Usage

Optimization Options

Data collection: 
Brute force

High-end FPGA
• Slow bitstream generation
• Expensive
• Not easily accessible

Trained for Specific Environment



Overcome limitations of traditional ML-based 
techniques to provide accurate and fast prediction of 

performance and resource usage of accelerator 
implementation on an FPGA

Our Goal

7
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Our Proposal

LEAPER
Transfer learning-based approach
for prediction of performance and            

resource usage in an FPGA-based system
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Transfer Learning
• Transfer knowledge from previous experiences to 

solve new tasks

• Similar to humans, algorithms can learn from 
experiences

• Rather than learning from scratch
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LEAPER

Design Space ML Model
Optimization Options

Performance/
Resource Usage

Data collection: 
Brute force

Design Space ML Model

Performance/
Resource Usage

Optimization Options

Transfer

Data collection: 
Design of experiments

Data collection: 
Brute force
Data collection: 
Design of experiments

Fast design-space exploration

Low-end FPGA
• Fast bitstream generation
• Cheap
• Easily accessible

High-end FPGA
• Slow bitstream generation
• Expensive
• Not easily accessible
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LEAPER: Implementation

Base Model Building

Target Model Building



13

Base Model Building

Base Model Building
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Phase 1: LLVM Analyzer 

Base Model Building

Application Features

Instruction mix

ILP

Reuse distance

Memory traffic

Register traffic

Memory footprint
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Phase 2: Accelerator Generation

Base Model Building

Design of experiments technique to minimize the number of 
experiments while data collection

Accelerator 
Optimization Options

Loop pipelining

Loop unrolling

Array partitioning

Inlining

Dataflow

Burst read/write

FPGA frequency
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Phase 3: Base Model Training

Base Model Building

Application Features

Instruction mix

ILP

Reuse distance

Memory traffic

Register traffic

Memory footprint

Accelerator 
Optimization Options

Loop pipelining
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Array partitioning
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Dataflow

Burst read/write
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Target Model Building via Transfer Learning

Target Model Building
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Phase 1: LLVM Analyzer 

Target Model Building
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Phase 2: Accelerator Generation

Target Model Building

Design of experiments technique to minimize the number of 
experiments while data collection
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Phase 3: Target Model Training

Target Model Building

Create a few-shot learning dataset to learn the change in distribution for the 
new environment (application/hardware platform)
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Phase 3: Target Model Training

Target Model Building

To transfer a model, LEAPER uses:
• Few-shot learning dataset to train an ensemble of transfer learners
• Transfer learner to perform a non-linear transformation of predictions

from the base model to the target model

Transfer
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Evaluation Methodology (1/2)
• Goal:

1. Transfer ML-based model from edge to cloud platforms
2. Transfer ML-based model across applications
3. Predictions of previously unseen accelerator optimization 

options

• Nimbix cloud as the  target high-end platform with:
- 5 FPGA configurations
- 2 CAPI-based interconnects (CAPI1/CAP2)

• PYNQ-Z1ZYNQ as the base low-end platform

POWER9 AC922 High-end FPGA

CAPI

Low-end FPGA 
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Evaluation Methodology (2/2)
• 6 real-world workloads:

- Image processing
• Histogram (HIST)
• Canny edge detection (CEDD)

- Machine learning
• Binary long short-term memory (BLSTM)
• Digit recognition (DIGIT)

- Databases:
• Relational operation (SELECT)
• Stream compaction (SC)

• Programming tools:
- Xilinx design tools (Vivado and HLS)
- IBM CAPI-SNAP Framework
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• Transfer from low-end edge PYNQ-Z1 board to
high-end cloud FPGA-based systems
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• Transfer from low-end edge PYNQ-Z1 board to
high-end cloud FPGA-based systems
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Performance Prediction: Transfer From Edge to Cloud

Reduces design-space exploration time                  
by 10x than training from scratch

(from days to only a few hours)

LEAPER can effectively transfer model from    
edge to cloud platform using only 5-10 samples
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• Transfer across applications on low-end edge PYNQ-Z1
board
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• Transfer across applications on low-end edge PYNQ-Z1
board
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Performance Prediction: Transfer Across Applications

LEAPER can effectively transfer models 
across applications with on 

average 85% accuracy
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• Prediction of previously unseen accelerator optimization 
options on the base platform
• Comparison with three popular ML-based techniques:    

XGBoost (XGB), artificial neural network (ANN), and decision tree (DT)
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Prediction Comparison: Unseen Accelerator Optimizations
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• Prediction of previously unseen accelerator optimization 
options on the base platform
• Comparison with three popular ML-based techniques:    

XGBoost (XGB), artificial neural network (ANN), and decision tree 
(DT)
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Prediction Comparison: Unseen Accelerator Optimizations

LEAPER provides both high accuracy and                   
sample-efficiency compared to other 

ML-based techniques
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More in the Paper 
• Accuracy analysis for transferring resource usage models

• Time and cost analysis to build ML models using LEAPER and 
traditional approach

• Transfer to a wide range of cloud FPGA configurations and 
applications

• Comparison to different transfer learning algorithms

• Explainability analysis of LEAPER

• Discussion on limitations
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More in the Paper 
• Accuracy analysis for transferring resource usage models

• Time and cost analysis to build ML models using LEAPER and 
traditional approach

• Transfer to a wide range of cloud FPGA configurations and 
applications

• Comparison to different transfer learning algorithms

• Explainability analysis of LEAPER

• Discussion on limitations

https://arxiv.org/pdf/2208.10606.pdf

https://arxiv.org/pdf/2208.10606.pdf


33

Talk Outline

Motivation

LEAPER: Implementation

Evaluation of LEAPER and Key Results

Summary



34

Summary

LEAPER transfers previously trained models to 
predict the performance and resource usage of 

accelerator implementation

LEAPER is cheaper (with 5-shot), faster (up to 
10x), highly accurate (85%) at predicting 

performance and resource usage in a new 
environment than building model from scratch
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