LEAPER: Fast and Accurate FPGA-based System Performance Prediction via Transfer Learning

Gagandeep Singh, Dionysios Diamantopoulos, Juan Gómez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu
Executive Summary

Background: Machine learning (ML)-based performance modeling has gained traction as a way to overcome the slow accelerator generation and implementation process on an FPGA.

Problem: Three key shortcomings of prior ML-based techniques:
- Models are trained for a specific environment
- Training requires large amounts of data
- Models trained using a limited number of samples are prone to overfitting

Goal: Overcome limitations of traditional ML-based techniques to provide accurate and fast prediction of performance and resource usage of accelerator implementation on an FPGA.

Our contribution: LEAPER, a transfer learning-based approach for prediction of performance and resource usage for accelerator implementation on an FPGA:
- Transfer ML-based model from edge to cloud platforms
- Transfer ML-based model across applications
- Provide fast and accurate predictions of previously unseen accelerator optimization options

Key Results: Evaluate LEAPER across 5 state-of-the-art cloud FPGA-based platforms with 2 different interconnect technologies on 6 real-world applications:
- Provides, on average, **85% accuracy** when we use our transferred model for prediction in a cloud environment
- Reduces design-space exploration time for accelerator implementation on an FPGA by **10x**, from days to only a few hours.
- Unlike state-of-the-art techniques, we show that classic non-neural network-based models are enough to build an accurate predictor to evaluate accelerator implementation on an FPGA.
Talk Outline

Motivation

LEAPER: Implementation

Evaluation of LEAPER and Key Results

Summary
Wide Adoption of FPGAs

• FPGAs provide a tradeoff between **programmability** and **efficiency**

• FPGAs being **deployed from edge to cloud** for many applications

Particle Physics

Atmospheric Modeling

Genome Sequencing

Image sources: http://www.flometrics.com/fluid-dynamics/computational-fluid-dynamics
Naoe, Kensuke et al. "Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services" IJSSOE, 2010
The Key Problem

Accelerator Implementation Process

Application: C/C++/System C

- Large Optimization Space
- Time Consuming Process (days or months)

- High-level Synthesis (HLS)
- Logic Synthesis
- Technology Mapping
- Place and Route
- Bitstream

HLS Estimates

Machine Learning

Implementation Report: Performance/Timing, Resource Usage

Low Productivity
Traditional ML-Based Approach

Low-end FPGA
- Fast bitstream generation
- Cheap
- Easily accessible

High-end FPGA
- Slow bitstream generation
- Expensive
- Not easily accessible

Trained for Specific Environment

SAFARI
Overcome limitations of traditional ML-based techniques to provide accurate and fast prediction of performance and resource usage of accelerator implementation on an FPGA.
Our Proposal

LEAPER

Transfer learning-based approach for prediction of performance and resource usage in an FPGA-based system
Transfer Learning

- Transfer knowledge **from previous experiences to solve new tasks**

- Similar to humans, algorithms can learn from experiences

- **Rather than learning from scratch**
LEAPER

Low-end FPGA
- Fast bitstream generation
- Cheap
- Easily accessible

High-end FPGA
- Slow bitstream generation
- Expensive
- Not easily accessible

Data collection:
- Design of experiments
- Brute force

Fast design-space exploration
LEAPER: Implementation

Base Model Building

- Application
- LLVM Kernel Analyzer
 - Instruction Mix
 - Memory Behavior
 - ILP
- Accelerator Generation
 - Accelerator Implementation
 - FPGA Deployment
 - Accelerator Features
- Hyperparameter Tuning
- Training Dataset
- Base Learner
- Model Generation
- Low-end Edge Model
 - Performance/Resource Utilization

Target Model Building

- Application
- LLVM Kernel Analyzer
 - Instruction Mix
 - Memory Behavior
 - ILP
- Accelerator Generation
 - Accelerator Implementation
 - FPGA Deployment
 - Accelerator Features
- Few-shot Learning Dataset
- High-end Cloud Model
- Performance/Resource Utilization
- Ensemble Transfer Learner
- Model Generation
Base Model Building
Phase 1: LLVM Analyzer

Base Model Building

- **Application Features**
 - Instruction mix
 - ILP
 - Reuse distance
 - Memory traffic
 - Register traffic
 - Memory footprint

LLVM Kernel Analyzer
- Instruction Mix
- Memory Behavior
- ILP

Accelerator Generation
- Accelerator Implementation
- FPGA Deployment

Training Dataset
- Hyperparameter Tuning
- Base Learner
- Model Generation
- Low-end Edge Model
 - Performance/Resource Utilization

Evaluation Dataset
- Few-shot Learning Dataset
- High-end Cloud Model
- Model Generation
 - Ensemble Transfer Learner
 - Performance/Resource Utilization
Phase 2: Accelerator Generation

Design of experiments technique to **minimize the number of experiments** while data collection.
Phase 3: Base Model Training

Application Features
- Instruction mix
- ILP
- Reuse distance
- Memory traffic
- Register traffic
- Memory footprint

Accelerator Optimization Options
- Loop pipelining
- Loop unrolling
- Array partitioning
- Inlining
- Dataflow
- Burst read/write
- FPGA frequency

Diagram:
- Application
- Instruction Mix
- Accelerator Generation
- Accelerator Implementation
- FPGA Deployment
Target Model Building via Transfer Learning
Phase 1: LLVM Analyzer

Target Model Building
Phase 2: Accelerator Generation

Design of experiments technique to minimize the number of experiments while data collection
Phase 3: Target Model Training

Create a **few-shot learning dataset** to learn the change in distribution for the new environment (application/hardware platform)
Phase 3: Target Model Training

To transfer a model, LEAPER uses:

- **Few-shot learning dataset** to train an ensemble of transfer learners
- **Transfer learner** to perform a non-linear transformation of predictions from the base model to the target model
Talk Outline

Motivation

LEAPER: Implementation

Evaluation of LEAPER and Key Results

Summary
Evaluation Methodology (1/2)

• **Goal:**
 1. Transfer ML-based model **from edge to cloud platforms**
 2. Transfer ML-based model **across applications**
 3. Predictions of previously **unseen accelerator optimization options**

• **Nimbix cloud** as the **target high-end platform** with:
 - 5 FPGA configurations
 - 2 CAPI-based interconnects (CAPI1/CAP2)

• **PYNQ-Z1 ZYNQ** as the base **low-end platform SAFARI**
Evaluation Methodology (2/2)

• 6 real-world workloads:
 - Image processing
 • Histogram (HIST)
 • Canny edge detection (CEDD)
 - Machine learning
 • Binary long short-term memory (BLSTM)
 • Digit recognition (DIGIT)
 - Databases:
 • Relational operation (SELECT)
 • Stream compaction (SC)

• Programming tools:
 - Xilinx design tools (Vivado and HLS)
 - IBM CAPI-SNAP Framework
Performance Prediction: Transfer From Edge to Cloud

- Transfer from low-end edge PYNQ-Z1 board to high-end cloud FPGA-based systems
• Transfer from low-end edge PYNQ-Z1 board to high-end cloud FPGA-based systems

LEAPER can effectively transfer model from edge to cloud platform using only 5-10 samples

Reduces design-space exploration time by 10x than training from scratch (from days to only a few hours)
Performance Prediction: Transfer Across Applications

- Transfer **across applications on low-end edge PYNQ-Z1 board**
Performance Prediction: Transfer Across Applications

- Transfer **across applications on low-end edge PYNQ-Z1 board**

LEAPER can effectively transfer models across applications with on average **85% accuracy**

Base Models: BLSTM

<table>
<thead>
<tr>
<th>Target Model</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEDD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIGIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SELECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gmean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prediction Comparison: Unseen Accelerator Optimizations

- Prediction of **previously unseen accelerator optimization options** on the base platform
- **Comparison with three popular ML-based techniques:** XGBoost (XGB), artificial neural network (ANN), and decision tree (DT)
Prediction Comparison: Unseen Accelerator Optimizations

• Prediction of **previously unseen accelerator optimization options** on the base platform

• **Comparison with three popular ML-based techniques:** XGBoost (XGB), artificial neural network (ANN), and decision tree (DT)

LEAPER provides both **high accuracy and sample-efficiency** compared to other ML-based techniques

![Graph showing performance metrics for LEAPER, XGB, ANN, and DT](image)
More in the Paper

• Accuracy analysis for **transferring resource usage models**

• **Time and cost analysis** to build ML models using LEAPER and traditional approach

• Transfer to a **wide range of cloud FPGA configurations and applications**

• Comparison to **different transfer learning algorithms**

• **Explainability analysis** of LEAPER

• **Discussion on limitations**
More in the Paper

- Accuracy analysis for transferring resource usage models
- Time and cost analysis to build ML models using LEAPER and traditional approach
- Transfer to a wide range of cloud FPGA configurations and applications
- Comparison to different transfer learning algorithms
- Explainability analysis of LEAPER
- Discussion on limitations

LEAPER: Fast and Accurate FPGA-based System Performance Prediction via Transfer Learning

Gagandeep Singha Dionysios Diamantopoulosb Juan Gómez-Lunaa
Sander Stuijkc Henk Corporaalc Onur Mutlua
aETH Zürich bIBM Research Europe, Zurich cEindhoven University of Technology

LEAPER transfers previously trained models to predict the performance and resource usage of accelerator implementation.

LEAPER is cheaper (with 5-shot), faster (up to 10x), highly accurate (85%) at predicting performance and resource usage in a new environment than building model from scratch.
LEAPER:
Fast and Accurate FPGA-based System Performance Prediction via Transfer Learning

Gagandeep Singh, Dionysios Diamantopoulos, Juan Gómez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu