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Executive Summary

Background: Machine learning (ML)-based performance modeling has gained traction as a way to
overcome the slow accelerator generation and implementation process on an FPGA

Problem: Three key shortcomings of prior ML-based techniques:

* Models are trained for a specific environment

* Training requires large amounts of data

* Models trained using a limited number of samples are prone to overfitting

Goal: Overcome limitations of traditional ML-based techniques to provide accurate and fast prediction
of performance and resource usage of accelerator implementation on an FPGA

Our contribution: LEAPER, a transfer learning-based approach for prediction of performance and
resource usage for accelerator implementation on an FPGA

* Transfer ML-based model from edge to cloud platforms

* Transfer ML-based model across applications

* Provide fast and accurate predictions of previously unseen accelerator optimization options

Key Results: Evaluate LEAPER across 5 state-of-the-art cloud FPGA-based platforms with 2 different
interconnect technologies on 6 real-world applications

* Provides, on average, 85% accuracy when we use our transferred model for prediction in a cloud
environment

* Reduces design-space exploration time for accelerator implementation on an FPGA by 10x, from days
to only a few hours.

* Unlike state-of-the-art techniques, we show that classic non-neural network-based models are enough
to build an accurate predictor to evaluate accelerator implementation on an FPGA
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Talk Outline
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Wide Adoption of FPGAs

 FPGAs provide a tradeoff between programmability
and efficiency

* FPGAs being deployed from edge to cloud for many
applications

CMS Experiment at the LHC, CERN
D ta recordad; 2016-Oct-14 09:56:18,738952 GMT
n/ Event /137 283171/ 142530805 / 254

Particle Physics Atmospherlc Modelmg Genome Sequencing

S A FA R ’ Image sources: http://www.flometrics.com/fluid-dynamics/computational-fluid-dynamics 4
Naoe, Kensuke et al. "Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services" [/SSOE, 2010



The Key Problem
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Traditional ML-Based Approach
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Overcome limitations of traditional ML-based
techniques to provide accurate and fast prediction of
performance and resource usage of accelerator
implementation on an FPGA
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Our Proposal

LEAPER

Transfer learning-based approach
for prediction of performance and
resource usage in an FPGA-based system
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Transfer Learning

* Transfer knowledge from previous experiences to
solve new tasks

 Similar to humans, algorithms can learn from
experiences

» Rather than learning from scratch
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LEAPER
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Talk Outline

LEAPER: Implementation
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LEAPER: Implementation
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Base Model Building
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Phase 1: LLVM Analyzer
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Phase 2: Accelerator Generation
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Design of experiments technique to minimize the number of
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Phase 3: Base Model Training
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Target Model Building via Transfer Learning
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Phase 2: Accelerator Generation
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Phase 3: Target Model Training
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Phase 3: Target Model Training
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To transfer a model, LEAPER uses:
* Few-shot learning dataset to train an ensemble of transfer learners
* Transfer learner to perform a non-linear transformation of predictions
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Talk Outline

Evaluation of LEAPER and Key Results
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Evaluation Methodology (1/2)

* Goal:
1. Transfer ML-based model from edge to cloud platforms
2. Transfer ML-based model across applications

3. Predictions of previously unseen accelerator optimization
options

* Nimbix cloud as the target high-end platform with:
- 5 FPGA configurations

- 2 CAPI-based interconnects (CAPI1/CAP2)

POWER9 AC922

PYNQ-Z1ZYNQ as the base low-end platform &
SAFARI .
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Evaluation Methodology (2/2)

* 6 real-world workloads:
- Image processing
* Histogram (HIST)
* Canny edge detection (CEDD)

- Machine learning
* Binary long short-term memory (BLSTM)
* Digit recognition (DIGIT)
- Databases:
* Relational operation (SELECT)
* Stream compaction (5C)

* Programming tools:
- Xilinx design tools (Vivado and HLS)
- IBM CAPI-SNAP Framework
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Performance Prediction: Transfer From Edge to Cloud

* Transfer from low-end edge PYNQ-Z1 board to
high-end cloud FPGA-based systems
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Performance Prediction: Transfer From Edge to Cloud

* Transfer from {0

LEAPER can effectively transfer model from
edge to cloud platform using only 5-10 samples

Reduces design-space exploration time
by 10x than training from scratch
(from days to only a few hours)
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Performance Prediction: Transfer Across Applications

* Transfer across applications on low-end edge PYNQ-Z1
board
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Performance Prediction: Transfer Across Applications

* Transfer on

LEAPER can effec-ti‘vely transfer models
across applications with on

average 85% accuracy
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Prediction Comparison: Unseen Accelerator Optimizations

* Prediction of previously unseen accelerator optimization
options on the base platform

* Comparison with three popular ML-based techniques:
XGBoost (XGB), artificial neural network (ANN), and decision tree (DT)
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Prediction Comparison: Unseen Accelerator Optimizations

* Prediction of
on the base platform

XGBoost (XGB), artificial neural network (ANN), and decision tree

LEAPER provides both high accuracy and
sample-efficiency compared to other

ML-based techniques

Accuraf
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More in the Paper

« Accuracy analysis for transferring resource usage models

to build ML models using LEAPER and
traditional approach

Transfer to a wide range of cloud FPGA configurations and
applications

Comparison to different transfer learning algorithms

Explainability analysis of LEAPER

Discussion on limitations
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Summary

LEAPER transfers previously trained models to
predict the performance and resource usage of
accelerator implementation

LEAPER is cheaper (with 5-shot), faster (up to
10x), highly accurate (85%) at predicting
performance and resource usage in a new
environment than building model from scratch
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