
LTRF: Enabling High-Capacity Register
Files for GPUs via Hardware/Software

Cooperative Register Prefetching

Mohammad Sadrosadati Amirhossein Mirhosseini
Seyed Borna Ehsani Hamid Sarbazi-Azad

Mario Drumond Babak Falsafi
Rachata Ausavarungnirun Onur Mutlu

Register file size limits GPU scalability
• Register file (RF) already accounts for 60% of on-chip storage

• But, there is still demand for more registers to achieve
maximum performance and concurrency

• Future slow memory accesses call for more threads
• Multi-socket, multi-GPU, RDMA, NVM, etc.

• Compiler optimizations call for more registers per thread
• Loop unrolling, thread coarsening, etc.

2

Need mechanisms to expand RF capacity
(without large area/power overheads)

0 400 800 1200 1600

Available Register File
Average Required Register File

Maximum Required Register File

2.3x
5.9x

(KB)

How to make register files larger?

• Emerging technologies [Jing’13][Mao’14][Wang’15][Abdel-Majid’17]

• Register file compression [Lee’15]

• Register file virtualization [Jion’15][Vijaykumar’16][Kloosterman’17]

• Common challenge: Latency overhead
• Example: 8x larger register file with NTV TFET

3

0

0.5
1

1.5

2

lavaMD lbm leukocyte myocyte NN sad sgemm STO WP GMEAN

N
or

m
al

ize
d

IP
C

Ideal

Real

Goal: Tolerate register file latencies

5.3x slower

No latency
overhead

Contributions

• Latency Tolerant Register File (LTRF)
• “2-level” main register file + register cache
• Performs prefetch ops while executing other warps
• Paves the way for several power/area optimizations

• Compiler-driven Register Prefetching
• Break control flow graph into “prefetch subgraphs”
• Prefetch registers at the beginning of each subgraph
• Interval analysis to identify prefetch subgraphs

4

LTRF tolerates up to 6x slower register files

Example LTRF use case:
8× larger RF 34.8% higher performance

Outline

• Background and challenges

• The case for compiler-driven register prefetching in GPUs

• LTRF architecture and compiler support

• Evaluation methodology

• Results

5

Register file caching [Gebhart’ ISCA11]

• Promising approach for latency tolerant register files

6

Unfortunately, classic demand fetch and
replace yields low hit rate in register caches

Register
File

Cache
(multiple banks)

Warp Scheduler

Cr
os

sb
ar

O
pe

ra
nd

 C
ol

le
ct

or

SI
M

D
 U

ni
tsMain

Register
File

(multiple banks)

Cr
os

sb
ar

Demand fetch/replace register caching

• 8-30% hit rate

• Why?
• No spatial locality for registers
• Values might be renamed to different registers

• Scrambles temporal locality
• Lots of threads cache thrashing

7

0
0.1
0.2
0.3
0.4

Ca
ch

e
hi

t-
ra

te

Our solution: Precise register prefetching

Compiler-driven register prefetching

• Possible to have near-perfect register prefetchers

8

• Register working sets known at compile time
• No indirection or address translation

• Prefetch latency may overlap with other warps

Compiler-driven register prefetching

• Possible to have near-perfect register prefetchers

9

• Register working sets known at compile time
• No indirection or address translation

• Prefetch latency may overlap with other warps

Key idea: “prefetch subgraphs”
• Prefetch register working sets into the

cache at the beginning of each subgraph
• All register accesses in the prefetch

subgraph hit in the register cache

Compiler-driven register prefetching

• Possible to have near-perfect register prefetchers

10

• Register working sets known at compile time
• No indirection or address translation

• Prefetch latency may overlap with other warps

Key idea: “prefetch subgraphs”
• Prefetch register working sets into the

cache at the beginning of each subgraph
• All register accesses in the prefetch

subgraph hit in the register cache

R1

R3R2

R4

Compiler-driven register prefetching

• Possible to have near-perfect register prefetchers

11

• Register working sets known at compile time
• No indirection or address translation

• Prefetch latency may overlap with other warps
P(R1,R2)

R1

P(R3)
R3R2

P(R4)
R4

Key idea: “prefetch subgraphs”
• Prefetch register working sets into the

cache at the beginning of each subgraph
• All register accesses in the prefetch

subgraph hit in the register cache

What are best prefetch subgraphs?

Objectives
• Prefetch operations

dominate register uses

• Minimum number of
prefetch operations

• Fit entire loops
• Maximize dynamic insts

Implications
• Single-entry subgraphs

• Largest possible subgraphs

• Capture backward branches

12

Optimal prefetch subgraphs

Register intervals

• Intervals: disjoint single-entry subgraphs of CFG
• Register intervals access at most k registers

• Reserve k register slots for each warp to prevent eviction

1. Entry block is the header of the first interval

2. Greedily add child basic blocks iff:
• Incoming edges only from within interval, AND
• | registers accessed in interval | ≤ k

3. Remaining children become new headers

4. Repeat until graph is irreducible

13

Prefetch register working sets
at the beginning of register intervals

Register intervals in action

14

A
R1

B
R1, R9

C
R1

D
R5, R6

E
R7, R8

G
R2, R3

F
R3, R8

Register intervals in action

• A is the first interval header

15

A
R1

B
R1, R9

C
R1

D
R5, R6

E
R7, R8

G
R2, R3

F
R3, R8

R1

Register intervals in action

• E is the only candidate to merge

16

A
R1

B
R1, R9

C
R1

D
R5, R6

E
R7, R8

G
R2, R3

F
R3, R8

R1

Register intervals in action

• E merges

17

A
R1

B
R1, R9

C
R1

D
R5, R6

E
R7, R8

G
R2, R3

F
R3, R8

R1 R7 R8

Register intervals in action

• F and G are potential candidates to merge

18

A
R1

B
R1, R9

C
R1

D
R5, R6

E
R7, R8

G
R2, R3

F
R3, R8

R1 R7 R8

Register intervals in action

• F merges but G can’t (register cache is full)

19

A
R1

B
R1, R9

C
R1

D
R5, R6

E
R7, R8

G
R2, R3

F
R3, R8

R1 R7 R8 R3

Register intervals in action

• Done with first interval --- B and G become headers

20

A
R1

B
R1, R9

C
R1

D
R5, R6

E
R7, R8

G
R2, R3

F
R3, R8

R1 R7 R8 R3

R2 R3

R1 R9

Register intervals in action

• No candidate to merge into B --- C becomes header

21

A
R1

B
R1, R9

C
R1

D
R5, R6

E
R7, R8

G
R2, R3

F
R3, R8

R1 R7 R8 R3

R2 R3

R1 R9

R1

Register intervals in action

• D becomes candidate to merge into C

22

A
R1

B
R1, R9

C
R1

D
R5, R6

E
R7, R8

G
R2, R3

F
R3, R8

R1 R7 R8 R3

R2 R3

R1 R9

R1

Register intervals in action

• D merges into C --- done with the first pass

23

A
R1

B
R1, R9

C
R1

D
R5, R6

E
R7, R8

G
R2, R3

F
R3, R8

R1 R7 R8 R3

R2 R3

R1 R9

R1 R5 R6

Register intervals in action

• Second pass:Yellow is able to merge into Red

24

A
R1

B
R1, R9

C
R1

D
R5, R6

E
R7, R8

G
R2, R3

F
R3, R8

R1 R7 R8 R3

R2 R3

R1 R9

R1 R5 R6

Register intervals in action

• Done with second pass --- graph no further reducible

25

A
R1

B
R1, R9

C
R1

D
R5, R6

E
R7, R8

G
R2, R3

F
R3, R8

Terminate

Entire
nested
loop

PREFETCH
R1, R9, R5 , R6
PREFETCH

R1, R9, R5 , R6

PREFETCH
R1, R7, R8 , R3
PREFETCH

R1, R7, R8 , R3

PREFETCH
R2, R3

PREFETCH
R2, R3

R1 R7 R8 R3

R2 R3

R1 R9 R5 R6

Register interval highlights

• Single-entry prefetch subgraphs
• Prefetch operations dominate register uses

• Maximal-length subgraphs
• Minimize prefetch overheads

• Minimal termination constraints
• Encapsulate entire loops
• Maximize dynamic instructions per interval

• Multi-pass construction algorithm based on classic
interval analysis

26

Need hardware mechanisms to provide fixed-
size cache partitions for register intervals

Outline

• Background and challenges

• The case for compiler-driven register prefetching in GPUs

• LTRF architecture and compiler support

• Evaluation methodology

• Results

27

Register
File

• “2-level” register file

28

Latency Tolerant Register File (LTRF)

Warp Scheduler

Cr
os

sb
ar

O
pe

ra
nd

 C
ol

le
ct

or

SI
M

D
 U

ni
ts

Cr
os

sb
arRegister

File
Cache

Main

Register
File

• “2-level” register file + warp scheduler

29

Latency Tolerant Register File (LTRF)

Two-Level
Warp Scheduler

Cr
os

sb
ar

O
pe

ra
nd

 C
ol

le
ct

or

SI
M

D
 U

ni
ts

Cr
os

sb
arRegister

File
Cache

Main

Register
File

• “2-level” register file + warp scheduler
• Cache registers only for the active warps

30

Latency Tolerant Register File (LTRF)

Two-Level
Warp Scheduler

Cr
os

sb
ar

O
pe

ra
nd

 C
ol

le
ct

or

SI
M

D
 U

ni
ts

Cr
os

sb
arActive

Warps
Cache

Main

• “2-level” register file + warp scheduler
• Cache registers only for the active warps
• Dedicated register cache space for each warp

31

Latency Tolerant Register File (LTRF)

Active Warps
Cache

Two-Level
Warp Scheduler

Cr
os

sb
ar

O
pe

ra
nd

 C
ol

le
ct

or

SI
M

D
 U

ni
ts

16 Registers

Cr
os

sb
ar

File

Main
Register

• “2-level” register file + warp scheduler
• Cache registers only for the active warps
• Dedicated register cache space for each warp
• Swap warps on PREFETCH

32

Latency Tolerant Register File (LTRF)

Active Warps
Cache

Two-Level
Warp Scheduler

Cr
os

sb
ar

O
pe

ra
nd

 C
ol

le
ct

or

SI
M

D
 U

ni
ts

16 Registers

Cr
os

sb
ar

File

Main
Register

Outline

• Background and challenges

• The case for compiler-driven register prefetching in GPUs

• LTRF architecture and compiler support

• Evaluation methodology

• Results

33

Evaluation methodology

• Simulator: GPGPU-Sim modeling NVIDIA Maxwell
• Workloads: CUDA-SDK, Rodinia, and Parboil suites
• Comparison points:

• Baseline: No register caching
• RFC: Demand fetch register file caching (Gebhart’ ISCA 2011)

• LTRF
• Ideal: Increased capacity with no latency overhead

34

Latency tolerance

• Max tolerable RF latency with IPC slowdown <= 5%

35

LTRF tolerates the latencies of up to 6x
slower register files

1
2
3
4
5
6
7

Baseline RFC LTRF

M
ax

 to
le

ra
bl

e
ac

ce
ss

la
te

nc
y

Performance improvement

• Example use case: Increase register file capacity
from 256KB to 2MB using NTV TFET

• Same power/area as the baseline register file (256 KB)
• 2nd-level RF accesses 5.3X slower than baseline

36

LTRF+TFET improves performance by 34.8%

within 2.3% of an ideal large register file

0
0.4
0.8
1.2
1.6

2

N
or

m
al

ize
d

IP
C

TFET TFET+RFC TFET+LTRF Ideal

Also in the paper…

• LTRF+: minimize register movement between the
register file and register cache using liveness analysis

• Register interval compared to other subraphs
• Strands, superblocks, etc.

• Detailed analysis of hardware overheads
• 16% more area
• 21% less power

• Various LTRF use cases with different register file
technologies and optimizations

37

Conclusion

• Register files are the main GPU scalability bottlenecks
• They already consume 60% of total on-chip memory
• Need more registers for highest performance

• Standalone register caching solutions yield low hit rates

• Latency Tolerant Register File (LTRF)
• “2-level” main register file + register cache
• Prefetch register working sets ahead of time
• Performs prefetch ops while executing other warps
• Interval analysis for near-optimal prefetching
• Tolerates up to 6x slower main register files
• Paves the way for several power/area optimizations

38

LTRF: Enabling High-Capacity Register
Files for GPUs via Hardware/Software

Cooperative Register Prefetching

Mohammad Sadrosadati Amirhossein Mirhosseini
Seyed Borna Ehsani Hamid Sarbazi-Azad

Mario Drumond Babak Falsafi
Rachata Ausavarungnirun Onur Mutlu

