The Locality Descriptor
A Holistic Cross-Layer Abstraction
to Express Data Locality in GPUs

ISCA 2018

Nandita Vijaykumar

Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons, Onur Mutlu

Carnegie Mellon University

NVIDIA

ETH Zürich
Data locality is critical to GPU performance

Cache Locality

NUMA Locality
Exploiting data locality in GPUs is a challenging and elusive feat...
...requiring a range of architectural techniques

- Cache Management
- CTA Scheduling
- Data Placement
- Data Prefetching
- ...
Furthermore…

A single technique is often insufficient

The required set of techniques depends on the program
Challenging for the programmer/software

No easy access to many architectural techniques

Tedious and un-portable programming:

Bypass Cache Line A
Schedule Thread Block 2 at SM 1
...

6
Challenging for the architect

Hardware misses **key program semantics** required for optimization

Where to place data?

Which threads to schedule together?

Which data to bypass?
The Locality Descriptor

A hardware-software abstraction to express and exploit data locality

Connects locality semantics to the underlying hardware techniques

Application

New software interface

Locality Descriptor

Access to key program semantics

Software

Hardware

Data Placement

Cache Management

CTA Scheduling

Data Prefetching

...
A Sneak Peak

LocalityDescriptor ldesc(A; len, INTER-THREAD, tile, loc, priority);

Key Performance Results:

Leveraging Cache Locality: $\uparrow 26.6\%$ on average (up to 46.6%)

Leveraging NUMA Locality: $\uparrow 53.7\%$ (up to $2.8X$)
The Locality Descriptor
A Holistic Cross-Layer Abstraction to Express Data Locality in GPUs

ISCA 2018

Nandita Vijaykumar
Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons, Onur Mutlu